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Abstract: Consensus problem of second-order multi-agent systems with velocity
damping term in agent’s dynamics is investigated. Based on frequency-domain anal-
ysis, decentralized consensus condition, which depends on the input delays, is ob-
tained for the system based on undirected and symmetric graph with heterogeneous
input delays. For the system based on directed graph with both heterogeneous in-
put delays and communication delays, decentralized consensus condition, which is
dependent on the input delays but independent on the communication delays, is also
obtained. Simulations illustrate the correctness of the results.
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1 Introduction

In the last decade, distributed coordination of multiple autonomous agents has attracted more and
more attention from various research communities for its broad application including automated highway
systems, air traffic control, congestion control in Internet, etc.

Consensus problem, which is one of the most fundamental and important issues in coordination
control of multi-agent systems, requires that the outputs of several spatially distributed agents reach
a common value without recurse to a central controller. For the first-order multi-agent systems with
agents’ dynamics modeled by single integrators and second-order multi-agent systems with agents’ dy-
namics modeled by double integrators, consensus algorithms have been proposed to solve the consensus
problem, and sufficient conditions have been obtained for the system converging to the consensus with
static or switched interconnection topology [1–4].

Recently, more and more attention has been paid on the delay effect on consensus convergence of
multi-agent systems. Generally speaking, two kinds of time delays cannot be negligible in the multi-
agent systems. One is communication delay, which is related to the information transmission between
neighboring agents. The other is input delay, which is related to the processing and connecting time for
the packets arriving at each agent [5].

Consensus problem under communication delays has been extensively studied for the first-order
multi-agent systems based on different analysis methods, such as Lyapunov functions analysis [6, 7],
frequency-domain analysis [2, 8], method based on delayed and hierarchical graphs [9, 10], method
based on difference of maximum value and minimum value [11, 12], etc. However, consensus analy-
sis of second-order multi-agent systems with communication delay is much more difficult, and many
existing results are mostly on the synchronous consensus algorithm [13–15], in which self-delays equal-
ing to the corresponding communication delays are introduced for each agent in the coordination control
part. Compared with the first-order multi-agent systems, the consensus algorithm without any self-delay,
which is called asynchronous consensus algorithm, has not been studied extensively for the second-order
multi-agent systems. Using small-µ stability theorem, Yang et al. [16] obtained the frequency-domain
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consensus conditions for the second-order multi-agent systems with time-varying communication delays.
Based on frequency-domain analysis [17] and Lyapunov-Krasovskii functional method [18], Spong et
al. proved that, by choosing proper consensus protocol and control parameters, the second-order multi-
agent systems with heterogeneous communication delays can converge to a stationary consensus without
any relationship to the delays. Using the properties of nonnegative matrices, Lin and Jia [19] obtained
delay-independent sufficient conditions for the second-order discrete-time multi-agent systems with het-
erogeneous communication delays converging to the stationary consensus under dynamically changing
topologies.

To our knowledge, however, the consensus problem under input delays has not attracted much more
attention. In some reports, the identical communication delay introduced in the synchronous consen-
sus algorithm can be treated as the identical input delay [2, 14, 15]. Using frequency-domain analysis
method, Tian and Liu [5] considered the consensus problem of the first-order multi-agent systems with
heterogeneous input delays based on undirected graphs, and obtained the decentralized consensus cri-
terion depending on the input delays. Moreover, the decentralized consensus condition, which depends
only on the input delays, is also obtained for the first-order multi-agent systems with both heterogeneous
communication delays and input delays based on the digraph in [5]. In [20], Tian and Liu investigated
the leader-following consensus problem of the second-order multi-agent systems with heterogeneous
input delays and symmetric coupling weights, and the decentralized consensus condition with some
prerequisites is obtained for the system converging to the states of the dynamic leader asymptotically.
Furthermore, the robustness of the symmetric system with asymmetric weight perturbation is also inves-
tigated in [20], and a bound of the largest singular value of the perturbation matrix is obtained as the
robust consensus condition.

In this paper, we consider the consensus problem of second-order multi-agent systems with veloc-
ity damping term in the agent’s dynamics, and analyze the consensus conditions for the system with
heterogeneous delays converging to the stationary consensus. Firstly, we investigate the consensus prob-
lem for the system based on undirected and symmetric graph with heterogeneous input delays, and a
decentralized consensus condition, which is delay-dependent, is obtained by using some early results
for the Internet congestion control with heterogeneous communication delays [21]. Then, we study the
consensus problem for the system based on general directed graph with both heterogeneous input de-
lays and communication delays by using Greshgorin disc theorem, and another decentralized consensus
condition, which depends on the input delays only, is also obtained. This consensus condition is more
conservative than the former for the existence of heterogeneous communication delays and the asymme-
try of coupling weights, but it can be applied to the systems based on directed graph with asymmetric
weights.

2 Preliminaries on Graph Theory

A weighted directed graph (digraph) G = (V,E,A) of order n consists of a set of vertices V = {, ...,n},
a set of edges E⊆ V×V and a weighted adjacency matrix A = [ai j] ∈ Rn×n with nonnegative adjacency
elements ai j. The node indexes belong to a finite index set I = {,, ...,n}. An edge of the weighted
diagraph G is denoted by ei j = (i, j) ∈ E, i.e., ei j is a directed edge from i to j. We assume that the adja-
cency elements associated with the edges of the digraph are positive, i.e., ai j >  ⇔ ei j ∈ E. Moreover,
we assume aii =  for all i ∈ I. The set of neighbors of node i is denoted by Ni = { j ∈ V : (i, j) ∈ E}.
In the digraph G, if (i, j) ∈ E ↔ ( j, i) ∈ E, we usually say G is undirected graph or bidirectional graph.
The out-degree of node i is defined as: degout(i) =

∑n
j= ai j. Let D be the diagonal matrix with the

out-degree of each node along the diagonal and call it the degree matrix of G. The Laplacian matrix of
the weighted digraph is defined as L = D−A.

If there is a path in G from one node i to another node j, then j is said to be reachable from i. If not,
then j is said to be not reachable from i. If a node is reachable from every other node in the digraph, then
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we say it globally reachable. A digraph is strongly connected if every node in the digraph is globally
reachable. An undirected graph is connected if it contains a globally reachable node.

3 Problem Formulation

In a multi-agent system composed of n agents, each agent can be regarded as a node in a digraph,
and information flow between neighboring agents can be considered as directed paths between the nodes
in the digraph. Thus, the interconnection topology of multi-agent systems can be described as a diagraph
G = (V,E,A). In this paper, we just consider static topology G, i.e., the connection of the nodes in the
diagraph G does not change with time.

Consider the second-order dynamic agents modeled by

ẋi = vi,

miv̇i = Fi, i ∈ I, (1)

where xi ∈ R and vi ∈ R are the position and the velocity of the agent i respectively, mi >  is the mass of
the agent i, and Fi is the total force on the agent i. Analogous to [22], the total force Fi in the second-order
model (1) consists of two components:

Fi = −αivi +ui,

where ui is the external control input, and −αivi with αi >  denotes the velocity damping term caused
by the resistance, e.g., the friction. Then, the second-order model (1) becomes

ẋi = vi,

miv̇i = −αivi +ui, i ∈ I. (2)

With non-negligible input delays for the external control, the agents (2) become

ẋi(t) = vi(t),

miv̇i(t) = −αivi(t)+ui(t −Ti), i ∈ I, (3)

where Ti >  is the input delay of the agent i. For the system (3), we take a consensus protocol based on
the agents’ position states as follows

ui = κi

∑

j∈Ni

ai j(x j − xi), (4)

where κi > , Ni denotes the neighbors of agent i, and ai j >  is the adjacency element of A in the digraph
G = (V,E,A). Under the communication delays, the protocol (4) becomes

ui(t) = κi

∑

j∈Ni

ai j(x j(t − τi j)− xi(t)), (5)

where τi j is the communication delay from agent j to agent i.
With the protocol (5), the closed-loop form of the system (3) is

ẋi(t) = vi(t),

miv̇i(t) = −αivi(t)+κi

∑

j∈Ni

ai j(x j(t −Ti − τi j)− xi(t −Ti)), i ∈ I. (6)

Remark 1. In [20], Tian and Liu has studied the leader-following consensus problem of the second-order
multi-agent systems with heterogeneous input delays under double-consensus algorithm, and obtained
the consensus conditions for the system with symmetric and asymmetric weights respectively. Different
from [20], we consider the stationary consensus of the second-order dynamic agents (6) with velocity
damping term, and analyze the consensus conditions for the system with heterogeneous communication
delays and input delays.
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4 Consensus Criterion

4.1 Consensus under Heterogeneous Input Delays

In this section, we investigate the consensus problem of multi-agent systems (6) just with heteroge-
neous input delays only as follows

ẋi(t) = vi(t),

miv̇i(t) = −αivi(t)+κi

∑

j∈Ni

ai j(x j(t −Ti)− xi(t −Ti)), i ∈ I. (7)

Firstly, we give an assumption on the velocity damping coefficient αi, the mass mi and input delay Ti

in the following.

Assumption 2. (Ti
αi
mi

−Tj
α j
m j

)(Ti −Tj)≤ , ∀i, j ∈ I, i 6= j.

Now, we present some sufficient conditions for second-order multi-agent systems with heterogeneous
input delays.

Theorem 3. Consider the network of n dynamic agents (7) with a static interconnection topology G =

(V,E,A) that is undirected (or bidirectional) and connected, and the topology graph has symmetric
weights, i.e., ai j = a ji. Then, under Assumption 2, all the agents in system (7) asymptotically converge
to a stationary consensus, i.e., limt→∞ xi(t) = c, limt→ vi(t) = , ∀i ∈ I, where c is a constant, if

∑

j∈Ni

ai j <
mi

κi(GM
i )−

,∀i ∈ I, (8)

where GM
i is the gain margin of the transfer function Wi(s) = e−sTi

s+
αi
mi

s
.

Before proving Theorem 3, we list two useful lemmas as follows.

Lemma 4. [23] Let Q ∈Cn×n, Q = Q? ≥  and T = diag{ti, ti ∈C}. Then

λ (QT ) ∈ ρ(Q)Co(∪ {ti}),

where λ (·) denotes matrix eigenvalue, ρ(·) denotes the matrix spectral radius, and Co(·) denotes the
convex hull.

Based on Remark 4 and Claim 1 in [21], we obtain the following lemma.

Lemma 5. Suppose that Assumption 2 holds for the frequency response of a family of systems described
by

Gi(jω) =
GM

i

s + j αi
mi

ω
e−jTiω , i ∈ I,

where GM
i is the gain margin of the transfer function Wi(s) = e−sTi

s+
αi
mi

s
. Then, γCo(∪ {Gi(jω), i ∈ I}) does

not contain the point (−, j) for any given real number γ ∈ [,) and any ω ∈ (−∞,∞).

Now, we give the proof of Theorem 3.
The system (7) is rewritten as follows

ẋi(t) = vi(t),

v̇i(t) = −ᾱivi(t)+ κ̄i

∑

j∈Ni

ai j(x j(t −Ti)− xi(t −Ti)), i ∈ I, (9)
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where ᾱi = αi
mi

and κ̄i = κi
mi

. Taking the Laplace transform of the system (9), we obtain the characteristic
equation of the system (9) about x(t) = [x(t), · · · ,xn(t)]T as follows

det(diag{s + ᾱis, i ∈ I}+diag{κ̄ie−Tis, i ∈ I}L) = .

Define D(s) = det(diag{s + ᾱis, i ∈ I}+diag{κ̄ie−Tis, i ∈ I}L), and we will prove that all the zeros of
D(s) are on the open left half complex plane or s =  in the following.

When s = , D() = det(diag{ + ᾱi, i ∈ I} + diag{κ̄ie−Ti, i ∈ I}L) = det(diag{κ̄i, i ∈ I})det(L),
Because the interconnection graph G = (V,E,A) is connected,  is a simple eigenvalue of L [24], i.e.,
rank(L) = n−. Hence, D(s) has only one zero at s = .

When s 6= , define F(s) = det(I +diag{ κ̄i
s+ᾱis

e−Tis, i ∈ I}L). We will prove that the zeros of F(s) lie
on the open left half complex plane. According to the General Nyquist stability criterion [25], the zeros
of F(s) are on the open left half complex plane, if λ (diag{ κ̄i

(jω)+jωᾱi
e−jωTi , i ∈ I}L) does not enclose the

point (−, j) for ω ∈ R.
For the symmetric weights (ai j = a ji), we get L = LT ≥  according to the definition of the Laplacian

matrix. Based on Lemma 4, we get

λ (diag{
κ̄i

−ω + jᾱiω
e−jTiω }L)

= λ (diag{
GM

i

−ω + jᾱiω
e−jTiωdiag{

√
κ̄i(GM

i )−}Ldiag{

√
κ̄i(GM

i )−})

∈ ρ(diag{

√
κ̄i(GM

i )−}Ldiag{

√
κ̄i(GM

i )−})Co(∪ GM
i

−ω + jᾱiω
e−jTiω).

Since the spectral radius of any matrix is bounded by its largest absolute row sum, it follows from
the condition (8) that

ρ(diag{

√
κ̄i(GM

i )−}Ldiag{

√
κ̄i(GM

i )−}) = ρ(diag{κ̄i(GM
i )−}L)

≤ max
i∈I

κ̄i(GM
i )−(

∑

j∈Ni

ai j)

< .

Therefore, from Lemma 5, we obtain that

(−,) 6∈ ρ(diag{

√
κ̄i(GM

i )−}Ldiag{

√
κ̄i(GM

i )−})Co(∪ GM
i

−ω + jᾱiω
e−jTiω),

i.e., λ (diag{ κ̄i
(jω)+jωᾱi

e−jωTi , i ∈ I}L) does not enclose the point (−, j) for ω ∈ R, which implies that
the zeros of F(s) are all on the open left half complex plane.

Now, we have proved that D(s) has its zeros on the open left half complex plane except for one zero at
s = . Thus, the state xi(t) of the system (7) converges to a steady state, i.e., limt→∞ xi(t) = x∗i , i ∈ I, and
limt→∞ vi(t) = ,∀i∈ I holds for (7). It is obtained from (7) that L[x∗, · · · ,x∗n]T = . Since rank(L) = n−
and L[, · · · ,]T =  from the definition of the Laplacian matrix L, the roots of Lx∗ =  can be expressed
as x∗ = c[, · · · ,]T , where c is a constant. Theorem 3 is proved. 2

Remark 6. Obviously, the consensus condition (8) in Theorem 3 depends strictly on the Assumption 2
and the symmetry of the coupling weights between agents.
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4.2 Consensus under Heterogeneous Input and Communication Delays

In multi-agent systems, the interconnection topology composed of dynamic agents is usually asym-
metric, and the communication delays caused by information transmission always exist between neigh-
boring agents. Thus, the Lemma 4 and Lemma 5 which play important roles in the proof of Theorem 3
cannot be applied in these cases. In this section, we will analyze the consensus of the second-order dy-
namic agents (6) with both heterogeneous input delays and communication delays under general directed
interconnection topology.

Theorem 7. Consider the network of n dynamic agents (6) with a static interconnection topology G =

(V,E,A) that has a globally reachable node. If

∑

j∈Ni

ai j <
α

i

κi(mi +αiTi)
, ∀i ∈ I, (10)

all the agents in the system (6) converge to a stationary consensus asymptotically.

Proof: Firstly, rewrite the system (6) as

ẋi(t) = vi(t),

v̇i(t) = −ᾱivi(t)+ κ̄i

∑

j∈Ni

ai j(x j(t −Ti − τi j)− xi(t −Ti)), i ∈ I, (11)

where ᾱi = αi
mi

and κ̄i = κi
mi

. Taking the Laplace transform of the system (12), we obtain that the charac-
teristic equation of the system (12) about x(t) = [x(t), · · · ,xn(t)]T is

det(diag{s + ᾱis, i ∈ I}+diag{κ̄ie−Tis, i ∈ I}L(s)) = ,

where the n×n matrix L(s) = {li j(s)} is defined by

li j(s) =





−ai je−τi js, j ∈ Ni;∑
j∈Ni

ai j, j = i;
, otherwise,

and L() = L, which is the Laplacian matrix.
Define D̃(s) = det(diag{s + ᾱis, i ∈ I}+diag{κ̄ie−Tis, i ∈ I}L(s)), and we will prove that all the zeros

of D̃(s) are on the open left half plane or s =  in the following.
When s = , D̃() = det(diag{ + ᾱi, i ∈ I}+ diag{κ̄ie−Ti, i ∈ I}L()) = det(diag{κ̄i, i ∈ I)det(L),

Because the interconnection topology G = (V,E,A) has a globally reachable node,  is a simple eigen-
value of L [24]. Hence, D̃() = , i.e., D̃(s) has only one zero at s = .

When s 6= , define F̃(s) = det(I + diag{ κ̄i
s+ᾱis

e−Tis, i ∈ I}L(s)). We will prove the zeros of F̃(s) lie
on the open left half complex plane. According to the General Nyquist stability criterion [25], the zeros
of F̃(s) are on the open left half complex plane, if λ (diag{ κ̄i

(jω)+jωᾱi
e−jωTi , i ∈ I}L(jω)) does not enclose

the point (−, j) for ω ∈ R. Based on the Greshgorin’s disc theorem,

λ (diag{
κ̄i

−ω + jᾱiω
e−jTiω , i ∈ I}L(s))

∈
⋃

i∈I

{ζ : ζ ∈C, |ζ −
κ̄i(

∑
j∈Ni

ai j)

−ω + jᾱiω
e−jTiω |≤

∑

j∈Ni

|
κ̄iai j

−ω + jᾱiω
e−j(Ti+τi j)ω |}

=
⋃

i∈I

{ζ : ζ ∈C, |ζ −
κ̄igi

−ω + jᾱiω
e−jTiω |≤ |

κ̄igi

−ω + jᾱiω
e−jTiω |}
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holds for ω ∈ R, where gi =
∑

j∈Ni
ai j.

Then, λ (diag{ κ̄i
(jω)+jωᾱi

e−jωTi , i ∈ I}L(jω)) does not enclose the point (−, j) for ω ∈ R as long as

the point (−a, j) with a≥  does not in the disc {ζ : ζ ∈C, |ζ − κ̄igi
−ω+jᾱiω e−jTiω |≤ | κ̄igi

−ω+jᾱiω e−jTiω |} for

all ω ∈ R, i.e., |−a+ j− κ̄igi
−ω+jᾱiω e−jTiω | > | κ̄igi

−ω+jᾱiω e−jTiω | holds for all ω ∈ R when a≥ .
By calculating, we obtain

|−a+ j−
κ̄igi

−ω + jᾱiω
e−jTiω | − |

κ̄igi

−ω + jᾱiω
e−jTiω | = a(a−κ̄igi

cos(ωTi)+ ᾱi
sin(ωTi)

ω
ω + ᾱ

i
).

Because cos(ωTi)≤  and sin(ωTi)
ω ≤ Ti hold for ω ∈ R, it follows from (11) that

κ̄igi
cos(ωTi)+ ᾱi

sin(ωTi)
ω

ω + ᾱ
i

≤ κ̄igi(+ ᾱiTi)

ᾱ
i

< .

Hence, |−a+ j− κ̄igi
−ω+jᾱiω e−jTiω | > | κ̄igi

−ω+jᾱiω e−jTiω | holds for all ω ∈ R when a≥ .
Now, we have proved that D̃(s) has its zeros on the open left half complex plane except for a zero

at s = . Thus, the state xi(t) of the system (6) converges to a steady state, i.e., limt→∞ xi(t) = x∗i , i ∈ I,
and limt→∞ vi(t) = ,∀i ∈ I holds for (6). Then, analogous to the proof of Theorem 3, the system (6)
converges to a stationary consensus for the digraph that has a globally reachable node. Theorem 7 is
proved. 2

Remark 8. In the networks composed of interconnected dynamic systems, the scalability is a important
property that needs to be maintained [5, 20, 21, 23]. Obviously, the decentralized consensus conditions
(8) and (11) maintain the scalability of the multi-agent network. Without having to redesign the entire
network whenever an agent is added or removed, the networks (6) and (7) can achieve the desired col-
lective behavior as long as the local conditions for the agent and its neighbors hold respectively, and the
connectedness of the interconnection topology is maintained.

Remark 9. In the consensus analysis of the multi-agent systems, Greshgorin’s disc theorem has been
extensively used to obtain the communication delay-independent consensus condition for the system
with heterogeneous communication delays [8, 17]. In [17], decentralized frequency-domain consensus
conditions have been obtained for the multi-agent systems with agents’ dynamic modeled by strictly
stable linear systems under heterogeneous communication delays. Then, by transformation, the system
(6) can be expressed as a special case of the system studied in [17]. However, (11) gives a concrete
algebraic criterion, which is convenient for the design of the consensus algorithm.

Remark 10. According to [20] (the inequality (24) there in), the consensus condition (8) in Theorem 3
satisfies

mi

κi(GM
i )−

>
αi

κiTi
>

α
i

κi(mi +αiTi)
.

Thus, under the same conditions, the consensus condition (11) in Theorem 7 is more conservative than
the consensus condition (8) given in Theorem 3.

5 Simulation

Example 11. Consensus under input delays based on symmetric graph.
Consider a multi-agent network of five dynamic agents described by (7). The interconnection topol-

ogy is described in Figure 1, and the graph is undirected and connected. The symmetric weights of the
edges are: a = a = ., a = a = ., a = a = ., a = a = ., a = a = .. The input
delays of the agents are: T = .(s), T = .(s), T = .(s), T = .(s) and T = .(s). The velocity
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damping coefficients of the agents are: α = , α = 
 , α = ., α = , α = , and the mass of each

agent is assumed to be , i.e., mi = , i = , · · · ,. Thus, the Assumption 2 holds for all the agents. For the
transfer functions Wi(s) = e−sTi

s+
αi
mi

s
, i = , · · · ,, by using the Matlab simulator, we obtain the gain margins:

GM
 ' ., GM

 ' ., GM
 ' ., GM

 ' . and GM
 ' .. According to the condition (8), we

obtain that the control parameters κi satisfy: κ ∈ (,.), κ ∈ (,.), κ ∈ (,.), κ ∈ (,.),
κ ∈ (,.), and we choose κ = , κ = ., κ = ., κ =  and κ = . Then, with the initial states
generated randomly, the agents in the system (7) converge to a stationary consensus (see Figure 2).

31 2

45

Figure 1: Undirected graph with symmetric weights
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Figure 2: Consensus convergence under input delays

Example 12. Consensus under input and communication delays based on asymmetric digraph.
Consider a network of five agents described by (6). The interconnection topology is a digraph de-

scribed in Figure 3, and the globally reachable node set of the digraph is {,}. The weights of the
directed edges are: a = ., a = ., a = ., a = ., a = ., a = ., and the corre-
sponding communication delays are: τ = .(s), τ = .(s), τ = .(s), τ = .(s), τ = .(s),
τ = .(s). The velocity damping coefficients of the agents are: α = ., α = , α = , α = ,
α = , and the mass of each agent is assumed to be . Choosing the control parameters: κ = , κ = ,
κ = ., κ = , κ = , we obtain from the condition (11) that the constraints on the input delays
are: T ∈ (,.)(s), T ∈ (,)(s), T ∈ (,)(s), T ∈ (,.)(s) and T ∈ (,.)(s). With T = (s),
T = .(s), T = .(s), T = (s), T = .(s), the agents in the system (6) converge to a stationary
consensus (see Figure 4).

6 Conclusions

In this paper, we investigate the consensus problem of second-order multi-agent systems with ve-
locity damping term in the agent’s dynamic. Based on the frequency-domain analysis, two sufficient
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Figure 3: Digraph composed of 5 agents
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Figure 4: Consensus convergence under input and communication delays

decentralized consensus conditions are obtained. One consensus condition is for the system with hetero-
geneous input delays based on undirected and symmetric graph, and is dependent on the input delays.
The other consensus condition is for the system with both heterogeneous input delays and communica-
tion delays based on general directed graph, and depends on the input delays only. Although the later
consensus condition is more conservative than the former, it can be applied to the systems based on
directed graph with asymmetric coupling weights.
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