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Abstract: We provide several properties of the input-output function of the SISO
/ MISO Sugeno fuzzy systems with center of gravity defuzzification. The properties
analyzed are related to continuity under various conditions for the input membership
functions, including the case when the input space is a topological space.
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1 Introduction

The progress of knowledge on fuzzy systems historically followed a bifurcated path. On
one way, the engineering applications drove the development [8] (Tong), with the underlying
foundations following. On the second way, logic and mathematics produced advances with limited
reference to the applications. That left several area in-between the two paths partly unclarified,
especially regarding fuzzy logic systems (FLS) foundations.

We address several properties of the characteristic function of the SISO / MISO (Single
Input Single Output / Multiple Input Single Output) fuzzy systems with defuzzification, for
Sugeno fuzzy systems. As far as we know, these properties have been explicitly addressed until
now only sporadically. The main issues concern the continuity of the characteristic functions
of the fuzzy systems with center of gravity (c.o.g.) defuzzification, as continuity is essential
in understanding the applicability and constraints when using fuzzy systems in control, system
modeling (approximation), predictors and other current applications.

The approximation properties of fuzzy logic systems with defuzzification have been exten-
sively studied starting in the 1990s [6] (Teodorescu 1990), [1] [2], [3], [7]. However, while some-
what elementary, the properties that guarantee that these systems have derivable or continuous
input-output functions have not been investigated in detail, except cases discussed in [4], [9]. The
continuity of FLSs is essential in many applications, and is effectively assumed in most control
applications, as in [13] (even when not stated, e.g., as in many robotic system papers [10], [15]),
and in interpolations and approximation with FLSs, as in [11], [12]. The topic was intensively
studied, see e.g. [14], [9], [4] etc.

The organization of the paper is as follows. In the next section we recall a few definition
and results and state several working hypotheses that are used in the paper. The third section
addresses the continuity of Sugeno-type fuzzy systems. The last section is conclusive.

2 Definitions and hypotheses

Consider two spaces, S ⊆ X named input space and S′ ⊆ Y named output space, and

applications µ : S → [0, 1] ⊂ R named input membership functions and respectively η
...S′ →

[0, 1] ⊂ R named output membership functions. The definition domain of all input membership
functions is S; the subset of S where the membership functions have values larger than 0 is
named the support of the function.
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We work under a set of very general hypotheses that simplify the presentation of the main
results; most results remain valid without these hypotheses, with slightly more elaborate condi-
tions, but their proofs become tedious and lengthy. The hypotheses are as follows.

All input and output membership functions (H1) are normalized, that is, there is at least one
point where the membership functions have value 1.

(H2) have a finite set of α-intervals for every α. (We will not use H2 when building an
example in Section 3.)

(H3) have compact supports, that is, compact sets where they are larger than zero.
(H4) have bounded supports.
(H5) The union of all the supports of the input membership functions is compact. This

hypothesis has no significant impact on the results, but simplifies the discussion.
Hypothesis H3 is typically accepted for fuzzy sets, yet the hypothesis can be removed by

defining two (or several) fuzzy sets with compact support, with their union equal to the given
non-compact support set. We will still require that the number of disjoint sets of the support is
finite.

Hypothesis H4 (boundedness of the support) is only used to avoid studying one more trivial
case for membership functions. It can be removed with no influence on the results. Hypothesis
H5 (compactness of the union of the supports) plays no role except of avoiding splitting the
problem into sub-problems.

Notice that in many respects, the type of input space is not essential, as far as it is a
topological space where continuity of the mappings can be defined. In general, we assume that
an input membership function is an application from a compact set in a Hausdorff topological
space to the unit interval of the real line, µ : S ⊆ X → [0, 1] ⊆ R. We assume that the input
membership functions are not singletons on X.

Consider a finite set of real numbers, named singletons, {βi}i=1,..,Q. We recall a few defini-
tions.

Definition 1. A SISO zero-order Sugeno fuzzy system is a construction comprising (i) a set
of input membership functions µk : S → [0, 1], k = 1, · · · ,m, (ii) a set of output singletons,
{βh}; (iii) an application i(.) : {1, a,m} → {1, · · · , Q}, that associates to any k ∈ 1, · · · ,m a
value i(k) ∈ {1, · · · , Q}; each such individual association, that is a value i(k) for a specified k, is
named rule; (iv) an application S → R defined by x → y =

∑
k βi(k)µk(x)∑

k µk(x)
, βi(k) ∈ R .

The part (iii) in the construction is equivalent to saying that there is a set of m rules, R(k):
If input is µk, then output is βi(k) , that is, one singleton is assigned to each input membership
function.

A definition a little more general allows for several singletons assigned to one input member-
ship function,

(iii*) An application i(.) : {1, · · · ,m} → ℘{1, · · · , Q}, where ℘ denotes the set of parts
(power set); i(k) for a specified k is named rule; (iv) an application S → R defined by

x → y =
∑

k βh maxjs.t.i(j)=h µj(x)∑
k maxjs.t.i(j)=h µj(x)

.

The part (iii*) in the construction is equivalent to saying that there is a set of rules as
R(k): If input is µk, then output is βi1(k), βi2(k), · · · , βir(k) ,

that is, several singletons may be assigned simultaneously to a single input (non-univalent, mul-
tivalued / multivocal association). Equivalently, one can allow for several rules with the same
antecedent and different consequents connected by OR, as

R(k): If input is µk, then output is βi1(k) , OR



On the Characteristic Functions of Fuzzy Systems 471

R(k): If input is µk, then output is βir(k).

The application x ∈ S ⊆ X → y ∈ Y ⊆ R is named characteristic or input-output function
of the FLS. This function is defined in all points where at least one input membership function is
not null, for Sugeno-type FLSs. This condition is required by the c.o.g. defuzzification method,
specifically by the condition that the denominator in the c.o.g. is not null. For ease, we will say
that a fuzzy system is continuous if its characteristic function is continuous.

3 Properties of continuity SISO Sugeno systems

The simplest way to analyze the continuity of Sugeno-type system is to use the formula of the
output according to the definition in the previous Section and to consider that all input mem-
bership functions are defined on the whole domain, X. When an input membership function is
defined on a subset of the input space, µ : S ⊆ X → [0, 1], the last condition is enforced by
extending the definition of the input membership functions to the whole X by µ(x ∈ X \S) = 0.
We will study the cases when all input membership functions are continuous on X. Because we
assume that all membership functions are continuous everywhere, moreover because the max-
imum, minimum and rational functions of continuous functions are continuous (wherever they
are defined), we directly have the basic result:

Proposition 1. Sugeno SISO fuzzy systems with continuous membership functions over the
whole input space are continuous input-output applications in the subset of the input space
where the system is defined.

The input space can be whatever topological space X that allows us building continuous
applications from it to [0, 1]. Beyond this very general condition, all the other conditions regard
the interval [0, 1] and functions defined on it; hence, the generality of the result in Proposition 1.

While the above result is very general, easy to obtain, in addition easily extendable to all
Sugeno systems (of whatever order), it sheds little light on the internal mechanisms of these
systems and on what happens outside the subset of the input space where the system is defined.
Therefore, we will provide another proof for the continuity, studying along the proof the prop-
erties of the frontier of the definition space of the system. The analysis will be developed first
for the simplest case of FLSs, namely when the input membership functions are defined on R.
Then, we deal with X as a general topological space.

We first introduce a few concepts that simplify the explanations. Consider single-input
single-output (SISO) fuzzy systems with input membership functions defined on the real axis
(mono-dimensional input functions). We assume that any input membership function is not
null on an opened interval and null outside it. Denote by Ik = (xk, xk) the opened interval
corresponding to the membership function µk, with µk(x) > 0 for all x ∈ Ik and µk(x) = 0 for
all x ∈ R \ Ik. The case xk = xk is not allowed, as the membership function would be void
everywhere except a point, reducing it to an input singleton. While not essential, for ease of
exposition consider that the union of all closures Ik of the intervals Ik is an interval,I = ∪kIk .
Consider that the intersection of the closures of two specified intervals, Ik and Ij , is not void.
The following cases will play a role in the discussion.

The intersection of two intervals is a single point. Assume that Ik∩Ij = xk = xj or Ik∩Ij =
xj = xk. The two intervals are adjacent, non-overlapping. (See Fig. 1 a). Then, in the respective
point xk = xj or xj = xk, both functions have zero value, therefore another membership function
must have non-zero value in that point, for the fuzzy system is defined in that point. In the
respective point (x3 in Fig. 1 (a)), the system is not defined. If the two membership functions are
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associated with different singletons, the system will have different values at left and at right of x3,
making it impossible to achieve continuity of the system simply by extending the characteristic
function of the system to one of the two values.

The cases Ik ∩ Ij = xk = xj and Ik ∩ Ij = xk = xj are not possible, because we required that
xk ̸= xk and that the intersection reduces to a single point. Therefore, this case is not allowed
under normal circumstances (Sugeno systems are not using input singletons).

The intersection is an interval. When Ik ∩ Ij = Ik or Ik ∩ Ij = Ij , the membership functions
may look as in Fig. 1 b. We will take into account this case. The typical case in applications is
an intersection that is an interval but not equal to one of the two, Ik, Ij .

Figure 1: (a) not allowed case, if no other function is non-zero in x3; (b) allowed case.

Lemma 1. In the case (ii) above, when Ik ̸= Ij , there is at least one point inside Ik ∩ Ij such
that the two membership functions have equal values.

Proof. Indeed, as the membership functions are assumed continuous, so is their difference,
µk − µj . Denote Ik ∩ Ij = [a, b]. Then, either (µk − µj)(a) < 0 and (µk − µj)(b) > 0, or
(µk−µj)(a) > 0 and (µk−µj)(b) < 0. Therefore, there is a point x ∈ [a, b] such that (µk−µj)(x) =
0.

Consider all points where two membership functions have equal values. Denote these points
by ek and create the ordered set comprising all distinct ek, xk, xk points. Denote this set of
ordered points by PC = ah. The set of intervals [ao, a1), · · · , [ah, ah+1), · · · , [aN , aN+1] will
be named canonical partition of the interval I. The points ek play a role in considerations
only regarding the derivability of Sugeno systems and regarding Mamdani systems; for sake of
generality we use them here too. One could define the canonical partition without the points ek
and introduce them only when needed.

Lemma 2. For any interval in the canonical partition, a single rule (iii) or a single subset of
rules (iii*) simultaneously apply (are active) in a single-input fuzzy logic system.

Proof. Consider x changing inside some interval of the canonic partition. Because such an
interval is included or at most equal to any support (basis interval) for a membership function,
moreover no point inside such an interval, x ∈ (ah, ah+1), represents an edge of the support of
an input membership function, the activated rules will remain the same for all inside points.

We recall that the minimum and maximum of two continuous functions are continuous
functions, that is, if f and g are continuous functions in some interval, min(f(x), g(x)) and
max(f(x), g(x)) are continuous functions on that interval. Consequently, the truncation opera-
tion applied to a continuous membership function µ, min(µ(x), γ), as used for Mamdani systems,
is continuous for any γ ∈ R, in the given interval of continuity of µ. We introduce the notion
of support of a fuzzy systems defined by the union of the supports of all the input membership
functions, I = ∪kIk . We now can prove

Proposition 2. Any SISO zero-order Sugeno system with continuous input membership func-
tions defined on R is continuous inside the support of the system.

Proof. According to Lemma 2, a single subsystem of rules always apply inside an interval of
the canonical partition, thus the set of integers k for which µk(x) ̸= 0 in x → y =

∑
k βi(k)µk(x)∑

k µk(x)
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is uniquely defined. As the functions µk(x) are continuous and none null, the denominator is
nowhere null inside the interval and both the nominator and denominator are continuous, thus
the function x ∈ I → y ∈ R is continuous.

In the points ending the interval for x, x ∈ (ah, ah+1), the subset of active rules changes
because one or several membership functions become zero. Consider the point ah, which is not
on the frontier of the support of the fuzzy system, ah ∈ I \ I. At the limit, we have

lim
x→ah,x>ah

∑
k βi(k)µk(x)∑

k µk(x)
.

Some of the membership functions tend to zero, while others tend to some non-zero values.
Those membership functions not tending to zero remain non-null for x < ah in some vicinity of
ah, because of continuity. At the same time, other membership functions are non-zero for x < ah
and tend to zero in ah. Therefore, the limit at right and at left of ah are equal,

lim
x→ah,x>ah

∑
k βi(k)µk(x)∑

k µk(x)
= lim

x→ah,x<ah

∑
k βi(k)µk(x)∑

k µk(x)

and the application is continuous in ah. Because in the whole closed interval [ah, ah+1] the system
is continuous, it is continuous in the whole definition domain.

The only case we still need to analyze is on the frontier of the union of the supports. Because
all the subsequent considerations do not make use of the specific fact that the input membership
functions are defined on R, we will continue the discussion in a more general setting. Denote
U = ∪kSk , where Sk is the support of the membership function µk. The frontier is Γ = U \ U .
Because on the frontier all membership functions are null, the FLS is not defined on Γ , yet it
can be extended on Γ if the system function has a limit on every point on Γ.

lim
x→x0∈Γ,x∈U

∑
k β(i(k))µk(x)∑

k µk(x)
= lim

x→x0∈Γ,x∈U

∑
k βi(k)µk(x)

mink µk(x)∑
k µk(x)

mink µk(x)

.
In the second limit, the denominator is larger than 1, because all quantities are positive and

for h = argminkµk(x), (µh(x))/mink µk(x) = 1. When a single membership function has values
larger than zero in a vicinity of x0, that is, when x ∈ Vx0 ∩ U{x0} implies that there is some
unique h such that µh(x) > 0 and µk ̸=h(x) = 0, then the limit is βi(h). This is probably the most
frequent case in applications.

Figure 2: Evolution near zero of the system described in Example 1

However, in general the limit does not exist.
Example 1. Consider µ1(x) = max(1, x|sin(1/x)|), µ2(x) = max(1, x|sin(1/(2x))|), β(i(1)) =

1, βi(2) = 3. Notice that these functions do not obey the requirement in the hypothesis (H2).
The limit
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lim
x→0,x>0

(max(1, x|sin(1/x)|) +
√
3max(1, x|sin(1/

√
2x)|)

max(1, x|sin(1/x)|) + max(1, x|sin(1/
√
2x)|)

does not exist. However, this is not a case of practical interest when choosing membership
functions for typical control problems. Figure 3 shows the variation of the above function around
zero, at two scales. On the other hand,if for any point x on the frontier of the support of the
fuzzy system with continuous input membership functions on X, there is a membership function
µh such that for all the other membership functions µi ̸=h there is a finite limit

lim
u→x

µi(u)

µh(u)
= Li,h(x)(x),

then the characteristic function of the Sugeno system can be extended on the frontier as

x → y =

∑
k βi(k)µk(x)∑

k µk(x)

for x inside S∗

x → y =
β(i(h(x))) +

∑
( k ̸= h(x))L(i, h(x))(x))

1 +
∑

( k ̸= h(x))L(i, h(x))(x)
, x ∈ Γ(S∗)).

The extension is obtained as limu→x

∑
k β(i(k))µk(x)∑

k µk(x)
= βi(h(x)) +

∑
k=h(x) βi(k)µk(x))/(1 +∑

k=h(x) Li,h(x)(x). The limit is obtained by factoring in the nominator and in the denomi-
nator by µh(u). The possibility to choose several membership functions for µh does not modifies
the result, as it is easy to check. Example 1. Consider a Sugeno system with only two member-
ship functions, both defined on [0, 0.1], µ1(x) = x, µ2(x) = x2, β1 = 1, β1 = 3. In this case, h = 1.
Then, inside [0, 0.1], x → y = (x+3x2)/(x+x2), thus limx→0(y) = limx→0(x+3x2)/(x+x2) = 1.

Remark 1. The characteristic function of the system so defined is continuous in the closure
of the support, S∗ if the input membership functions are continuous in X. This property results
from the above discussion.

Remark 2. Consider the more general case when X is a multidimensional space, for example
x ∈ X and X = R2 and Γ(S∗) is a curve in the plane. It is easy to see that the function x →
y = (βi(h(x)) +

∑
k ̸=(x) Li,h(x)(x)/(1 +

∑
k ̸=h(x) Li,h(x)(x) defined on Γ(S∗) may be discontinuous

if there are membership functions that are discontinuous even in only one of the variables of the
plane.

Because the standard definition of the fuzzy logic systems forces us to exclude the definition
of the characteristic function on the support of the system, that is, forces the support to be an
open set, we suggest the next extension of the definition for SISO Sugeno systems by replacing
condition (iii) in the definition:

(iii**) The output of the system is

x → y = lim
u→x

∑
k

βi(k)µk(u)/
∑
k

µk(u),

whenever the limit exists. This definition generalizes (iii) covering it as a specific case. In
addition, it allows us to use membership functions as in Fig. 1 (b) and still have the system
defined in the closed interval corresponding to the bases of the triangles. Moreover, the definition
completes the domain of definition of the system to a closed set, and makes it continuous (when
the input membership functions are continuous and satisfy the other conditions regarding the
limit) on its whole (closed) domain. Of course, outside the reunion of the input membership
functions support, the system is undefined.
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The case of multi-input single-output MISO case, with membership functions defined on R
for each input (mono-dimensional input functions) is dealt similarly. We do not study it here
because of space limits.

4 Conclusions

We provided several properties of the input-output (characteristic) function of the SISO and
MISO Sugeno fuzzy systems with defuzzified output by the center of gravity method. These
properties regard the continuity of the characteristic functions of the fuzzy systems and are
essential in understanding the applicability and constraints when using fuzzy systems in control,
system modeling (approximation), predictors and other current applications. We made a clear
difference between the domain of definition of the input membership functions and the domain
of the characteristic (input-output) function of the fuzzy system, stressing that they are not
identical. The continuity inside the system domain was proved for input topological spaces that
allow the definition of the membership functions. Next, we showed cases when it is possible to and
explained how to extend the definition of Sugeno fuzzy systems to a closed domain, preserving
the continuity of the system. While we provided a proof of continuity for the opened domain
of the systems, proof that is valid for general topologic spaces, we worked out a second proof,
which is longer but has the advantage of detailing the internal mechanics of Sugeno systems.
The second way of dealing with the continuity problem has the additional advantage of showing
a path toward the extending of the domain of the systems to a closed domain, for a case that
may be of interest in applications.
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