
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. V (2010), No. 4, pp. 540-550

Solving Vertex Cover Problem by Means of Tissue P Systems with Cell
Separation

C. Lu, X. Zhang

Chun Lu
Key Laboratory of Image Processing and Intelligent Control
Department of Control Science and Engineering
Huazhong University of Science and Technology
Wuhan 430074, Hubei, People’s Republic of China
E-mail: luchun.et@gmail.com(corresponding author)

Xingyi Zhang
School of Computer Science and Technology, Anhui University
Hefei 230601, Anhui, People’s Republic of China
E-mail: xyzhanghust@gmail.com

Abstract: Tissue P systems is a computing model in the framework of membrane
computing inspired from intercellular communication and cooperation between neu-
rons. Many different variants of this model have been proposed. One of the most
important models is known as tissue P systems with cell separation. This model has
the ability of generating an exponential amount of workspace in linear time, thus it
allows us to design cellular solutions to NP-complete problems in polynomial time.
In this paper, we present a solution to the Vertex Cover problem via a family of
such devices. This is the first solution to this problem in the framework of tissue P
systems with cell separation.
Keywords: Membrane Computing, Tissue P System, Cell Separation, Vertex
Cover

1 Introduction

Membrane computing is an emergent branch of natural computing, which is inspired by the structure
and the function of living cells, as well as the organization of cells in tissues, organs and other higher
order structures. The devices in membrane computing, called P systems, provide distributed parallel
and non-deterministic computing models. Since Gh. Păun introduced the P system in [10], this area
has received important attention from the scientific community, such as computer scientists, biologists,
formal linguists and complexity theoreticians.

In the last years, many different models of P systems have been proposed (a comprehensive bibli-
ography can be found in [14]). The most studied variants are the cell-like models of P systems, where
membranes are hierarchically arranged in a tree-like structure. Various models of cell-like P systems
have been successfully used to design solutions to NP-complete problems in polynomial time (see [4]).
These solutions are obtained by generating an exponential amount of workspace in polynomial time
and using parallelism to check simultaneously all the candidate solutions. In general, cell division, cell
creation and cell separation are the three efficient ways to obtain exponential workspace in polynomial
time, thus obtaining three corresponding variants of P systems: cell division, where the new workspace
is generated by membrane division, cell creation, where the new membranes are created from objects,
and cell separation, where the new workspace is generated by membrane separation. It has been proved
that all of the three models can efficiently solve NP-complete problems, but technically they are pretty
different in the way of designing solutions.

Another interesting class of P systems is known as tissue P systems, where membranes are placed in
the nodes of a graph. This variant has two biological inspirations (see [6]): intercellular communication

Copyright c⃝ 2006-2010 by CCC Publications

Solving Vertex Cover Problem by Means of Tissue P Systems with Cell Separation 541

and cooperation between neurons. The common mathematical model of these two mechanisms is a net of
processors dealing with symbols and communicating these symbols along channels specified in advance,
based on symport/antiport rules [9]. Tissue P systems can also efficiently solve NP-complete problems
provided that some ingredients are added into such systems, as in the case of cell-like P systems. The first
attempt in this respect is to consider cell division in tissue P systems, yielding tissue P systems with cell
division [12]. In this model, the two new cells generated by a division rule have exactly the same objects
except for at most a pair of different objects. This model was shown to efficiently solve NP-complete:
SAT [12], 3-coloring [1], Subset Sum [2], Vertex Cover [3], etc.

Recently, another class of tissue P systems is proposed based on cell separation, that is, tissue P
systems with cell separation, and a polynomial-time solution to the NP-complete problem SAT is given
in [8]. In this model, the contents of the two new cells evolved from a cell by separation rules can
be different, thus leading to a significant difference in specific techniques for designing solutions to
concrete NP-complete problems. In this paper, we shall explore the possibility of using such a model
to solve another NP-complete problem–Vertex Cover. Specifically, a family of tissue P systems
with cell separation is constructed, in which each system can solve all instances of Vertex Cover
of a fixed size in a polynomial time. Although the Vertex Cover problem has been considered in
the framework of other models in membrane computing (for instance, cell-like P systems with active
membrane, tissue P systems with cell division, and so on), here the first solution for this problem is
presented in the framework of tissue P systems with cell separation.

The paper is organized as follows: in Sections 2 and 3 preliminaries and the definition of tissue-like
P systems with cell separation are recalled, respectively. In Section 4, recognizer tissue P systems are
briefly described. A polynomial-time solution to Vertex Cover problem is presented in Section 5,
including a short overview of the computation and of the necessary resources. Finally, some conclusions
and new open research lines are presented.

2 Preliminaries

An alphabet, Σ , is a finite and non-empty set of abstract symbols. An ordered sequence of symbols
is a string. Let Σ be a (finite) alphabet; then Σ ∗ is the set of all strings over Σ . The number of symbols
in a string u is the length of the string, and it is denoted by |u|. As usual, empty string (with length 0) is
denoted by λ . The set of strings of length n built with symbols from the alphabet Σ is denoted by Σ n and
Σ ∗ = ∪n≥0Σ n.

Let A be a (finite) set, A = {a1, · · · ,an}. Then a finite multiset m over A is a function f : A→ IN.
If m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f (x) > 0}. The size of the
multiest m is |m|= Σx∈A f (x). A multiset is empty (resp. finite) if its support is the empty set (resp. finite).

A multiset m over A can also be represented by any string x that contains exactly fm(ai) symbols
ai for all 1 ≤ i ≤ n, e.g., by a f (a1)

1 a f (a2)
2 . . .a f (ak)

k . Thus, superscripts indicate the multiplicity of each
element, and if f (x) = 0 for any x ∈ A, then this element is omitted.

We suppose that the reader is already familiar with the basic notions and the terminology of P sys-
tems. For details, see [11].

3 Tissue P Systems with Cell Separation

According to the first works on tissue P systems [5, 6] the membrane structure did not change along
the computation. A new model based on the cell-like model of tissue P systems with cell separation is
presented in [7]. The biological inspiration of them is clear: alive tissues are not static network of cells,
since membrane fission generates new cells in a natural way.

542 C. Lu, X. Zhang

Formally, a tissue P system with cell separation of initial degree q ≥ 1 is a construct

Π = (Γ ,O1,O2,w1, . . . ,wq,E,R, io),

where:

1. Γ is the alphabet of objects, Γ = O1∪O2, O1,O2 ̸= /0, O1∩O2 = /0;

2. w1, . . . ,wq are strings over Γ , describing the multisets of objects placed in the cells of the system
at the beginning of the computation;

3. E⊆ Γ is the set of objects present in the environment in arbitrarily copies each;

4. R is a finite set of rules of the following forms:

(a) (i,u/v, j), for i, j ∈ {0,1,2, . . . ,q}, i ̸= j, u,v ∈ Γ ∗;
Communication rules; 1,2, · · · ,q identify the cells of the system, 0 is used as the label of the
environment. This rule (i,u/v, j) can be applied over two cells i and j such that u is contained
in cell i and v is contained in cell j. The application of this rule means that the objects of the
multisets represented by u and v are interchanged between the two cells;

(b) [a]i→ [O1]i[O2]i, where i ∈ {1,2, . . . ,q} and a ∈ Γ ;
Separation rules; under the influence of object a, the cell with label i is separated into two
cells with the same label; at the same time, the object a is consumed; the objects from O1 are
placed in the first cell, those from O2 are placed in the second cell;

5. io ∈ {0,1,2, . . . ,q} is the output region.

Rules are used in the non-deterministic maximally parallel manner as customary in membrane com-
puting. In each step, all cells which can evolve must evolve in a maximally parallel way (in each step a
multiset of rules which is maximal is applied, no further rule can be added). This way of applying rules
has only one restriction: when a cell is separated, the separation rule is the only one which is applied for
that cell in that step; the objects inside that cell do not evolve by means of communication rules. The
daughter cells will participate to the interaction with other cells or with the environment by means of
communication rules in the next step, if they are not separated once again. Their labels precisely identify
the rules which can be applied to them.

A sequence of transitions which starts from the initial configuration is called a computation with
respect Π . A computation is completed only if it halts and the computations give a result, and result is
the multiset of objects present in region io in the halting configuration.

4 Recognizer Tissue P Systems with Cell Separation

NP-completeness has been usually studied in the framework of decision problems. Let us recall that
a decision problem is a pair (IX ,θX) where IX is a language over a finite alphabet (whose elements are
called instances) and θX is a total Boolean function over IX .

The notions from classical computational complexity theory are adapted for membrane computing to
study the computing efficiency for solving decision problems. Recognizer tissue P systems are introduced
in [12] for tissue P systems with the same idea of recognizer P systems introduced into cell-like P systems
[13].

A recognizer tissue P system with cell separation of degree q ≥ 1 is a construct

Π = (Γ ,O1,O2,Σ ,w1, . . . ,wq,E,R, iin, io)

where:

Solving Vertex Cover Problem by Means of Tissue P Systems with Cell Separation 543

• (Γ ,O1,O2,w1, . . . ,wq,E,R, io) is a tissue P system with cell separation of degree q ≥ 1 (as defined
in the previous section).

• The working alphabet Γ has two distinguished objects yes and no, at least one copy of them
present in some initial multisets w1, . . . , wq, but not present in E.

• Σ is an (input) alphabet strictly contained in Γ .

• iin ∈ {1, . . . ,q} is the input cell.

• The output region io is the environment.

• All computations halt.

• If C is a computation of Π , in the last step of the computation either the object yes or the object
no (but not both) have to be send out to the environment.

The computations of the system Π with input w ∈ Σ ∗ start from a configuration of the form
(w1,w2, . . . ,wiinw, . . . ,wq;E), that is, after adding the multiset w to the contents of the input cell iin. We
say that the multiset w is recognized by Π if and only if the object yes is sent to the environment, in
the last step of the corresponding computation. We say that C is an accepting computation (respectively,
rejecting computation) if the object yes (respectively, no) appears in the environment associated to the
corresponding halting configuration of C.

Definition 1. A decision problem X = (IX ,θX) is solvable in polynomial time by a family of recognizer
tissue P systems Π = {Π(n) | n ∈ IN} with cell separation, if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists a deterministic
Turing machine constructing Π(n) from n ∈ IN in polynomial time.

• There exists a polynomial-time coding (cod,s) form IX to Π such that:

− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input multiset of the
system Π(s(u));

− the family Π is polynomially bounded with regard to (X ,cod,s), that is, there exists a poly-
nomial function p, such that for each u ∈ IX every computation of Π(s(u)) with input cod(u)
is halting and, moreover, it performs at most p(|u|) steps;

− the family Π is sound with regard to (X ,cod,s), that is, for each u ∈ IX , if there exists an
accepting computation of Π(s(u)) with input cod(u), then θX(u) = 1;

− the family Π is complete with regard to (X ,cod,s), that is, for each u ∈ IX , if θX(u) = 1, then
every computation of Π(s(u)) with input cod(u) is an accepting one.

We denote by PMCT S the set of all decision problems which can be solved by means of recognizer
tissue P systems with cell separation in polynomial time.

5 A Solution to the Vertex Cover Problem

The vertex cover of a non-directed graph is a subset of its vertices such that for each edge of the
graph at least one of its endpoints belongs to that subset. The size of the vertex cover is the number of
vertices in the subset. The Vertex Cover problem considered in this paper is formulated as follows:
given a non-directed graph, G = (V,E), and a natural number k ≤ |V |, determine whether or not G has a
vertex cover of size at most k.

544 C. Lu, X. Zhang

We shall prove that Vertex Cover can be solved in linear time (in the number of nodes and edges
of the graph) by a family of recognizer tissue-like P systems with cell separation. We construct a family
Π = {Π(⟨n,m,k⟩) | n,m,k ∈ IN} where each system of the family will process every instance u of the
problem given by a graph with n vertices and m edges, and by a size k of the vertex cover (that is,
s(u) = ⟨n,m,k⟩, where ⟨a,b⟩ = (a+b)(a+b+1)

2 + a and ⟨a,b,c⟩ = ⟨⟨a,b⟩,c⟩. In order to provide a suitable
encoding of these instances, we will use the objects Ai j, with 1 ≤ i < j ≤ n, to represent the edges of
the graph, and we will provide cod(u) = {Ai j | 1≤ i < j ≤ n∧ (vi,v j) ∈ E} as the initial multiset for the
system.

With an instance u of the VC problem, the system Π(s(u)) with input cod(u) decides that instance
by a brute force algorithm, implemented in the following four stages:

• Generation Stage: The initial cell labeled by 2 is separated into two new cells; the separations are
iterated until a cell has been produced for each possible candidate solution.

• Pre-checking Stage: After obtaining all possible subsets of vertices encoded in cells labeled by 2,
this stage only select the subsets of size k.

• Checking Stage: For each of these subsets, it is checked if there exists an edge of the graph for
which none of its endpoints is in the subset.

• Output Stage: The system sends to the environment the right answer according to the results of the
previous stage.

Π(⟨n,m,k⟩) = (Γ (⟨n,m,k⟩),Σ(⟨n,m,k⟩),w1,w2,R(⟨n,m,k⟩),E(⟨n,m,k⟩), iin, i0), for each n,m,k ∈
IN. The family Π contains the following systems:

• Γ (⟨n,m,k⟩) = O1∪O2,

O1 = {ci, j,Ai, j,zi, j,Pi, j | 1≤ i < j ≤ n}∪ { ji | 1≤ i ≤ 2n+1}
∪{Ai,Bi,B ′

i ,C
′
i ,Ti,F ′

i | 1≤ i ≤ n}∪ {di | 1≤ i ≤ n+1}
∪{Di, j | 1≤ i, j ≤ n}∪ {a1,i,b1,i,d1,i,gi,hi, li,ei | 1≤ i ≤ n−1}
∪{ai | 1≤ i ≤ 5n+m+ ⌈lgn⌉+9}∪ {a2,i,b2,i,d2,i | 2≤ i ≤ n−1}
∪{ai, j,k,bi, j,k,di, j,k | 1≤ i < j ≤ n,1≤ k ≤ n−1}
∪{Ci, j,Bi, j | 1≤ i ≤ n,1≤ j ≤ m}∪ {Li | 1≤ i ≤ m+ ⌈lgn⌉+7}
∪{Pi | 1≤ i ≤ m+ ⌈lgn⌉+6}∪ {Hi | 1≤ i ≤ ⌈lgm⌉+1}
∪{Gi | 1≤ j ≤ ⌈lgn⌉+1}∪ {b,z, f1,y,s,E0,E1,E2,T,N,yes,no},

O2 = {c ′
i, j,A

′
i, j,z

′
i, j} | 1≤ i < j ≤ n}∪ {T ′

i ,Fi | 1≤ i ≤ n}∪ {y ′,z ′, f ′}.

• Σ(⟨n,m,k⟩) = {ci, j,Ai, j,A ′
i, j | 1≤ i < j ≤ n}.

• w1 = a1a1,1g1ai, j,1yes no.

• w2 = ci, jAi, jA1.

• R(⟨n,m,k⟩) is the set of rules:

1. Separation rule:
r1 ≡ [s]2→ [O1]2[O2]2.

2. Communication rules:
r2,i ≡ (1,ai/ai+1,0) for 1≤ i ≤ 5n+m+ ⌈lgn⌉+8;
r3,i, j,k ≡ (1,ai, j,k/bi, j,k,0) for 1≤ i < j ≤ n,1≤ k ≤ n−1;
r4,i, j,k ≡ (1,bi, j,k/c2i, jd

2
i, j,k,0) for 1≤ i < j ≤ n,1≤ k ≤ n−1;

r5,i, j,k ≡ (1,di, j,k/ai, j,k+1,0) for 1≤ i < j ≤ n,1≤ k ≤ n−2;

Solving Vertex Cover Problem by Means of Tissue P Systems with Cell Separation 545

r6,i ≡ (1,gi/hi,0) for 1≤ i ≤ n−1;
r7,i ≡ (1,hi/l2i A2

i+1,0) for 1≤ i ≤ n−1;
r8,i ≡ (1, li/gi+1,0) for 1≤ i ≤ n−2;
r9,i ≡ (1,a1,i/b1,i,0) for 1≤ i ≤ n−1;
r10,i ≡ (1,b1,i/c2d2

1,ie
2
i ,0) for 1≤ i ≤ n−1;

r11,i ≡ (1,d1,i/a1,i+1,0) for 1≤ i ≤ n−2;
r12,i ≡ (1,ei/a2,i+1,0) for 1≤ i ≤ n−2;
r13,i ≡ (1,a2,i/b2,i,0) for 2≤ i ≤ n−1;
r14,i ≡ (1,b2,i/c2d2

2,i,0) for 2≤ i ≤ n−1;
r15,i ≡ (1,d2,i/a2,i+1,0) for 2≤ i ≤ n−2;
r16,i, j ≡ (2,ci, jAi, j/zi, jz ′i, jAi, jA ′

i, j,0) for 1≤ i < j ≤ n;
r17,i, j ≡ (2,ci, jA ′

i, j/zi, jz ′i, jAi, jA ′
i, j,0) for 1≤ i < j ≤ n;

r18,i ≡ (2,cTi/zz ′TiT ′
i ,0) for 1≤ i ≤ n−1;

r19,i ≡ (2,cT ′
i /zz ′TiT ′

i ,0) for 1≤ i ≤ n−1;
r20,i ≡ (2,cFi/zz ′FiF ′

i ,0) for 1≤ i ≤ n−1;
r21,i ≡ (2,cF ′

i /zz ′FiF ′
i ,0) for 1≤ i ≤ n−1;

r22 ≡ (2,An/TnFn f1 f ′1s,0);
r23,i ≡ (2,Ai/TiFiyy ′zz ′s,0) for 1≤ i ≤ n−1;
r24,i ≡ (2,y/Ai,1) for 2≤ i ≤ n;
r25,i ≡ (2,y ′/Ai,1) for 2≤ i ≤ n;
r26 ≡ (2,z/c,1);
r27 ≡ (2,z ′/c,1);
r28,i, j ≡ (2,zi, j/ci, j,1) for 1≤ i < j ≤ n;
r29,i, j ≡ (2,z ′i, j/ci, j,1) for 1≤ i < j ≤ n;
r30 ≡ (1,z/λ ,0);
r31 ≡ (1,z ′/λ ,0);
r32,i, j ≡ (1,zi, j/λ ,0) for 1≤ i < j ≤ n;
r33,i, j ≡ (1,z ′i, j/λ ,0) for 1≤ i < j ≤ n;
r34 ≡ (2, f/ j1d1,0);
r35 ≡ (2, f ′/ j1d1,0);
r36,i, j ≡ (2,d jTi/Di, j,0) for 1≤ i, j ≤ n;
r37,i, j ≡ (2,d jT ′

i /Di, j,0) for 1≤ i, j ≤ n;
r38,i, j ≡ (2,Di, j/Bid j+1,0) for 1≤ i, j ≤ n;
r39,i ≡ (2, ji/ ji+1,0) for 1≤ i ≤ 2n;
r40 ≡ (2, j2n+1dk+1/E0,0);
r41 ≡ (2,E0/L1E1,0);
r42,i ≡ (2,Li/Li+1,0) for i = 1, . . . ,m+ ⌈lgn⌉+6;
r43 ≡ (2,E1/P1E2,0);
r44 ≡ (2,E2/G1H1,0);
r45,i ≡ (2,Pi/Pi+1,0) for i = 1, . . . ,m+ ⌈lgn⌉+5;
r46,i ≡ (2,Gi/G2

i+1,0) for i = 1, . . . ,⌈lgn⌉;
r47,i ≡ (2,Hi/H2

i+1,0) for i = 1, . . . ,⌈lgm⌉;
r48,i, j ≡ (2,Ai, jH⌈lgm⌉+1/Pi, j,0) for 1≤ i < j ≤ n;
r49,i, j ≡ (2,A ′

i, jH⌈lgm⌉+1/Pi, j,0) for 1≤ i < j ≤ n;
r50,i ≡ (2,G⌈lgn⌉+1Bi/Ci,0) for i = 1, . . . ,n;
r51,i ≡ (2,Ci/Ci,1Bi,1,0) for i = 1, . . . ,n;
r52,i, j ≡ (2,Bi, j/Bi, j+1B ′

i ,0) for i = 1, . . . ,n and j = 1, . . . ,m;
r53,i, j ≡ (2,Ci, j/Ci, j+1C ′

i ,0) for i = 1, . . . ,n and j = 1, . . . ,m;
r54,i, j ≡ (2,B ′

i Pi, j/λ ,0) for 1≤ i < j ≤ n;

546 C. Lu, X. Zhang

r55,i, j ≡ (2,C ′
jPi, j/λ ,0) for 1≤ i < j ≤ n;

r56,i, j ≡ (2,Pm+⌈lgn⌉+5Pi, j/N,0) for 1≤ i < j ≤ n;
r57 ≡ (2,Lm+⌈lgn⌉+7Pm+⌈lgn⌉+6/T,0);
r58 ≡ (1,b/T,2);
r59 ≡ (1,a5n+m+⌈lgn⌉+9b/N,2);
r60 ≡ (1,T yes/λ ,0);
r61 ≡ (1,N no/λ ,0);

• E(⟨n,m,k⟩) = Γ (⟨n,m,k⟩)− {yes,no}.

• iin = 2 is the input cell.

• io = 0 is the output region.

We will show that the family Π = {Π(⟨n,m,k⟩) | n,m,k ∈ IN} defined above is polynomially uniform
by Turing machines. To this aim it will be proved that Π(⟨n,m,k⟩) is built in polynomial time with
respect to the size parameter n, m and k of instances of Vertex Cover problem.

It is easy to check that the rules of a system Π(⟨n,m,k⟩) of the family are defined recursively from
the values n, m and k. The necessary resources to build an element of the family are of a polynomial
order, as shown below:

• Size of the alphabet: n2+5mn+26n+7m+4⌈lgn⌉+ ⌈lgm⌉+27 ∈ O(n2+mn).

• Initial number of cells: 2 ∈ O(1).

• Initial number of objects: 3m+6 ∈ O(m).

• Number of rules: 5mn+3n2+26n+10m+4⌈lgn⌉+ ⌈lgm⌉+6 ∈ O(n2+mn).

• Maximal length of a rule: 6 ∈ O(1).

Therefore, a deterministic Turing machine can build Π(⟨n,m,k⟩) in a polynomial time with respect
to n, m and k.

5.1 An Overview of the Computation

A family of recognizer tissue P systems with cell separation is constructed in the previous section. In
the following, we informally describe how the recognizer tissue P system with cell separation Π(s(γ))
with input cod(γ) works. Let us start with the generation stage, where all the possible subsets of the
vertices of the graph are generated. This stage has several parallel processes, which we describe in
several items.

– In the cells with label 2, in the presence of ci, j, by the rules r16,i, j, r17,i, j, the objects ci, jAi, j, ci, jA ′
i, j

introduce the objects zi, jz ′i, jAi, jA ′
i, j, respectively. In the next step, primed objects and non-primed

objects are separated into the new daughter cells with label 2. The objects zi, j and z ′i, j in cells with
label 2 are exchanged with the objects ci, j in the cell with label 1 by the rules r28,i, j and r29,i, j. In
this way, the cycle of duplication-separation can be iterated.

– In parallel with the above duplication-separation process, the objects c are used to duplicate the
objects Ti, T ′

i , Fi and F ′
i by the rules r18,i – r21,i (in general Ti(T ′

i) and Fi(F ′
i) correspond to the

values true and f alse of vertex Ai); the rules r26 and r27 take care of introducing the object c from
the cell with label 1 to cells with label 2.

Solving Vertex Cover Problem by Means of Tissue P Systems with Cell Separation 547

– In the initial configuration of the system, the cell with label 2 contains an object A1 (Ai encodes
the i-th variable in the propositional formula). The objects T1, F ′

1 , z, z ′, y, y ′ and s are brought in
the cell with label 2, in exchange of A1, by the rule r23,i. In the next step they are separated into
the new daughter cells with label 2 by separation rule, because (T1,F ′

1) ∈ O1 and (F1,T ′
1) ∈ O2.

The object s is used to activate the separation rule r1, and is consumed during the application of
this rule. The objects y and y ′ are used to introduce A2 from the cell with label 1, and the process
of truth-assignment for variable v2 can continue. In this way, in 3n−1 steps, we get 2n cells with
label 2, and each one contains one of the 2n possible truth-assignments for the n variables.

– In parallel with the operations in the cells with label 2, the objects ai, j,k+1 from the cell with label
1 are traded for objects bi, j,k+1 from the environment at the step 3k+1 (0≤ k ≤ n−3) by the rule
r2,i, j,k. In the next step, each object bi, j,k+1 is traded for two copies of objects ci, j and di, j,k+1 by the
rule r3,i, j,k. At step 3k+ 3 (0 ≤ k ≤ n− 3), the object di, j,k is traded for object ai, j,k+2 by the rule
r4,i, j,k. Especially, at step 3n−5, ai, j,n−1 is traded for bi, j,n−1 by the r2,i, j,k, at step 3n−4, each copy
of object bi, j,n−1 is traded for two copies of ci, j by the r4,i, j. After step 3n− 4, there is no object
ai, j,k appears in the cell with label 1, and the group of rules r3,i, j,k – r5,i, j,k will not be used again.
Note that the subscript k of the object ai, j,k grows by 1 in every 3 steps until reaching the value
n−1, and the number of copies of ai, j,k is doubled in every 3 steps. At step 3k+3 (0≤ k ≤ n−2),
the cell with label 1 contains 2k+1 copies of object ci, j. At the same time, we have 2k+1 cells with
label 2, and each cell with label 2 contains one copy of object zi, j (or z ′i, j). Due to the maximality of
the parallelism of using the rules, each cell with label 2 gets exactly one copy of ci, j from the cell
with label 1 by the rules r28,i, j and r29,i, j. The object ci, j in cell with label 2 is used for duplication
as described above.

– The objects a1,i and a2,i in the cell with label 1 has a similar role as object ai, j,k in cell 1, which
introduces appropriate copies of object c for the duplication of objects Ti, T ′

i , Fi and F ′
i by the

rules r9,i – r15,i. Note that at step 3k+ 3 (0 ≤ k ≤ n− 2), there are (k+ 1)2k+1 copies of object c
which, by the maximality of the parallelism of using the rules, ensures that each cell with label 2
gets k+1 copies of object c .

– The object gi+1 in the cell with label 1 is traded for hi+1 from the environment at step 3i+ 1
(0≤ i ≤ n−3) by the rule r6,i. In the next step, the object hi+1 is traded for two copies of objects
li+1 and Ai+2 by the rule r13,i. At the step 3i+ 3 (0 ≤ i ≤ n− 3), the object li+1 is traded for two
copies of gi+2, so that the process can be iterated, until the subscript i of gi reaches n−1. At step
3n−5, object gn−1 is traded for hn−1 by the rule r6,i. At step 3n−4, each object hn−1 is traded for
two copies of An. After step 3n− 4, no object gi appears in the cell with label 1, and the group
of rules r15,i – r18,i will not be used again. At the step 3i+ 3 (0 ≤ i ≤ n− 2), the cell with label
1 contains 2i+1 copies of Ai+2, and we have 2i+1 cells with label 2, each of them containing one
copy of object y or one copy of object y ′. Due to the maximality of the parallelism of using the
rules, each cell with label 2 gets exactly one copy of Ai+2 from cell 1 by the rules r24,i and r25,i. In
this way, the truth-assignment for the vertex Ai+1 can continue.

– The objects zi, j, z ′i, j, y, y ′, z and z ′ in the cell with label 1 are removed by the rules r28,i, j, r29,i, j,
r30, r31.

Note that this non-deterministic generation stage is performed by the successive application of the
separation rules, and at the end of the stage the same configuration is always reached. Thus, the system
is confluent in this stage and performs 3n+1 steps.

Now that all the subsets of vertices of the graph are generated, the pre-checking stage selects only
those of size k. This stage is activated by rules r34 and r35, which interchange the object f (or f ′) of each
2-cell (recall that there are 2n of them) from the environment, and then each of the latter in each 2-cell

548 C. Lu, X. Zhang

introduces an object d1 and an object j1 from the environment (recall that there are infinitely many of
them).

The objects d1 and j1 start two processes of counting in each 2-cell. The first process counts the steps
of this stage with counter ji using rules r39,i.

The second process counts the number of vertices in the subset. It is performed using rules r36,i, j
and r37,i, j, which interchange the objects Ti in the 2-cells by objects Bi (indicating this way that the
corresponding vertex has been counted) and increase the counter d j (the only purpose of the objects
Di j is to reduce the length of the rules). Note that this is a non-deterministic process, since the vertex
"counted" in each step is chosen in a non-deterministic way. However, as the size of the subsets of
vertices is bounded by n, after 2n steps of this process, the same configuration is always reached, so the
system is also confluent in this stage.

For the counter d j of a 2-cell to increase, it is necessary and sufficient that in that cell there exist
objects Bi left. This means that at the end of the process explained in the previous paragraph, the only
2-cells that contain objects encoding subsets of vertices of size k are those containing the object dk+1. At
this moment, those cells also contain the counter j2n+1, which then in two steps cause (using rules r40
and r41, and the intermediate object E0 for rules size reduction) the object dk+1 to be interchanged by
objects L1 and E1 from the environment.

The total number of steps of the pre-checking stage is 2n+2.
The checking stage starts now, but before checking if any of the subsets of vertices of size k selected

in the previous stage is a vertex cover of the graph, we need some preparation steps. First of all, the
objects Li will be used as a counter, controlled by rules r42,i, of the number of steps performed. On the
other hand, rule r43 introduces another counter Pi, controlled by rules r45,i, which runs in parallel, but
with a delay of one step. Also, in each 2-cell encoding a subset of vertices of size k objects G1 and H1

are introduced by rules r43 and r44, and are then multiplied by rules r45,i and r46,i until obtaining n copies
of the former and m copies of the latter.

The objects H⌈lgm⌉+1 are used by rules r48,i, j and r49,i, j to change into objects Pi j encoding the edges
of the graph. On the other hand, rules r50,i, r51,i, r52,i, j and r53,i, j produce, from objects G⌈lgn⌉+1 and Bi

and by successive interchanges of objects between the 2-cells and the environment, m copies of objects
B ′

i and C ′
i for each and all of the vertices in the subset encoded into the 2-cell.

As the copies of objects B ′
i and C ′

i are being produced, rules r54,i, j and r55,i, j eliminate from the 2-
cell, in a non-deterministic way, edges of the graph (encoded by objects Pi j) such that at least one of its
endpoints is contained in the subset encoded in the corresponding 2-cell. Once this stage has performed
m+⌈lgn⌉+6 steps, we are sure that if there is any object Pi j left in the 2-cell, then the subset of vertices
encoded in that cell is not a vertex cover of the graph, and rule r56,i, j eliminates the counter Pi in an
additional step.

The answer stage starts at step 5n+m+⌈lgn⌉+9, when the object lm+⌈lgn⌉+7 appears in every 2-cell
encoding a subset of vertices of size k. If the counter P has survived in any of these 2-cells, it means
that it encoded a vertex cover of the graph, and rule r57 interchanges the two counters with an object T
from the environment, which is then sent to the 1-cell of the system by rule r58. Then, rules r59, r60 and
r61 control if this cell has received at least one object T from any of the 2-cells of the system. If this is
the case, it is detected at step 5n+m+ ⌈lgn⌉+ 9, when an object yes is sent to the environment and
the system halts. Otherwise, it is detected at step 5n+m+ ⌈lgn⌉+10, when an object no is sent to the
environment and the system halts.

5.2 Main Results

From the discussion in the previous section, the family Π is polynomially bounded, sound and com-
plete with regard to (VC,cod,s). We have the following result:

Theorem 5.1. Vertex Cover ∈ PMCT S.

Solving Vertex Cover Problem by Means of Tissue P Systems with Cell Separation 549

Corollary 2. NP∪ co−NP ⊆ PMCT S.

Proof: It suffices to make the following observations: the Vertex Cover problem is NP-complete,
Vertex Cover∈ PMCT S and this complexity class is closed under polynomial-time reduction and
under complement.

6 Discussion

The main purpose of this paper is to provide a polynomial time solution for Vertex Cover prob-
lem based on tissue P systems with cell separation. We showed that the membrane separation is an
important feature that could hold the power to solving computationally hard problems in polynomial
time. Following this direction, it remains as further work to describe classical complexity classes below
PSPACE with this framework.

7 Acknowledgements

The authors acknowledge the support of National Natural Science Foundation of China (60674106,
30870826, 60703047, and 60533010), Program for New Century Excellent Talents in University (NCET-
05-0612), Ph.D. Programs Foundation of Ministry of Education of China (20060487014), Chenguang
Program of Wuhan (200750731262), HUST-SRF (2007Z015A), and Natural Science Foundation of
Hubei Province (2008CDB113 and 2008CDB180).

Bibliography

[1] D. Díaz-Pernil, M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez. A Linear–time
Tissue P System Based Solution for the 3–coloring Problem. Electronic Notes in Theoretical Com-
puter Science, Vol. 171, pp. 81–93, 2007.

[2] D. Díaz-Pernil, M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez. Solving Subset
Sum in Linear Time by Using Tissue P Systems with Cell Division. In: J. Mira, J. R. Alvarez, J. R.
Ivarez (Eds.) 2nd International Work-Conference, IWINAC 2007, Interplay between natural and
artificial computation Lecture Notes in Computer Science, Vol. 4527, pp. 170–179, 2007.

[3] D. Díaz-Pernil, M. J. Pérez-Jiménez, A. Riscos-Núñez, A. Romero. Computational Efficiency of
Cellular Division in Tissue-like Membrane Systems. Romanian Journal of Information Science and
Technology, Vol. 11(3), pp. 229–241, 2008.

[4] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, F. J. Romero-Campero. A Linear solution for QSAT
with Membrane Creation. Lecture Notes in Computer Science, Vol. 3850, pp. 241–252, 2006.

[5] C. Martín Vide, J. Pazos, Gh. Păun, A. Rodríguez-Patón. A New Class of Symbolic Abstract Neural
Nets: Tissue P Systems. Lecture Notes in Computer Science, Vol. 2387, pp. 290–299, 2002.

[6] C. Martín Vide, J. Pazos, Gh. Păun, A. Rodríguez-Patón. Tissue P Systems. Theoretical Computer
Science, Vol. 296, pp. 295–326, 2003.

[7] L. Pan, T.-O. Ishdorj. P Systems with Active Membranes and Separation Rules. Journal of Univer-
sal Computer Science, Vol. 10(5), pp. 630–649, 2004.

550 C. Lu, X. Zhang

[8] L. Pan, M. J. Pérez-Jiménez. Efficiency of Tissue P Systems with Cell Separation. In M. A.
Martínez-del-Amor, E. F. Orejuela-Pinedo, Gh. Păun, I. Pérez-Hurtado, A. Riscos-Núñez, Seventh
Brainstorming Week on Membrane Computing, Sevilla, Report RGNC 02/2009, 169–196, 2009.

[9] A. Păun, Gh. Păun. The Power of Communication: P Systems with Symport/Antiport. New Gener-
ation Computing, Vol. 20(3), pp. 295–395, 2002.

[10] Gh. Păun. Computing with Membranes. Journal of Computer and System Sciences, Vol. 61(1),
108–143, 2000.

[11] Gh. Păun. Membrane Computing, An Introduction, Springer–Verlag, Berlin, 2002.

[12] Gh. Păun, M. J. Pérez-Jiménez, A. Riscos-Núñez. Tissue P System with Cell Division. In Gh. Păun,
A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini (eds.), Second Brainstorming Week on
Membrane Computing, Sevilla, Report RGNC 01/2004, 380–386, 2004.

[13] M. J. Pérez-Jiménez, A. Romero-Jiménez and F. Sancho-Caparrini, A Polynomial Complexity
Class in P Systems Using Membrane Division, In E. Csuhaj-Varjú, C. Kintala, D. Wotschke and
Gy. Vaszyl (eds.), Proceedings of the 5th Workshop on Descriptional Complexity of Formal Sys-
tems, DCFS 2003, pp. 284–294, 2003.

[14] The P System Web Page: http://ppage.psystems.eu

Chun Lu is a Ph.D candidate in Huazhong University of Science and Technology, Wuhan, China.
He received his master degree in Systems Engineering from Huazhong University of Science and
Technology in 2008. Currently, his main research interests cover membrane computing, neural
computing, automata theory and its application.

Xingyi Zhang was born in China on June 6, 1982. He received his doctor degree at Huazhong Uni-
versity of Science and Technology in 2009. Currently, he works in School of Computer Science
and Technology, Anhui University. His main research fields are formal language theory and its
applications, unconventional models of computation, especially, membrane computing. He has
published several scientific papers in international journals.

