
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. V (2010), No. 4, pp. 483-489

Stream Ciphers Analysis Methods
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DARAMEC srl, Arad
România, Sofronea FN
E-mail: ratiu__anina@yahoo.com

Abstract: The purpose of this paper is to present and to discuss analysis methods
applied in symmetric cryptography, especially on stream ciphers. The tests were
made on some algorithms and also on the personal symmetric cryptographic algo-
rithm, HENKOS, based on a pseudorandom number generator. The test confirms
that the algorithm appears to be secure and fast. The paper describes first the main
parts of the cryptosystem, its implementation and different analysis methods. The
code is written in the C/C++ language. The software application and the tests applied
were processed on a PC computer. The quality analysis presents the results of many
classical statistical tests, comparing some algorithms based especially on pseudo ran-
dom number generators. The tests use standard sequence of 12.5 MB resulted from
some test generators. The main part of the work presents selected results for the most
important statistical tests like: FIPS 1401, FIPS 1402 , ENT tests, Diehard battery
of tests, NIST Statistical Test Suite. The final question is: are these tests enough to
certifie the quality of a tested algorithm?
Keywords: stream cipher, synchronous stream cipher, pseudorandom number gen-
erator (PRNG), performance analysis, statistical tests.

1 Introduction

Stream ciphers are an important class of encryption algorithms. They encrypt individual characters
(usually binary digits) of a plaintext message one at a time, using an encryption transformation which
varies with time. Various design methods where proposed for stream ciphers and the specialists proposed
many analysis methods. However, the reality is that in the literature we can find relatively few fully-
specified stream cipher algorithms. One possible explanation can be the fact that many stream ciphers
used in practice tend to be proprietary and confidential.

A stream cipher generates what is called a keystream (a sequence of bits used as a key). Encryption is
accomplished by a simple operation combining the keystream with the plaintext, usually with the bitwise
XOR operation. Stream ciphers can be either symmetric-key or public-key. The focus of this chapter is
symmetric-key stream ciphers. A stream cipher generates successive elements of the keystream based
on an internal state. This state is updated in essentially two ways: if the state changes independently of
the plaintext or ciphertext messages, the cipher is classified as a synchronous stream cipher. By contrast,
self-synchronizing stream ciphers update their state based on previous ciphertext digits.

For the synchronous stream ciphers some properties are mandatory.
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(i) synchronization requirements. The sender and the receiver must be synchronized – using the same
key and operating at the same position (state) within that key. If synchronization is lost due to
ciphertext digits being inserted or deleted during transmission, then decryption fails and can only
be restored through additional techniques for re-synchronization.

(ii) no error propagation. A ciphertext digit that is modified (but not deleted) during transmission does
not affect the decryption of other ciphertext digits.

(iii) active attacks problem. As a consequence of the synchronization requirement, the insertion, dele-
tion, or replay of ciphertext digits during an attack causes loss of synchronization, and offer the
possibility to be detected by the attacker. An active attack offers the possibility to make changes to
selected ciphertext digits, and find out what affect these changes have on the plaintext. This con-
clusion proves that the data origin authentication and data integrity must be assured by additional
mechanisms.

In a synchronous stream cipher a stream of pseudo-random digits is generated independently of the
plaintext and ciphertext messages, and then combined with the plaintext (to encrypt) or the ciphertext (to
decrypt). In the most common form, binary digits (bits) are used, and the keystream is combined with
the plaintext using the exclusive or operation (XOR). This is called a binary additive stream cipher.

Another approach uses several of the previous N ciphertext digits to compute the keystream. Such
schemes are known as self-synchronizing stream ciphers or asynchronous stream ciphers. The idea
of self-synchronization has the advantage that the receiver will automatically synchronize with the
keystream generator after receiving N ciphertext digits, making it easier to recover if digits are dropped
or added to the message stream. Most stream cipher designs are for synchronous stream ciphers. For
further details see [5].

2 Design of a Stream Cipher

The design of a new stream cipher involves some important goals:

– To deduce the internal state from the result should be impossible,

– There should be no short cycles,

– It should be cryptographically secure,

– It should be easy to implement,

– The code should be optimized for speed,

– To create as much confusion and diffusion as possible.

I tried to achieve the same goals in designing a new stream cipher named HENKOS ( see [1], [2]).
This cryptosystem is a symmetric synchronous stream cipher encryption system designed for a software
implementation.

After many efforts, here are the results:

– An easy to implement algorithm,

– A cryptographically secure algorithm (proven by statistical tests),

– A very fast algorithm: a 50 megabytes file is encrypted / decrypted in less then one second,

– A fast pseudorandom number generator: a 12,500,000 byte stream needs 0.30 sec for C/C++ code.
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This cryptosystem uses a binary additive stream cipher and two types of keys:

– a short-term key named data key (DK) with a fixed length of 1024 bytes that is an input in the
keystream generator. This key can be generated with a PRNG (not necessarily a cryptographic
secure PRNG) or can be an ordinary file, if PRNG is not available.

– a long-term key named master key (MK) with a fixed length, which contains 1024 numbers, used
to mix the data key and the internal state of the keystream generator. This key must be generated
with a true RNG (hardware).

– If during the transmission an attacker intercepts the encrypted data, it is not possible to decrypt
the ciphertext correctly without having the master key, because there is a very large number of
possible combinations of decrypted ciphertext.

Every attempt to find the master key produces a different plaintext, including the one with the same
numbers but the changed order of the numbers in the key affects the decryption process.

2.1 Index keys generation

In this section of the algorithm the master key MK is transformed into two index keys MKS and
MKT in two steps. Two functions Sum and Inv are used: the first one is an additive function and the
second one produced a sort of symmetrical figures of number transformation.

The function Sum is Sum : {1,2, . . . ,1024}→ {1,2, . . . ,1024},

Sum(i;MK) =

i∑
j=0

MK( j) modulo 1024 .

The function Inv is Inv : {1,2, . . . ,1024}→ {1,2, . . . ,1024}, Inv(i) = i∗ modulo 1024, where i∗ is the
number obtained by writing the digits of the number i in reverse order. The index keys MKS and MKT
are:

Step 1 : MKS(i) = Sum(i;MK), i ∈ {1,2, . . . ,1024} , (1)

Step 2 : MKT (i) = Inv
(
MKS(i)

)
, i ∈ {1,2, . . . ,1024} . (2)

The transformation has two targets:

• Not to use the original MK key directly in the process,

• To create confusion and diffusion for master key.

Keystream generation transform the DK key to obtain the real K key for encryption using two func-
tions: the first one is the essential function in this algorithm the "switch function" Sw and the second
function Ad is an additive one:

(Sw) : DK( j)↔ DK(k), where j = MKS(i) and k = MKT (i) for i ∈ {1,2, . . . ,1024} , (3)

(Ad) : DK(i) = DK(i)+DK(i+1) modulo 256, i ∈ {1,2, . . . ,1023}

and DK(1024) = DK(1024)+DK(1) . (4)

These functions create a totally changed image of the data key DK. After these two transformations we
obtain DK1; the new key is the input for transformations (3) and (4) and the process will be repeated 64
times:

DK→ DK1→ DK2→ . . .→ DK63→ DK64 . (5)
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To obtain the keystream bytes K(i) of the final K key, the last operation is:

K(i) =
(
DK64(i)+DK64(i+1)

)
⊕DK64(i) for i ∈ {1,2, . . . ,1023} ;

K(1024) =
(
DK64(1024)+DK64(1)

)
⊕DK64(1024) . (6)

The encryption / decryption process will transform a plain text P of 1024 bytes into a cipher text C of
1024 bytes by using the encryption key K and the function ⊕:

C(i) = P(i)⊕K(i) .

For every stream of 1024 bytes of plain text, another K key wil be used. The new encryption K key will
be obtained by the algorithm with the last values of DK as input and the operations described in (4),
(5) and (6) will be effectuated one time. This sequence will run until the plain text is finished for one
session. Remarks:

• The confusion and the diffusion of the bits are given specially from (3) and (4),

• The data key for the next session we have generated with the same algorithm.

3 Quality analysis

The quality of a stream cipher is measured performing statistical tests. These tests FIPS 140–1,
FIPS 140–2, ENT tests, Diehard battery, NIST Statistical Test Suite (a statistical test suite for testing
the pseudo–random number generators used in cryptographic applications) were performed on large
ciphertext samples of 12.5 megabytes.

3.1 FIPS 140–1/FIPS140–2 Test

FIPS statistical tests contain the Monobit Test, the Poker Test, the Runs Test and the Long Run
Test. The following tests are based on performing a pass/fail statistical test on 5000 sequences of 2500
bytes each. In my results the well known generators SHA–1 and CCG together with the new HENKOS
pass FIPS 140–1 in proportion of 100%. SHA–1 passes FIPS 140–2 in proportion of 99.6%, CCG in
proportion of 99.4% and HENKOS in proportion of 99.64%. For these statistical tests, even if the gener-
ators present good statistical properties this isn’t a guarantee that the algorithm is good for cryptographic
purposes.

3.2 DIEHARD Statistical Tests

The next set of tests was designed to identify weaknesses in many common non–cryptographic PRNG
algorithms. These tests analyze a single large file from the output of the generator of 11 megabytes or
more (see [3]). The battery of tests include: birthday spacing test, overlapping 5–permutation test, binary
rank test 31× 31, binary rank test 32× 32, binary rank test 6× 8, bitstream test, opso, oqso and DNA
tests, count–the–1’s test on a stream of bytes, parking lot test, minimum distance test, 3Dspheres test,
etc.

Majority DIEHARD tests return a p−value, which should be uniform on [0,1) if the input file con-
tains truly independent random bits. Those p−values are obtained by p = F(X), where F is the assumed
distribution of the sample random variable X . When a bit stream really fails, it get p−values of 0 or 1
(or close to 0 or 1) to six or more places.

For SHA–1 generator we have 2 p−values very close to 1, and for Cubic Congruent Generator we
have 28 p−values near to 1. For HENKOS we don’t have p−values close to 0 or 1.
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3.3 ENT Tests

ENT applies various tests to a sequence of bytes stored in files and reports the results. The program
can be used to evaluate pseudorandom number generators for encryption and compression algorithms. It
calculates entropy, optimum compression, chi–square distribution, arithmetic mean, Monte Carlo value
for pi and serial correlation coefficient. HENKOS obtained good results.

3.4 NIST Statistical Test Suite

The package includes statistical tests for: frequency, block frequency, cumulative sums, runs, long
runs, Marsaglia’s rank, spectral (based on the Discrete Fourier Transform), nonoverlapping template
matching, overlapping template matching’s, Maurer’s universal statistical, approximate entropy, random
excursions (due to Baron and Rukhin), Lempel–Ziv complexity, linear complexity, and serial.

The NIST framework, like many tests, is based on hypothesis testing.

– State your null hypothesis. Assume that the binary sequence is random.

– Compute a sequence test statistically. Testing is carried out at the bit level.

– Compute the p−value which must be less than 0.01, otherwise, failure is declared.

The Cubic Congruential Generator fails Frequency, Cumulative Sums, Runs, Aperiodic Template at 11
from 284 templates, Approximate Entropy test, serial and Lempel–Ziv test and Micali generator has 3
fails at Aperiodic Template. HENKOS and BBS pass all this tests.

4 Security Analisys

What is a secure stream cipher? That is a question with no definitive answer, but I can make some
assumption on that subject. The entire test package presented here can eventually reveal weaknesses but,
even if the ciphers pass with good results, that is not a guarantee of its security. That does not make it
fail proof.

Cryptographers consider that there are two main conditions for the security of a stream cipher with a
k−bit key.

• The attacker should not be able to predict future keystream generated by the cipher in any con-
ditions: recovering the secret key, recovering the internal state of the cipher at some point, or
otherwise. The attacker can obviously test all possible secret keys, so the complexity of a brute
force attack (requiring at most 2k executions of the algorithm) gives a performance baseline to
which any alleged attack should be compared to.

• The attacker should not be able to recover the cipher’s key or internal state from the keystream.
Cryptographers also demand that the keystream be free of even subtitle biases that would let
attackers distinguish a stream from random noise, and free of detectable relationships between
keystreams that correspond to related keys or related nonce. This should be true for all keys (there
should be no weak keys), and true even if the attacker can know or choose some plaintext or
ciphertext.

Like other attacks in cryptography, stream cipher attacks can be certificational, meaning they aren’t
necessarily practical ways to break the cipher but they indicate that the cipher might have weaknesses.

Securely using a secure synchronous stream cipher requires that one never uses the same keystream
twice; that generally means that a different nonce or key must be supplied to each invocation of the
cipher. Application designers must also recognize that most stream ciphers don’t provide authenticity,
only privacy: encrypted messages may still have been modified in transit.
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Stream Crea- Speed bits Attack
Cipher tion (cycles/ Key Init. Internal Best Comp.

Date byte) Length vector State Known Compl.1

A5/1−2 1989 Voice 54 114 26? Active 240

FISH 1993 Quite Fast Huge ? ? K-p A2 211

Grain ≤ 2004 Fast 80 26 160 Key D3 243

HC−256 ≤ 2004 22? 28 28 215 ? ?
HENKOS 2005 7.8 28−210 28 210 ? 21024

ISAAC 1996 2.38−4.69 40−28 N/A4 8288 2006 WIS5 5×101240

PANAMA 1998 2 28 27? 1216? 2001 HC6 282

Rabbit 2003 3.7−9.7 27 26 29 2006 N/A 2006 N/A
RC4 1987 Impressive 40−28 23 2064 Key D 213−233

SEAL 1997 Very Fast ? 25? ? ? ?
SOBER−128 2003 ? ≥ 27 ? ? Mes. Forge 26

Trivium ≤ 2004 22−23 80 80 288 Brute Force 2135

Table 1: Comparison of some well known stream ciphers

5 Performances Analysis

5.1 Testing Platform

For testing we select only one platform among many other possible platforms, on the criteria of
disponibility and reproductibility of measurements. There are also results, reported in papers, that make
possible only a relative comparison between the performances of different algorithms.

5.2 Performances Measurement

The performance algorithms are mesuread by a special program, written in Visual C and based on
reading the processor clock before and after the calls of the main phases implementing functions, using
the routines get_start_time and get_stop_time written in ASM. The result is calculated as the difference
between the two clock readings, minus the additional time consumed with the calls of the clock reading
routines.

In the HENKOS case the CPU time for K keys generation is 7.8 cycles/byte, and the encryption
process performs 181 megabytes/second. Comparing it to well–known algorithms and the algorithms
tested in the Estream Project like CryptMT, Dragon or Salsa20, which are among the top algorithms in
the final list, my results are good enough (for details see [6] and [4]).

5.3 Implementation details

The performance was measured reading the processor clock cycles using the RDTSC instruction.

5.4 Comparison of performances

In the real life, in very few cases the authors reveals all the details and the performances of the
ciphers. In table 1 there are some results for some well known stream ciphers, [8].
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6 Conclusions

There are a lot of stream ciphers used in cryptography because of the speed, but in this case nobody
tried a standardisation like in block cipher area. The European Union–based NESSIE project [7], which
was aimed at evaluating the security of various cryptographic primitives, did not recommend any stream
ciphers in their report.

The performances and quality analysis on cryptographic stream ciphers algorithms are an ambitious
goal for all the designers of algorithms. In majority of cases there is no proof of the behaviour of the
new cipher, but it’s possible to verify the quality by performing statistical tests, and also to measure the
performances of implementation and the speed by software means.

In the future, new stream ciphers will appear so that new methods for analysis will be a permanent
preoccupation for the cryptographic community.
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