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Abstract: The presented work is dedicated to the supervision of manufacturing
job-shops with time constraints. Such systems have a robustness property towards
time disturbances. The main contribution of this paper is a fuzzy filtering approach
of sensors signals integrating the robustness values. This new approach integrates
a classic filtering mechanism of sensors signals and fuzzy logic techniques. The
strengths of these both techniques are taken advantage of the avoidance of control
freezing and the capability of fuzzy systems to deal with imprecise information by
using fuzzy rules. Finally, to demonstrate the effectiveness and accuracy of this new
approach, an example is depicted. The results show that the fuzzy approach allows
keeping on producing, but in a degraded mode, while providing the guarantees of
quality and safety based on expert knowledge integration.
Keywords: Alarm filtering, fuzzy logic, symptoms generation, robustness, time con-
straints, manufacturing.

1 Introduction

In general, the detection of failure symptoms related to the process elements requires a development
of a system model to be supervised [1]. This model can be either a normal functioning model or dysfunc-
tion model. If a model is adopted, two basic mechanisms are used for detection. The first one consists
of comparing the evolutions of the observed system with those of the process model, or with those of
normal functioning signatures evolving in real time with the system. The second one is based on observ-
ing known failures signatures. These signatures describe historical or theoretical failures known from
the process or the process elements. Without the supervision of a system model, the adopted strategy
consists of an exploitation of the information given by the sensors and the detectors at a local level of
the process [2]. Sometimes, in manufacturing workshops with time constraints, the information given by
sensors signals is dubious and the symptoms generated are vague. Furthermore, the validation interval
associated to each sensor signal is not always exact, this is the case where the temporal windows are
badly defined. These reasons bring us to use fuzzy logic which is based on an approximate reasoning
able to take into account the uncertainty and the inaccuracy of knowledge. This paper is an extension
of Jerbi work [3]. In [3] was proposed an integration of the robustness in the filtering mechanism of
sensors signals. This mechanism, presented by Toguyeni in 1992, aims at generating symptoms for the
diagnosis [4]. Our main contribution is a fuzzy filtering mechanism of sensors signals. This paper is or-
ganised as follows. The first part summarizes the proposed filtering mechanism of sensors signals taking
into account the robustness intervals. The second part introduces a new fuzzy filtering approach where
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fuzzy logic and filtering of sensors signals techniques are integrated. In order to show the effectiveness of
this approach, in the third part, an illustrative example is outlined and the results are discussed. Finally,
conclusions of this work are given.

2 Robustness integration in the filtering of sensors signals

2.1 Symptoms generation

Permanently, the state of the process model is updated by the evolutions caused by the control and the
sensors signals. These sensors signals are sent by the controlled system in response to a control request.
The mechanism developed for the detection of failures symptoms is based on the impact study of sensors
signals on the process model, called reference model, and on that of the control. These two models do not
make it possible to characterize all failures symptoms of a controlled system, for example, the absence
of sensors signals (this can be the case, when a sensor is not functional or the control request was not
carried out). In order to take into account these problems, mechanisms of "watchdogs" were integrated
in the control and process models. These mechanisms are based on two dates provided by the scheduling
task: the beginning date as soon as possible noted ∆ tm/CRi and the completion date noted ∆ tM/CRi of
the control operation [4]. The idea consists of modelling any operation from a temporal approach. At
each operation Ai is associated a sensor signal CRi. To each sensor signal CRi is associated a temporal
interval [∆ tm/CRi, ∆ tM/CRi] (figure 1). The report CRi is valid only inside this window. ∆ tm/CRi and
∆ tM/CRi are defined relatively to the beginning of the operation Ai (Start-Event). The filtering principle is
to position the temporal window of each sensor signal CRi when its Start-Event was received.Two types
of symptoms are distinguished:

• Symptoms type I noted S
i : This class of symptoms corresponds to awaited sensor signal which

is not received at ∆ tM/CRi. The detection mechanism of this symptom type corresponds to the
traditional mechanism of watchdog, but implemented in a separate way of the control.

• Symptoms type II noted S
i : It is generated by the occurrence of a sensor signal which is not

expected. Two cases are considered, the first one corresponds to an action but its report occurs
before the validation interval. The second one corresponds to the occurrence of a report in absence
of any control which can create it.

Ai

(Start-Event) 

tM/CRi

Validation interval of CRi

       Time 0

tm/CRi

Figure 1: Operation associated model [4]

2.2 Symptoms generation

The robustness of a system can be defined as its ability to preserve the specifications facing some
expected or unexpected variations. So, the robustness of a system characterizes its capacity to deal
with disturbances [6]. It is interpreted into different specializations. The passive robustness is based
upon variations included in validity time intervals.There is no control loop modification to preserve the
required specifications. On the other hand, active robustness uses observed time disturbances to modify
the control loop in order to satisfy these specifications. Therefore, the robustness intervals must be
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integrated in the filtering mechanism of sensors signals. In [3], a filtering mechanism of sensors signals
integrating the robustness values is proposed. This mechanism allows the integration of the robustness
results in the symptoms generation and the classification of the various actions reports. This classification
is very useful for the supervision because it makes it possible to preserve the production function. This
constitutes an enhancement of the filtering mechanism. Five time intervals, figure 2, are defined, namely:
Ii = [∆ tm ′′

/CRi
, ∆ tm ′

/CRi
[, Ii = [∆ tm ′

/CRi
, ∆ tm/CRi [, Ii = [∆ tm/CRi , ∆ tM/CRi [, Ii = [∆ tM/CRi , ∆ tM ′

/CRi
[

and Ii = [∆ tM ′
/CRi

, ∆ tM ′′
/CRi

[.
The margin of passive robustness is available in Ii ∪ Ii whereas the margin of active robustness is in
Ii∪ Ii. Several cases can arise:

        Ai

(Start-Event) 

Time 

tm/CRi tM/CRi

CRi  (Normal functioning) 

tm’/CRitm’’/CRi tM’/CRi tM’’/CRi

0

Normal functioning interval 

Passive robustness interval

Active robustness interval

Figure 2: Robustness integration in the operation associated model [3]

• If there are absence of order (not Ai) and presence of CRi, there are freezing of the control and
generation of a symptom S

i .

• If the sensor signal CRi arrives in the time interval [, ∆ tm ′′
/CRi

[, there are freezing of the control
and generation of a symptom S

i .

• If the sensor signal CRi arrives in the time interval Ii, there are change of the control (active
robustness to an advance) and memorizing a symptom S

i .

• If the sensor signal CRi arrives in the time interval Ii, there is no change of the control (passive
robustness to an advance) but only a memorizing of a symptom S

i .

• If the sensor signal CRi arrives in the time interval Ii, the behavior of the system is normal.

• At the instant ∆ tM/CRi , there is automatically memorizing of a symptom S
i .

• If the sensor signal CRi arrives in the time interval Ii, it is a case of passive robustness to a delay.
The symptom S

i is already memorized.

• If the sensor signal CRi arrives in the time interval Ii, a change of the control is necessary (active
robustness to a delay).

• At the instant ∆ tM ′′
/CRi

, there is freezing of the control.

Therefore, the robustness intervals are integrated in the filtering mechanism of sensors signals. It makes
it possible to continue the production in a degraded mode. However the assumptions formulated in [3]
are very restrictive. It is natural to consider different scenarios where the temporal specifications of the
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process are not fulfilled, nevertheless the production can continue. The next section presents a fuzzy
filtering mechanism of sensors signals which introduces a finer classification of abnormal functioning
and integrates the vague knowledge of the robustness intervals in the interpretation of sensors signals,
coming from the workshop, for the generation of symptoms. The objective is to avoid the freezing of the
control when the time disturbance is in the robustness intervals.

3 Fuzzy filtering of sensors signals

3.1 Introduction

Fuzzy logic is a mathematical tool that allows us to approach an unknown function by means of
linguistic descriptions. Nevertheless, the linguistic information is a feature of the human reasoning and
not of the mechanical components or programs. In consequence, this tool has achieved widespread
applications and success in many areas such as control, supervision, image filtering and communications
[6–9]. The essential characteristics of fuzzy logic are as follows [10]:

• Exact reasoning is viewed as a limiting case of approximate reasoning.

• Everything is a matter of degree.

• Any logical system can be fuzzified.

• Knowledge is interpreted as a collection of elastic or, equivalently, fuzzy constraint on a collection
of variables.

• Inference is viewed as a process of propagation of elastic constraints.

Fuzzy logic calls upon a base of dubious knowledge, modelled by the sequence of fuzzy rules. This tech-
nique seems very promising thanks to its potential of use in dynamic monitoring and supervision, with
the possibility of remaining human operator, by taking into account its way of reasoning and offering an
interesting traceability. Before proceeding, we define some important terms.

Definition 1. [11]: A fuzzy set F in a universe of discourse U is characterized by a membership function
µF : U → [,]

Definition 2. [11]: A linguistic variable x in a universe of discourse U is characterized by: T (x) ={
T

x,T

x, ...,T

k
x
}

and M(x) =
{

M
x ,M


x , ...,M

k
x
}

where T (x) is the term set of x, that is the set of names of
linguistic values of x with each value T i

x being a fuzzy number with membership function Mi
x on U .

3.2 Basic Structure of a Fuzzy System

Figure 3, shows the basic structure of a conventional fuzzy system. Such system can be seen as con-
sisting of four basic building blocks: Fuzzification, Fuzzy rule set, Inference method and Defuzzification.
Let us examine these building blocks in details:

• The fuzzification transforms a numerical input variable in a fuzzy set described by linguistic ex-
pressions.

• Fuzzy rules set: the fuzzy IF-THEN rule expresses a fuzzy implication relation between the fuzzy
sets of the premise and the fuzzy sets of the conclusion.

• The inference makes it possible to implement, on the basis of fuzzy rules, the logical dependence
between input variables and output fuzzy variables [12].
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Fuzzification Defuzzification

Fuzzy Rules 

Inference 

Input Output

X Y

Figure 3: Fuzzy set stages

• The defuzzification transforms the output fuzzy set in a numerical variable.

Following the above definitions, the input vector X which includes the input state linguistic variables
xi’s, and the output state vector Y which includes the output state linguistic variables yi’s, can be defined
as:

X =
[
xi,Ui,

{
T

xi
,T

xi
, ...,Tk

xi

}
,
{

M
xi
,M

xi
, ...,Mk

xi

}]
i=[,...,n] (1)

Y =
[
yi,Ui,

{
T

yi
,T

yi
, ...,Tk

yi

}
,
{

M
yi
,M

yi
, ...,Mk

yi

}]
i=[,...,m] (2)

The fuzzifier, in figure 3, is a mapping from an observed input space to fuzzy sets in certain input universe
of discourse. So, a specific value xi(t) at the time t is mapped to the fuzzy set T

x with degree M
x(xi(t))

and to the fuzzy set T
x with degree M

x(xi(t)) and so on.

Fuzzification of the input and output variables

If we want to introduce linguistic information, we have to define an interface. This interface is de-
nominated fuzzification, and it translates the sensor measurements into linguistic concepts. To carry out
such transformation, the fuzzification resorts to a characteristic function called membership function.
The aim of fuzzification is to produce initial membership functions. Therefore, the universe of discourse
U of the input and output variables are divided into fuzzy subsets.
The first step consists of choosing the input and output variables. This choice depends on the parameters
available and the type of application [13]. In order to produce initial membership functions, the input
and output spaces are divided into fuzzy regions. In our example, we have two inputs and two outputs
variables, all membership functions are represented by trapezoidal forms. The sensor signal (CRi) and
the occurrence of the Start-Event (Ai) are considered as inputs variables. However, the type of symptom
(Si) and the Control Decision (CD) are considered as outputs ones.
The second step consists of defining the universe of discourse which can take each variable. Then, we
define the fuzzy sets associated to the inputs and outputs variables and their corresponding member-
ship functions. Thus, the universe of discourse is divided into intervals at which a descriptive label is
associated. This last choice is based on the experiment of the operator.

• Fuzzification of sensor signal (CRi)

We define, figure 4, thirteen time intervals, namely: Ii = [, ∆ tm ′′
/CRi

[, Ii = [∆ tm ′′
/CRi

, ∆ tm ′′
 /CRi

[,
Ii = [∆ tm ′′

 /CRi
, ∆ tm ′

/CRi
[, Ii = [∆ tm ′

/CRi
, ∆ tm ′

/CRi
[, Ii = [∆ tm ′

/CRi
, ∆ tm/CRi [, Ii = [∆ tm/CRi , ∆ tm/CRi [,

Ii = [∆ tm/CRi , ∆ tM/CRi [, Ii = [∆ tM/CRi , ∆ tM/CRi [, Ii = [∆ tM/CRi , ∆ tM ′
/CRi

[, Ii =

[∆ tM ′
/CRi

, ∆ tM ′
/CRi

[, Ii = [∆ tM ′
/CRi

, ∆ tM ′′
/CRi

[, Ii = [∆ tM ′′
/CRi

, ∆ tM ′′
 /CRi

[ and Ii = [∆ tM ′′
 /CRi

, +∞[.
The full set intervals is summarised in table 1.
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tm’1/CRi

µ(CRi)

tm’’/CRi

ARA PRA NF PRD ARD

Start-Event

tm’2/CRi tm1/CRi tm2/CRi tM’1/CRitM1/CRi tM2/CRi tM’’/CRitM’2/CRi

 CRi

tm’’1/CRi

NPRE NPRE

tM’’1/CRi

Figure 4: Fuzzy robustness integration in the operation associated model

Table 1: Linguistic variables associated to the input CRi

TCRi Linguistic variable
T

CRi
CRi arrives in the interval Ii = [, ∆ tm ′′

/CRi
[

T
CRi

CRi arrives in the interval Ii = [∆ tm ′′
/CRi

, ∆ tm ′′
 /CRi

[

T
CRi

CRi arrives in the interval Ii = [∆ tm ′′
 /CRi

, ∆ tm ′
/CRi

[

T
CRi

CRi arrives in the interval Ii = [∆ tm ′
/CRi

, ∆ tm ′
/CRi

[

T
CRi

CRi arrives in the interval Ii = [∆ tm ′
/CRi

, ∆ tm/CRi [

T
CRi

CRi arrives in the interval Ii = [∆ tm/CRi , ∆ tm/CRi [

T
CRi

CRi arrives in the interval Ii = [∆ tm/CRi , ∆ tM/CRi [

T
CRi

CRi arrives in the interval Ii = [∆ tM/CRi , ∆ tM/CRi [

T
CRi

CRi arrives in the interval Ii = [∆ tM/CRi , ∆ tM ′
/CRi

[

T
CRi

CRi arrives in the interval Ii = [∆ tM ′
/CRi

, ∆ tM ′
/CRi

[

T
CRi

CRi arrives in the interval Ii = [∆ tM ′
/CRi

, ∆ tM ′′
/CRi

[

T
CRi

CRi arrives in the interval Ii = [∆ tM ′′
/CRi

, ∆ tM ′′
 /CRi

[

T
CRi

CRi arrives in the interval Ii = [∆ tM ′′
 /CRi

, +∞[
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The margin of active robustness is available in (Ii∪ Ii∪ Ii)∪ (Ii∪ Ii∪ Ii), whereas the margin of
passive robustness is in (Ii∪ Ii∪ Ii)∪ (Ii∪ Ii∪ Ii). From a functional point of view, there are six in-
tervals of use in which it is possible to prove the validity: intervals of No Proof of Robustness Existance
(NPRE), Normal Functioning (NF), Passive Robustness to an Advance (PRA), Passive Robustness to a
Delay (PRD), Active Robustness to an Advance (ARA) and Active Robustness to a Delay (ARD). If the
functioning is abnormal, there is duality of advance and delay scenarios.

• Fuzzification of a Start-Event (Ai)

Figure 5, shows the different set of the input variable (Start-Event Ai). The full set of linguistic variables
associated to each membership is summarised in table 2.

µ(Ai)

Ai

Absence of  

Ai

Occurrence of  

Ai

Figure 5: Membership functions of Ai

Table 2: Linguistic variables associated to the input Start - Event

TAi Linguistic variable
T

Ai
Occurrence of the Start-Event Ai

T
Ai

Absence of the Start-Event Ai

• Symptoms fuzzification

Figure 6, shows an uniform distribution of fuzzy logic membership functions associated to the output
“ type of symptom ”. Similarly, table 3 shows linguistic variables associated to the output “ type of
symptom ".

µ(Si)

Si

Generation 

of Si

1

Memorizing 

of Si

1

Generation 

of Si

2

Memorizing 

of Si

2

              

1
s i

M
2
s i

M
3
s i

M
4
s i

M

Figure 6: Membership functions of Si
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Table 3: Linguistic variables associated to the output “ type of symptom"

TSi Linguistic variable
T

Si
Generation of a symptom S

i

T
Si

Memorizing of a symptom S
i

T
Si

Generation of a symptom S
i

T
Si

Memorizing of a symptom S
i

• Fuzzification of Control Decision (CD)

The three fuzzy set for the output CD are chosen as indicated in figure 7. Hence the three membership
functions, uniformly distributed, are denoted M1

CD,M2
CD and M3

CD. The linguistic variables are sum-
marised in table 4. The integration of the approach generation of symptoms and the classification of
the reports of various actions allows a qualitative description of fuzzy variables. These variables have
balanced values of truth, pertaining to the interval [0, 1].

No change 

of control 

Change of 

control 

Control 

freezing 

(CD) 

 CD 

1
CDM

2
CDM 3

CDM

Figure 7: Membership functions of CD

Table 4: Linguistic variables associated to the output Control Decision

TCD Linguistic variable
T

CD No Change of control
T

CD Change of control
T

CD Control freezing

Definition of fuzzy rules

Next we have to evaluate the Rules. The rules associate the input variables with the output ones by
means of linguistic terms, and according to their physical properties [14]. The rules can present different
structures (MIMO, MISO, SISO, ...), although the most common one is the Multiple Inputs Multiple
Outputs (MIMO). We have used this structure to build fuzzy rules, and its arrangement is:

R j
MIMO : IF ( x is Tx) AND ... AND ( xp is Txp) (3)

THEN ( y is Ty) AND ... AND ( yq is Tyq).
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Being p the number of input variables, q the number of output variables whereas Txi and Tyi represent
their respective fuzzy sets for jth rule.
The preconditions of R j

MIMO, form a fuzzy set (Tx1
×Tx2 × ...×Txp) and the consequent of R j

MIMO is the
union of q independent outputs [11]. So, the rule can be represented by a fuzzy implication:

R
j

MIMO
: (Tx1

×Tx2 × ...×Txp) → (Ty1
+ ... +Tyq) (4)

where "+" represents the union of independent variables.The fuzzy rules are merely a series of IF-THEN
statements. These statements are usually derived by an expert to achieve optimum results. Thus, accord-
ing to (3) we can formulate the rules as following:
Rule 1: IF there are absence of order (not Ai) AND presence of CRi, THEN there are freezing of the
control and generation of a symptom S

i .
Rule 2: IF the sensor signal CRi arrives in the time interval [, ∆ tm ′′

/CRi
[ AND the Start-Event Ai is

occurred, THEN there are freezing of the control and generation of a symptom S
i .

Rule 3: IF the sensor signal CRi arrives in the time intervals (Ii ∪ Ii ∪ Ii) AND the Start-Event Ai is
occurred, THEN there are change of control (ARA) and memorizing of a symptom S

i .
Rule 4: IF the sensor signal CRi report arrives in the time intervals (Ii∪ Ii∪ Ii) AND the Start-Event
Ai is occurred, THEN there are no change of the control (PRA) and memorizing of a symptom S

i .
Rule 5: IF the sensor signal CRi arrives in the time intervals (Ii ∪ Ii ∪ Ii) AND the Start-Event Ai is
occurred, THEN the behaviour of the system is normal (no change of the control).
Rule 6: IF the sensor signal CRi arrives in the time intervals (Ii∪ Ii∪ Ii) AND the Start-Event Ai is
occurred, THEN it is the case of passive robustness to a delay (no change of the control) and memorizing
of a symptom S

i .
Rule 7: IF the sensor signal CRi arrives in the time intervals (Ii∪ Ii∪ Ii) AND the Start-Event Ai is
occurred, THEN a change of the control is necessary (ARD) and memorizing of a symptom S

i .
Rule 8: IF the sensor signal CRi arrives in the time interval CRi in the time interval Ii,THEN there are
freezing of the control and memorizing of a symptom S

i .
Since the two outputs (Symptoms and Control Decision) of MIMO rule are independent, the general rule
structure of MIMO fuzzy system can be represented as a collection of multiple-input and single-output
(MISO) fuzzy systems by decomposing the above rules into q (q=2) subrules with as the single conse-
quent of the jth subrule. Therefore, the inference engine matches the rule preconditions in the fuzzy rule
base with the input state linguistic terms and performs implication. In this subsection, for clarity, we will
consider MISO system in the following analysis.
It is interesting to mention that each fuzzy rule just controls a part of the function to approach. These
parts are denominated ”patches”, and they are the result of the localization property of the fuzzy basis
functions. Nevertheless, from the fuzzy rules base (Rule 1, Rule 2, ..., Rule 8), we need to model nu-
merically the operators AND and THEN. The fuzzy systems define an intermediate stage denominated
Inference. The Inference is the part of the fuzzy systems that carries out an isomorphism between propo-
sitional logic and the Set and the Algebraic Theories. However, it is not valid whatever relation between
the logical and math operators. In concrete, if they want to be equivalent, their logical and math tables
for the crisp values {,} have to be the same. The selected inference method is the Mamdani type which
is known as the max-min method.

Defuzzification

After inferring all rules, the fuzzy systems need to fusion them.This is the main goal of the defuzzi-
fication step, and it constitutes the last part of all fuzzy systems.This fusion is not unique, although
the Centre Of Area (COA) defuzzifier is the widespread one, figure 8. In the COA method, the fused
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measurement output y∗ is obtained as:

y∗ =

∑
y∈Y

µF(y).y
∑
y∈Y

µF(y)
(5)

y
*

G

F

       y

O

Figure 8: Centre Of Area defuzzifier

4 Illustrative example

To demonstrate the effectiveness and accuracy of the fuzzy filtering approach, an example with two
fuzzy rules is outlined. Consider the following fuzzy rules base:
Rule 2: IF the sensor signal CRi arrives in the time interval [, ∆ tm ′′

/CRi
[ AND the Start-Event Ai is

occurred, THEN there are freezing of the control and generation of a symptom S
i .

Rule 3: IF the sensor signal CRi arrives in the time intervals (Ii ∪ Ii ∪ Ii) AND the Start-Event Ai is
occurred, THEN there are change of control (ARA) and memorizing of a symptom S

i .

• Each rule use the operator "AND" in the premise, since it is an AND operation, the minimum
criterion is used (Mamdani inference method), and the fuzzy outputs corresponding to these rules
are represented by figure 9 and figure 10.

• Next we perform defuzzification to convert our fuzzy outputs to a single number (crisp output),
various defuzzification methods were explored to select the best one for this particular application.
According to the relation(5),the weighted strengths of each output member function are multiplied
by their respective output membership function center points and summed. Finally, this area is
divided by the sum of the weighted member function strengths and the result is taken as the crisp
outputs. In practice, there are two fuzzy outputs to defuzzify (Symptoms and Control Decision).
To obtain a numerical output, we can take the COA of each fuzzy output, named GSY and GCD. The
measures of the two CAO using specific values of sensor signal and Start-Event are summarized
in table 5.

Table 5, shows the measures obtained by using defuzzification method mentioned above.Analysing the
data, it is noted that the first and the third cases represent a classic filtering mechanism of sensors signals,
integrating the robustness values described in [3]. The second case, using fuzzy filtering approach, gives
better results than the two cases previously analysed. These cases reveal that the proposed approach is
able to avoid control freezing (the COA GCD belongs to the membership function "change of control")
same if the sensor signal arrives in the "No Proof of Robustness Existance (NPRE)" interval. Therefore,
the fuzzy filtering approach makes it possible to continue the production in a degraded mode providing
the guarantees of quality and safety. Consequently, the intelligent fuzzy logic control strategy, based on
expert knowledge, provides the avoidance of control freezing if the time disturbance is in the robustness
intervals.
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Figure 9: Three-dimensional trapezoidal membership function: Symptoms= f (Cri,Ai)

Figure 10: Three-dimensional trapezoidal membership function: Control Decision= f (Cri,Ai)

Table 5: Measures of GSY and GCD

Variables Measures
First Case Second Case Third case

CRi CRi arrives CRi arrives CRi arrives
in the interval Ii in the interval Ii in the interval Ii

Ai Ai is occurred Ai is occurred Ai is occurred
GCD GCD ∈M

CD GCD ∈M
CD GCD ∈M

CD

GCD GCD ∈M
Si GCD ∈M

Si GCD ∈M
Si

5 Conclusion

This paper deals with supervision of manufacturing workshops with time constraints. A new ap-
proach integrating a classic filtering mechanism of sensors signals and fuzzy logic techniques has been
presented. This approach exploits the advantages that both techniques have: the avoidance of control
freezing using robustness knowledge and the ability of fuzzy systems to deal with imprecise information
by using fuzzy rules.
In this new approach, an enhancement technique based on various combinations of fuzzy logic linguistic
statements in the form of IF-THEN rules, based on expert knowledge, makes it possible to continue the
production in a degraded mode providing the guarantees of quality and safety.The establishment of fuzzy
logic is interesting, but it is necessary to call upon the human expertise, in an environment of uncertainty
and imprecision, able to formulate and to transmit its knowledge for decision making.
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The results obtained in the illustrative example show that this fuzzy approach is effective in situations
where the sensor measurement is contaminated with different kind of noises. In this case, the temporal
windows associates to each sensor signal are badly defined.
Conventionally, the selection of fuzzy IF-THEN rules often relies on a substantial amount of heuristic
observation to express proper strategy’s knowledge. Obviously, it is difficult for human experts to ex-
amine all the input-output data from a complex system to find the suitable number of rules within the
fuzzy systems. For this reason, a fuzzy system with neural network’s learning ability is required. A
new approach using Neural Fuzzy Filter (NFF), based upon a neural network’s learning ability and fuzzy
IF-THEN rule structure can be developed in order to supervise critical time manufacturing job-shops.
This fuzzy filtering approach shows how the knowledge of the robustness could make the supervision
more efficient, by introducing two events (Start-Event and sensor signal). A chronicle recognition ap-
proach, using the additional information provided by the occurrences of intermediate events, is a chal-
lenging technique for performing early diagnosis.
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