
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 13(1), 117-128, February 2018.

Modern Interfaces for Knowledge Representation
and Processing Systems Based on Markup Technologies

A. A. Mohammed Saeed, D. Dănciulescu

Ali Amer Mohammed Saeed*
Doctoral School of Informatics
University of Piteşti
110040 Piteşti, 1 Târgul din Vale Str., Romania
*Corresponding author: ali.amer81@gmail.com

Daniela Dănciulescu
Computer Science Department
University of Craiova
200585 Craiova, 13 A. I. Cuza Str., Romania
danadanciulescu@gmail.com

Abstract: The usage of markup technologies to specify knowledge to be processed
according to a specific field of application is a common technique. Representation
techniques based on markup language paradigm to describe various types of knowl-
edge including graph based models is considered and details on using Knowledge
Representation and Processing (KRP) Systems in education are presented. XML,
and VoiceXML were selected to implement smart interface for KRP systems.
Keywords: KRP systems, markup technologies, intelligent interfaces, VXML

1 Introduction

This article deals with Markup mechanisms for knowledge, but also for voice interfaces. It is
based on [13] being an extended version of the previous work of the first author.

The coverage of the subject follows. The next section deals with the usability and efficiency of
the following approaches to be used in KRP context: SGML / XML, RDF extensions, state-based
modeling - SCXML, and Voice XML.

From the RDF (Resource Description Framework) category, in the context of KRP systems,
CKML (Conceptual Knowledge Markup Language), Ontology Markup Language (OML) and
DLML (Descriptive Logic Markup Language) are useful.

Other approaches are based on the Ontology Interface Layer (OIL) and the DARPA Agent
Markup Language (DAML). Of the ontological development tools, the most commonly used are:
DUET (UML Enhanced Tool), UBOT, Protege, and Ontolingua. An example of processing using
descriptions in natural language is illustrated using SCXML.

SCXML and VoiceXML are covered in the third section.
Interaction of knowledge bases using JAVA technologies is demonstrated in the fourth section.

For this purpose, the legacy knowledge model is modeled by a graph that indicates the inheritance
relationship of object attributes.

The fifth section is dedicated to the usage of KRP systems in education. It is shown that,
for visually impaired users, the usage of VoiceXML based technologies to translate various edu-
cational resources is feasible.

2 Markup models and knowledge representation

By models and markup technologies, in the context of this paper, we understand such models
and technologies obtained from SGML (Standard Generalized Markup Language; ISO 8879:1986

Copyright ©2018 CC BY-NC

118 A. A. Mohammed Saeed, D. Dănciulescu

[28]). SGML is a meta-language, i.e. an artificial language which allow us to describe other
languages, in general for the formatting of documents [13].

SGML was used initial by the Association of American Publishers. Then it has become a
powerful model with applications and multiple influences. For example, Coleman and Willis
(1997) proposed the usage of SGML in the conservation of the publications of the libraries [4].
In the same year, already appeared HTML (HyperText Markup Language, 1990 [23]) useful for
WWW, and Extensible Markup Language (XML, 1996) as the language of the description of the
structured information [31]. Therefore, SGML is known as being the father of both HTML and
XML [13]. However HTML is a court specifies its DTD of SGML (with markers predefined), and
XML is a subset of SGML where users can define their own tags and attributes.

An XML document is composed of markers (tags) and data "character" (char, character).
A marking is a string of characters bounded by the symbols "<" and ">". An XML file con-
tains three sections: a header (<?xml version="1.0" encoding="UTF-8?">), the definition of
document type internal or external (example: <!DOCTYPE document SYSTEM "location of
its DTD">) and the root (XML Information in this part may be set as a tree structure).

A XML schema to describe the set of rules used by Knowledge Representation and Processing
(KRP) Systems can be given as below (regula.xsd).

<?xml ve r s i on="1.0"?>
<xs : schema xmlns : xs="http ://www.w3 . org /2001/XMLSchema">
<xs : element name="KRPRule">

<xs : complexType>
<xs : sequence>

<xs : element name="RLabel" type="xs : s t r i n g "/>
<xs : element name="RLeft" type="xs : s t r i n g "/>
<xs : element name="RRight" type="xs : s t r i n g "/>

</xs : sequence>
</xs : complexType>

</xs : element>
</xs : schema>

XML Processors are used to verify whether the XML documents are well formed or not. To
access and editing an XML document, initially is loading the XML document in associated task
(example with JavaScript) [13]:

pa r s e r = new DOMParser () ;
xmlDoc = par s e r . parseFromString (text , " t ext /xml ") ;

Then extract the elements of the XML document for processing.
In the context of the knowledge representation of the rules used by KRP systems we can

consider <KR> as a root element which may include one or more elements of the rule type.
Each item rule has a unique identifier rid. A rule of association (A → B) is formed of "The
hypothesis of A" and "B - the consequent part". Therefore, each hypothesis must have one or
more items. Each item hypothesis has a name that is represented by a sequence. This model is
described below.

Modern Interfaces for Knowledge Representation
and Processing Systems Based on Markup Technologies 119

XML document:
<KR><Rule r i d="1">

<Hyp>
<ItemHyp>

<Name>A</Name>
</itemHyp>

</Hyp>
<In f e r >

<ItemInfer>
<Name>B</Name>

</ItemInfer>
</In f e r >

</Rule> </KR>
The DTD of the model:

<!ELEMENT KR (Rule+)>
<!ELEMENT Rule (Hyp I n f e r)>
<!ATTLIST Rule r i d CDATA>
<!ELEMENT Hyp (ItemHyp+)>
<!ELEMENT ItemHyp (Name)>
<!ELEMENT In f e r (I t emIn f e r+)>
<!ELEMENT ItemIn f e r (Name)>
<!ELEMENT Name (#PCDATA)>

To describe structures useful to outline knowledge in the field of science of the soil for agri-
culture, the authors of [12] have converted XML declarations in a format useful for application,
called KBML (Knowledge Based Markup Language). All meta-information is stored in a file
KBML, while the actual data may be available in any data source (distributed, etc.). According
to [13], KBML is not a markup language, but merely an application of XML.

In the context of modeling and knowledge processing many specialized Markup notations
have been developed, such as: RDF/XML (model supertitles for expressing graphs as RDF
documents that XML [27]), CKML (The Conceptual Knowledge Markup Language, 2000 [10]),
OML (Ontology Markup Language [26]), DLML (Logical Description Markup Language [22]).
OML is an extension of the SHOE and supports the lambda expressions. OML and CKML are
based on the conceptual graphs introduced by Sowa (2008) in [17].

Querying RDF data is possible by specific languages, some in the lines of traditional database
query languages, others based on logic and rule language [1]. Stratified graphs can be used to
automatic generation of queries in formal or natural language [5, 6, 14].

The kernel of a RDF model is made up of nodes and pairs of attached attributes/values. A
description of the RDF syntax is presented in [3] and can be understood on the basis of the
following example that describes the creator of the file tey.rdf located in a folder on a Windows
Server:

<rd f :RDF>
<rd f : De sc r ip t i on

rd f : about=" f i l e : ///home/ a l i / tey . rd f">
<xf : Creator>

<rd f : De sc r ip t i on
rd f : about="http ://www. up i t . ro/">
<xf :Name>A L I</xf :Name>

</rd f : Descr ipt ion>

120 A. A. Mohammed Saeed, D. Dănciulescu

</xf : Creator>
</rd f : Descr ipt ion>

</rd f :RDF>

For RDF diagrams one shall specify the space of rdfs names. The fundamental RDF classes
are: rdfs:Resource (class resources), rdf:Property (describes the properties of the resources) and
rdfs:Class (for specifying the type or category). To define a new class of RDF diagram, the
corresponding resource class has the property rdfs:type whose value resource is rdfs:Class. The
resources which belong to the defined class are called courts. An example that describes a
collection of resources is:

<rd f : Bag rd f : ID="docs−apply">
<rd f : l i

r d f : r e s ou r c e=" f i l e :/// luc ru / teza . docx" />
<rd f : l i

r d f : r e s ou r c e="https : //www. up i t . ro /_doc/8806/a_27_c_taxe . pdf " />
<rd f : l i

r d f : r e s ou r c e=" https : //www. up i t . ro /_doc/11836/proc_mencs . pdf " />
</rd f : Bag>

New versions CKML have included the ideas and techniques on the informational flow (IF
- Information Flow) and the design of the logic of the distributed systems. The final version
CKML is both a language based on the logic of the information document and a language based
on frames. In accordance with Kent(2000), "in CKML the specification requires the use of the
concept of mathematical lattice or the most practical notion of conceptual space" [10]. The basis
of the theoretical portion of the practice based on CKML is the CKP Theorem which states the
equivalence between data structures of type conceptual lattice and formal context (classification).

OML provides three levels of further specify the restrictions [26]: top - sequences (corre-
sponding informational flow); the intermediate pipe - calculation of binary relations; Lower
logical expressions (corresponding to concept graphs).

Expressing an ontology is possible using the languages of specification such as [13]: KIF
(Knowledge Interchange Format), CL (Common Logic), OIL, DAML+OIL AND ALLURE.

KIF is based on the logic of the predicates [25], but provides a LISP oriented syntax for this.
From the point of view of the semantic, there are four categories of constant in KIF: constant of
type object, constant of function type, constant of relation and logical constant.

OIL (Ontology Inference Layer [7]) extends RDF diagram to provide an intuitive syntax and
a great power of expression and a semantics more clearly defined with easy to use descriptive
logic within the framework of the schemes of reasoning. Such OIL brings together and unifies
three directions: descriptive logic, modeling based on frames and modeling RDF/XML.

(DAML DARPA Agent Markup Language) + OIL has a syntax diagram type RDF, that
inherits the primitives of RDF (subclass, domain, range) and primitive added extras like transi-
tivity, cardinality etc. Schematic DAML+OIL is oriented on the objects in which the concepts
are abstracted by grades and roles through the properties of the objects. Thus, the ontological
model DAML+OIL is based on a lot of the axioms about the classes and properties, as well as a
set of builders very useful from the perspective of the RPC systems [13]: intersectionOf; unionOf;
complementOf; oneOf; toClass; hasClass; hasValue; minCardinalityQ; maxCardinalityQ; cardi-
nalityQ.

The result of the foregoing the evolutionary process is [13]: 1) OIL extends RDF; 2) DAML
extend RDF; 3. DAML+OIL DAML integrates and OIL and extends the RDF; 4) ALLURE
extends DAML+OIL and RDF.

Modern Interfaces for Knowledge Representation
and Processing Systems Based on Markup Technologies 121

The final result of the research on ontological modeling using RDF/XML has led to the
specification of the ALLURE, in three versions [13]: ALLURE LITE (simple hierarchy, hierarchy
of classes with simple constraints), ALLURE DL (maximum expressiveness) and ALLURE FULL
(very expressive). For the processing of meta-data described using specific Markup ontologies
have been developed a variety of tools for annotation, navigation, utilities (API), edit, view
graphics, marking, pan, validation, import, export, compilation, query, search etc. A list of them
would be too long. We will be limited to the most important tools, the rest being described in the
references indicated: DUET (DAML UML Enhanced Tool), UBOT, The Platform Protégé, and
Ontolingua. Ontolingua Editor allows for the creation of ontologies, exploration and collaborative
editing. Using Ontolingua, it is possible to export and import formats like: KIF, DAML + OIL,
OKBC, Prologue, the LOOM, Ontolingua and CLIP. Can import data in the protégé format.

3 SCXML and Voice XML

SCXML provides a generic state-machine, an execution environment based on CCXML and
Harel State Tables, according to W3C(2015) in [30]. Also in [11] it is mentioned that: "using
SCXML as the representation of the state machine is seen as a benefit". The mentioned authors
found that "large portions of the SCXML standard are not necessary for it to be useful to
our customers and us." CCXML is designed to upgrade VXML dialog systems with advanced
telephony functions. An example of the SCXML representation is for speech recognition in the
natural language. For the implementation of the KRP systems, the role of the SCXML is active
in the framework of the failures, through voice and natural language.

According to the above considerations, it was our choice to propose the usage of VXML to
create voice-enabled applications [29]. VoiceXML (VXML) is a markup language for specifying
the vocal dialog between a man and a software application, for example a KRP system. Thus,
using VoiceXML 2.0 one can develop KRP applications which provides automatic recognition of
speech (ASR - Automated Speech Recognition) and interactive vocal response (IVR - Interactive
Voice Response).

The main elements of voiceXML are:

• <vxml> - start/close any vxml document;

• <var>, <assign>, <clear> used to declare, assign and delete variables;

• <grammar> to specify the grammar of the text under recognition;

• <catch>, <throw>, <error>, <noinput>, <nomatch> to manage exceptions;

• <menu>, <choice>, <enumerate> to deal with menu;

• <if>, <else>, <elseif> to describe conditional aspects;

• <initial>, <form>, <field>, <filled>, <option> to process forms;

• <prompt>, <reprompt>, <value> for input operations;

• <prompt>, <audio>, <record>, <reprompt> to deal with multimedia entities;

• <block> to describe the code to be executed;

• <disconnect>, <exit> for the management of the sessions;

• <meta>, <metadata> for metadata management;

122 A. A. Mohammed Saeed, D. Dănciulescu

• <noinput>, <nomatch>, <help> to manage events and actions;

• <subdialog>, <goto>, <return>, <link> for dialog control;

• <object>, <property>, <param>, <script>, <submit>, <transfer>, <log> for server
oriented processing of parameterized queries.

Vxml applications may be of the type uni - or many - document. An application many
- document allows us to define a root document which defines all the entities visible in and
recovered by the documents son. VXML applications are oriented to the following categories:

• Queries - to retrieve information from Web-based infrastructures (like voice portals, web
call centers);

• Transactions - to execute specific transactions with a Web-based back-end database.

Figure 1: A Knowledge database - inheritance and its graph representation

To optimize the development of voice based user interfaces, the following facts should be
understood:

1. A VXML application is a single VoiceXML document, or a set of documents which forms
a conversational finite state machine (CFSM). The root document is loaded firstly and
remains loaded while transitioning over documents belonging to the same application.

2. A session is opened by the user to start the interaction with the VXML interpreter, and
is closed by a request from the user, a document, or the interpreter itself.

Modern Interfaces for Knowledge Representation
and Processing Systems Based on Markup Technologies 123

3. VXML has two types of dialogs: forms and menus. Each dialog has associated one or more
speech and/or DTMF (Dual-Tone Multi-Frequency) grammars.

4. A form defines an interaction that obtains values for a set of variables.

5. Amenu provides the user with some alternative options and follows other dialogs depending
on the selection.

6. A subdialog is like a function call; after interaction returns to the original form.

7. There exist two types of grammars in VXML: machine directed (the form items are executed
in the sequential order) and mixed initiative (the flow has to be directed both by the user
and by the application).

The example described below is a skeleton query type using the voice-based interface when
querying inheritance graphs of knowledge is considered, as [18, 19], proposed for text interfaces.
This model can be extended for the implementation of the interfaces based on voice within
web-based KRP systems.

To demonstrate the basic principles of voice-based interfaces, a simple knowledge database
(described in Fig. 1) is considered. Based on a client-server implementation in Java, a dialog for
the computation of the certitude factor is shown:

p r i va t e Object [] [] b3 = {
{" s1 " , " s2 33" ," a t r (a , 3 , 2) a t r (b , 1 , 7) a t r (c , 8 , 1 4)"} ,
{" s2 " , " s4 " ," a t r (y , 5 , 1 5) a t r (e , 8 , 2 1) "} ,
{" s3 " ," s4 s5 " ," a t r (f , 4 0 , 10) a t r (g , 6 , 2 0) "} ,
{" s4 " ,"" ," a t r (h , 20 , 10) a t r (x , 50 , 30)"} ,
{" s5 " ," s6 " ," a t r (h , 30 , 20) a t r (y , 4 , 3) "} ,
{" s6 " ,"" ," a t r (x , 35 , 40) a t r (a , 4 , 1) "}
} ;

Dialogue : The f i r s t s tep f o r c l i e n t 1
>>> Welcome . Ready f o r you !
>>> Se l e c t your knowledge base : b3
−−− The knowledge base b3 was s e l e c t e d f o r p ro c e s s i ng .
>>> Se l e c t the ob j e c t to i n v e s t i g a t e : s1
−−− The ob j e c t s1 was s e l e c t e d .
>>> Se l e c t the a t t r i b u t e under i n v e s t i g a t i o n : h
−−− Your cho i c e was the a t t r i b u t e h .
Answer : The value o f a t t r i b u t e h o f ob j e c t s1 \\
i s 30 and the c e r t i t ud e f a c t o r i s f c =20.

VXML code :
<prompt>Welcome . Ready f o r you!</prompt>
<prompt count="1">
Se l e c t your knowledge base : <value expr="KnowledgeBase"/>?
</prompt>
// Java s c r i p t Code
<prompt> The knowledge base </prompt>
// Code to p r i n t −−KnowledgeBase−−
<prompt> was s e l e c t e d f o r p ro c e s s i ng . </promt>
<prompt count="2">

124 A. A. Mohammed Saeed, D. Dănciulescu

S e l e c t the ob j e c t to i n v e s t i g a t e : <value expr="Object"/>?
</prompt>
// Java s c r i p t Code
<prompt> The ob j e c t </prompt>
// Code to p r i n t −− Object Name−−
<prompt> was s e l e c t e d . </promt>
<prompt count="3">
Se l e c t the a t t r i b u t e under i n v e s t i g a t i o n : <value expr="Att r ibute "/>?
</prompt>
// Java s c r i p t Code
<prompt> Your cho i c e was the a t t r i b u t e </prompt>
// Code to p r i n t −−Attr ibute−−
<prompt>. </promt>

4 Markup technologies

From the point of view of the process of XML tying - JAVA implemented by JAXB, it is
noticed the existence of two major components [24]: a generator of diagrams and compiler of
diagrams and the process actually involves tying seven actions: the generation of classes; the
compilation of classes; unmarshal (XML documents which satisfy the restrictions in the diagram
source are processed by the JAXB. Also, JAXB lets you transfer XML data from sources other
than the files and XML documents such as the nodes DOM, paintings rows of characters, SAX
sources and so on and so forth); the generation of the shaft into which describes the contents of
an XML document; validation (Unmarshal process involves the validation of the source before
generating shaft into which describes the contents. Where there is a change in the shaft in the
next step can be used the operation JAXB validation to confirm the changes before to transform
the contents into a document XML); the client application may change the XML data represented
by JAXB shaft using the interfaces generated by the compiler JAXB; marshal (the shaft that
describes the contents is converted into the XML document. The content can be validated before
the conversion. A process called "Marshalling" offers a client applications the ability to convert
a Java derived from JAXB in data XML.)

With a force greater than the programming, can be used JAXP technology (Java API for
Processing XML) based on SAX (Simple API for Parsing XML) and DOM (Document Object
Model). During the operation of the "parsing" based on SAX it generates events that notify the
components identified, and Java application must deal with the events of the callback methods
(for the construction of the structure of the database). The operation of parsing DOM build
in the memory a representation tree diagram of the data from the XML document. JAXP
technology allows the transformation of XML documents using XSLT technology (Extensible
Stylesheet Language Transformation).

XMLBeans technology is used to compile the XML layout with obtaining in memory, the
classes, and has been developed in the period 2003-2014 by the Apache Software Foundation to
enable the processing of large structures.

Therefore, for the processing of databases structured knowledge which comply with a dia-
gram and are stored in XML files may be used JAXB technologies facing on the diagram XML
and JAXP facing on the direct rendering of documents XML. JAXP is a good choice for large
knowledge database to be processed in terms of low computational capacity.

The following example shows how a XSLT stylesheet is used to transform a sample data set
into VoiceXML 2.0 format.

Modern Interfaces for Knowledge Representation
and Processing Systems Based on Markup Technologies 125

<?xml ve r s i on="1.0"?>
<phdstud>

<stud>
<pid>06</pid>
<uni>Unive r s i ty o f P i t e s t i </uni>
<phds>Al i Amer Mohameed Saeed</phds>
<year >2017</year>

</stud>
<stud>

<pid>107</pid>
<uni>Unive r s i ty o f Bucharest</uni>
<phds>Radu Mihai</phds>
<year >2017</year>

</stud>
</phdstud>

<vxml ve r s i on="2.0">
<form id="s t a r t ">
<audio>Some PhD students </audio>
<xs l : fo r−each s e l e c t="phd">

<audio>PhD student id i s <x s l : value−o f s e l e c t="pid " /></audio>
<break time="100ms"/>
<audio>Comes from PhDsch.< x s l : value−o f s e l e c t="uni"/></audio>
<break time="100ms"/>
<audio>The PhD name i s <x s l : value−o f s e l e c t="phds" /></audio>
<break time="100ms"/>

<audio>Year o f de f ence i s <x s l : value−o f s e l e c t="year"/></audio>
<break time="100ms"/>

</x s l : fo r−each>
</form>

</vxml>

5 KRP systems in education

According to [16], a KRP system for Artificial Education (AE) should take into consideration
four elements. In AE, the first element, "knowledge would include knowledge of pedagogy (teach-
ing practices and beliefs), curriculum, and knowledge regarding the individual student’s needs,
assessments, evaluating, and more". The second element is connected to problem solving. In
this context, the KRP system should "look at past successful and unsuccessful pedagogies used
with individual student, and it would be able to present instructional material to that specific
student in a way the benefited him or her individually". The last two elements are connected to
developers and administrators, but the mentioned authors did not conclude on smart interfaces
for KRP educational systems. However, they emphasize on Intelligent Tutoring Systems (ITS),
but ITS are "emphasizing those aspects which have relevance to user support, rather than de-
tailed consideration of the merits of pedagogical or student knowledge modelling strategies" as
shown by Hefley & Murray (1993) in [8].

Following Horvitz(1999), an intelligent user interface should consider imprecision and uncer-
tainty aspects during run-time [9]. This is more important in AE, due to the nature of queries

126 A. A. Mohammed Saeed, D. Dănciulescu

formulated by learners. As Salih(2014) mentioned [15], the Natural User Interfaces (NUI) will be
the next generation of user interfaces to improve user experiences. Our proposal is based both
on Artificial Intelligence Techniques to deal with imprecision/uncertainty and natural language
aspects with speech understanding and knowledge restructuring for fast answering systems.

Therefore, any KRP system for education should consider preliminary requirements to un-
derstand the learner’s behaviour, markup models and technologies to implement solutions to
queries given in "approximate" natural language by learners. One KRP system for education
should be able to represent not only pedagogical aspects, but also, different variants of content,
and appropriate behaviour according to the learn initiatives.

Smart interfaces of KRP systems for education are based on Voice-enabled applications to
support e-learning in many ways, making possible the usage of e-learning systems by visually
impaired users. In Web-based e-Learning systems, the output is generated in HTML format. In
order to support Voice type output, one step more is required to translate HTML to VXML.
In the following, only a short example for translating a table is given. Only the VXML code is
shown.

<?xml ve r s i on = ’ ’1.0 ’ ’? >
<vxml ve r s i on = ’ ’2.0 ’ ’ >
. .
<block> The next s t r u c tu r e i s t ab l e 1 </block>
<block> The tab l e name i s </block>
// Code . . .
<block> Row 1 </block>
<block> Column 1 </block>
<block> E [1] [1] </block>
<block> Column 2 </block>
<block> E [1] [2] </block>
<block> Row Ending 1 </block>
<block> Row 2 </block>
<block> Column 1 </block>
<block> E [2] [1] </block>
<block> Column 2 </block>
<block> E [2] [2] </block>
<block> Row Ending 2 </block>
<block> This the ending o f t ab l e 1 </block>
</vxml>

6 Conclusions

This work has analyzed the detailed rules for the description of the information structured
used in context of KRP systems, using markup languages. Some markup technologies based on
Java are considered.

The best choice is a model of the XML, and from the point of view of the java technologies
for the processing of XML documents, it is found that for practical application JAXB (object
interrogation, processing in memory) and JAXP (linear, facing processing on the fragments
identifying and dealing with events) are more appropriate to be used. The effort of JAXB
programming is less and object processing is promoted.

In addition, by Voice XML can be describes the smart interfaces of the KRP systems based
on voice.

Modern Interfaces for Knowledge Representation
and Processing Systems Based on Markup Technologies 127

Bibliography

[1] Angles, R.; Gutierrez, C. (2005); Querying RDF Data from a Graph Database Perspec-
tive, In: Gómez-Pérez A., Euzenat J. (eds) The Semantic Web: Research and Applications.
ESWC 2005, Lecture Notes in Computer Science, vol 3532, Springer, Berlin, Heidelberg,
2005.

[2] Berners-Lee, T. (1989); Information Management: A Proposal, CERN, [Online] Available:
https://www.w3.org/History/199/proposal.html, Accessed on December 20, 2016.

[3] Buraga, S. (2004); Semantic Web. Fundamente şi aplicaţii, Matrix Rom, Bucureşti, 2004.

[4] Coleman, J.; Willis, D. (1997); SGML as a Framework for Digital Preservation and Access,
Commission on Preservation and Access, Washington DC, 1997.

[5] Dănciulescu, D. (2015); Formal Languages Generation in Systems of Knowledge Represen-
tation Based on Stratified Graphs, Informatica, 26(3), 407-417, 2015.

[6] Dănciulescu, D.; Colhon, M.; Grigoraş, G. (2017); Right-Linear Languages Generated in
Systems of Knowledge Representation based on LSG, BRAIN. Broad Research in Artificial
Intelligence and Neuroscience, 8(1), 42-51, 2017.

[7] Fensel, D.; van Harmelen, F.; Horrocks, I.; McGuinness, D.L.; Patel-
Schneider, P.F. (2001); OIL: An Ontology Infrastructure for the Semantic Web,
http://www.cs.man.ac.uk/h̃orrocks/Publications/download/2001/IEEE-IS01.pdf (Last
visited on 9/09/2017).

[8] Hefley, W.E.; Murray, D. (1993); Intelligent User Interfaces, In Proceedings of IUI’93, Or-
lando, Florida, ACM Press, NY, 3-10, 1993.

[9] Horvitz, E. (1999); Principles of Mixed-Initiative User Interfaces, In Proc. of CHI, 159-166.

[10] Kent, R.E. (2000); Conceptual Knowledge Markup Language (CKML): An introduction,
Netnomics 2, 139-169.

[11] Kistner, G.; Nuernberger, Ch. (2014); Developing User Interfaces using SCXML State
charts, NVIDIA, Publication Rights Licensed to ACM, http://phrogz.net, 1-7, 2014.

[12] Meenakshi, A.; Aghila, R.; Suganthi, P.; Kavya, S.(2016); A Knowledge Representation
Technique for Intelligent Storage and Efficient Retrieval using Knowledge based Markup
Language, Indian Journal of Science and Technology, 9(8), 1-8, 2016.

[13] Mohameed Saeed, A.A. (2017); Intelligent Interfaces for Knowledge Representation and
Processing Systems, Proceedings of ICVL 2017, 370-375. 2017.

[14] Negru, V.; Grigoraş, G/; Dănciulescu, D. (2015); Natural Language Agreement in the
Generation Mechanism based on Stratified Graphs, Proceedings of the 7th Balkan Conference
on Informatics Conference (BCI ’15), ACM, New York, NY, USA, Article 36, 1-8, 2015.

[15] Salih, D. (2014); Natural User Interfaces, LM Research Topics in HC,
http://www.cs.bham.ac.uk/, 2014.

[16] Sora, J.C.; Sora, S.A. (2012); Artificial Education: Expert systems used to assist and
support 21st century education, GSTF Journal on Computing (JoC), 2(3), 2012.

128 A. A. Mohammed Saeed, D. Dănciulescu

[17] Sowa, J.F. (2008); Conceptual Graphs, In F. van Harmelen, V. Lifschitz, and B. Porter
(Eds.): Handbook of Knowledge Representation, Elsevier, 213-237, 2008.

[18] Ţăndăreanu, N. (2000); Knowledge Bases with Output, Knowl. Inf. Syst., 2(4), 438-460.

[19] Tăndăreanu, N.(2007); Communication by Voice to Interrogate an Inheritance Based Knowl-
edge System. Research Notes in Artificial Intelligence and Digital Communications, 7th In-
ternational Conference on Artificial Intelligence and Digital Communications, 107, 1-15,
2007.

[20] Vohra, A.; Vohra, D. (2006); Pro XML Development with Java Technology, Apress.

[21] [Online] DAML tools; Available: http://www.daml.org/tools/, Accessed on December 15,
2016.

[22] [Online] DLML; Available: http://co4.inrialpes.fr/xml/dlml/, Accessed on December 15,
2016.

[23] [Online] HTML; Available: https://en.wikipedia.org/wiki/HTML, Accessed on September
15, 2016.

[24] [Online] JAVA XML parsers; Available: http://docs.oracle.com/javase/8/docs/api/index.html,
Accessed on December 15, 2016.

[25] [Online] KIF; Available: http://www-ksl.stanford.edu/knowledge-sharing/kif/, Accessed on
September 15, 2016.

[26] [Online] Ontology Markup Language; Available: http://www.ontologos.org/OML/OML%200.3.htm,
Accessed on December 15, 2016.

[27] [Online] RDF/XML; Available: https://www.w3.org/TR/rdf-syntax-grammar/, Accessed
on December 15, 2016.

[28] [Online] SGML - ISO 8879:1986; Available: https://www.iso.org/obp/ui/#iso:std:iso:8879:
ed-1:v1:en, Accessed on December 15, 2016.

[29] [Online] VXML 2.0; Available: https://www.w3.org/tR/voicexml20/#dml1.4, Accessed on
December 15, 2016.

[30] [Online] W3C (2015); State Chart XML (SCXML): State Machine Notation for Control
Abstraction, Available: https://www.w3.org/TR/scxml/, Accessed on December 15, 2016.

[31] [Online] XML COVER PAGES; Available: http://xml.coverpages.org, Accessed on Decem-
ber 15, 2016.

