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Abstract: This paper presents a novel approach for detecting fault lines in a small
current grounding system using fuzzy reasoning spiking neural P systems. In this
approach, six features of current/voltage signals in a small current grounding system
are analyzed by considering transient and steady components, respectively; a fault
measure is used to quantify the possibility that a line is faulty; information gain
degree is discussed to weight the importance of each of the six features; rough set
theory is applied to reduce the features; and finally a fuzzy reasoning spiking neural
P system is used to construct fault line detection models. Six cases in a small current
grounding system prove the effectiveness of the introduced approach.
Keywords: Membrane computing; P system; spiking neural P systems; fault line
detection; feature analysis; information gain degree; rough set theory

1 Introduction

As a rapidly developing branch of natural computing, membrane computing, initiated by
Păun [3, 12], focuses on the investigations of a computational model, called a membrane system
or a P system, abstracting from the structure and functioning of living cells, as well as from the
way the cells are organized in tissues or high order structures. Numerous variants of P systems
have Turing computing power [5,15] or can solve computationally hard problems in a polynomial
time [16, 26]. Inspired by the information processing principles in a living cell, a P system has
certain characteristics, such as distribution, parallelism and expansibility, which make it suitable
to solve a variety of practical problems [14,46], such as engineering optimization [7,28], languages
generation [12,40] and modeling biological and ecological systems [6].

In recent years, much attention is paid to spiking neural P systems (SN P systems), which
were introduced in 2006 [5, 9] by considering the neurophysiological behavior of neurons send-
ing electrical impulses (spikes) along axons from presynaptic neurons to postsynaptic neurons.
Except for theoretical results [10, 13], SN P systems have been widely used to solve various ap-
plication problems, such as combinatorial and engineering optimization problems [30,38], signal
recognition [2], arithmetic operations [17, 21, 28] and fuzzy knowledge representation [23]. Of a
particular interest is the combination of SN P systems with fuzzy set theory, called fuzzy mem-
brane computing [36], to solve fault diagnosis problems with respect to transformers [16, 42],
transmission lines [8,24,25], traction power supply systems of high-speed railways [39] and metro
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traction systems [10], in electric power systems. In general, there are two kinds of fuzzy reason-
ing spiking neural P systems (FRSN P systems) [36]: fuzzy reasoning spiking neural P system
with real numbers (rFRSN P systems) [16] and fuzzy reasoning spiking neural P systems with
trapezoidal fuzzy numbers (tFRSN P systems) [24].

The present work is motivated by two reasons. On the one hand, the application extension
of FRSN P systems requires further discussions. On the other hand, the fault line detection
in a small current grounding system is a very important problem and its detection accuracy
needs to be enhanced [4, 9, 32, 35]. In China, most of medium-voltage distribution networks are
small current grounding systems. Furthermore, about 70%–80% of the faults in distribution
networks result from single-phase grounding. Therefore, the fault line detection problem with
respect to single-phase grounding in a small current grounding system is a very common type of
fault diagnosis in an electrical power system [1, 15, 30, 31]. Thus, a novel approach for detecting
fault lines in a small current grounding system using FRSN P systems is proposed to enhance
the accuracy. This approach first analyzes six features of current/voltage signals in a small
current grounding system by considering transient and steady components, respectively. Then,
the possibility that a line is faulty is quantified by using a fault measure. Next, information
gain degree is used to weight the importance of each of the six features and rough set theory
is discussed to reduce the features. Finally, FRSN P systems are used to construct fault line
detection models. The effectiveness of the introduced approach is verified by several typical cases
of fault line detection in a small current grounding system.

The organization of this article is as follows. Section 2 describes the fault line detection
problem in a small current grounding system. Section 3 presents the proposed approach in
detail. In Section 4, six typical cases are used to conduct the experiments. Conclusions are
finally drawn in Section 5.

2 Problem description

In this paper, a 110kV/35kV distribution network with 6 feeders is considered. The simplified
model of a distribution network is shown in Fig. 1. When a single-phase-to-ground fault occurs
in the distribution network, any one of the 6 lines, 1–6, or the bus may be the faulty line. If
the fault lasts for a long time, there will be much effect on the safe and stable operation of the
distribution network, and even significant security incidents may happen, therefore, it is required
to take a proper action to deal with the fault so as to restore power supply as soon as possible.
When a line is faulty, the distribution network will generate zero sequence voltage and current.
As usual, there means much difference in phase and amplitude of zero sequence current between
the fault line and normal fault line.

Currently the widely used techniques are that a certain number of features are used to
detect fault lines. There are three main techniques: steady state method, transient method
and information fusion method. The steady state method is to select fault line by extracting
the steady state fault characteristics of the distribution network, such as zero sequence current
amplitude and phase, admittance, harmonic, power [1,15,30,31]. But these fault characteristics
are easily affected by the way of neutral point grounding and different fault grounding methods.
With the development of signal processing technology, the transient component that contains
a lot of fault information is considered to detect the fault line. In [41], the wavelet transform
was used to extract the features from zero sequence current of each feeder and the fault line
detection is realized by comparing the polarity. Wavelet analysis has a good characteristic of
time-frequency localization and can decompose the signal into different frequency bands, so it
is especially suitable for the analysis of non stationary signals and transient signals. In [27], a
neural network was used to detect the fault line detection. In [47], a comprehensive fault line



An Approach for Detecting Fault Lines in a Small Current
Grounding System using Fuzzy Reasoning Spiking Neural P Systems 523

F

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Figure 1: Simplified model of a distribution network
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Figure 2: Framework of fault line detection approach

selection method based on fuzzy theory was discussed. In [14], an information fusion method
based on D-S Evidence Theory was presented to detect fault lines in a small current grounding
system.

3 The proposed approach

The fault line detection approach for a small current grounding system we propose here
consists of four processes: feature analysis, fault measure calculation, feature information fusion
and fault line detection model construction. Fig. 2 shows the framework of this approach. This
paper considers both transient and steady components features of current or voltage signals.
In the process of feature information fusion, the information gain degree is used to weight the
importance of features and rough set theory is applied to reduce the features. A fault line
detection model is constructed by using a fuzzy reasoning spiking neural P systems with real
numbers (rFRSN P systems). In what follows, the processes will be described step by step.

3.1 Feature analysis

When a single-phase-to-ground fault occurs in the distribution network, the steady-state
characteristics are mainly analyzed in the time domain. The fault current in the fault line is
the ground capacitance current with the direction from the bus to the line, or it is the sum of
the capacitance current in other lines with the direction from the line to the bus. The transient
characteristics are analyzed in the frequency domain, including the amplitude, phase and energy
of transient zero sequence current. To intuitively show the features, this study considers an
example of a system, which has a single phase to ground fault at 0.02s, the transition resistance
(R0) is 0.2Ω, 20Ω, 2000Ω, representing the metal grounding, low impedance grounding and high
impedance grounding, respectively. In the sequel, the first four features of steady components
and the last two features of transient components are analyzed by using different methods, due
to space limitations, this paper only gives a simulation diagram that the transition resistance
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(R0) is 0.2Ω.

(1) Zero sequence current analysis: when the neutral non-grounding system has a single
phase grounding fault, the amplitude of the zero sequence current in the fault line equals
the sum of the zero sequence currents in all the normal lines. The direction of the zero
sequence current in the fault line is from the line to the bus and the direction of the zero
sequence current in the normal line is from the bus to the line. Thus, if the amplitude
of the zero sequence current in a line is equal to the sum of the amplitude of the zero
sequence current in other lines, the direction is opposite to the other lines, which indicates
that the line is a fault one. Fig. 3 shows the comparisons of zero sequence current between
normal and fault lines, which refer to the lines in a neutral non-grounding system and a
neutral grounding system, respectively.
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(b) Grounding system with R0 = 0.2Ω

Figure 3: Zero sequence current comparisons between normal and fault lines

(2) Zero-sequence reactive power analysis: the zero sequence reactive power is the product
of the corresponding zero sequence current and voltage. Fig. 4 shows the comparisons of
zero sequence reactive power between normal and fault lines, which refer to the lines in a
neutral non-grounding system and a neutral grounding system by using arc extinction coil,
respectively. In the neutral non-grounding system, the zero sequence reactive component
of the fault line is opposite to the zero sequence reactive component of the normal line,
and its amplitude is bigger than that of the zero sequence reactive component of the
normal line.
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Figure 4: Zero sequence reactive power comparisons between normal and fault lines

(3) Zero sequence admittance analysis: In the neutral non-grounding system, the admittance
angle of the normal line is in the first quadrant of the admittance plane angle, while
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the admittance angle of the fault line is in the third quadrant. In the neutral grounding
system by arc extinction coil, the admittance angles of the normal line and the fault line
are in the first and second quadrant, respectively. Fig. 5 shows the comparisons of zero
sequence admittance angles between normal and fault lines, which refer to the lines in
a neutral non-grounding system and a neutral grounding system by using arc extinction
coil, respectively.
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Figure 5: Zero sequence admittance angle comparisons between normal and fault lines

(4) The fifth harmonic analysis: the zero sequence current in a fault line contains a large
number of odd harmonics, while the arc suppression coil will not greatly affect the mag-
nitude and direction of the harmonic, so the harmonic can be used to detect the line.
With the increase of harmonic frequency, the harmonic content becomes lower, so the
fifth harmonic is usually used to realize fault line detection. Fig. 6 shows the comparisons
of the fifth harmonic between normal and fault lines, which refer to the lines in a neu-
tral non-grounding system and a neutral grounding system by using arc extinction coil,
respectively.
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Figure 6: The fifth harmonic amplitude comparisons between normal and fault lines

(5) Wavelet waveform analysis of zero sequence current : the zero sequence current is de-
composed into four layers by using wavelet transform, and the corresponding wavelet
decomposition waveforms at scale 4 is shown in Fig. 7, where the waveforms in (a)–(f)
are obtained from the neutral unearthed system and the figures (g)–(l) are gained from
the neutral grounding system by using arc extinction coil. The wavelet energy polarity
of the zero sequence current in the fault line is the opposite of the normal line, and the
amplitude is the maximum. Thus, the fault line can be identified by comparing the energy
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amplitude and polarity of the zero sequence current.
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Figure 7: Wavelet waveform comparisons of zero sequence current between normal and fault lines

(6) Transient zero sequence current analysis: the direction and distribution of transient zero
sequence currents shows similar phenomena to those of steady-state zero sequence cur-
rents. Fig. 8 show the comparisons of the products of zero sequence current between
normal and fault lines, which refer to the lines in a neutral non-grounding system and a
neutral grounding system by using arc extinction coil, respectively.
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Figure 8: Comparisons of the products of zero sequence current between normal and fault lines
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The analysis of the features discussed in this section indicates that there exists a difference
between normal and fault lines so that the features can be used to detect the fault line in a small
grounding system.

3.2 Fault measure

Following the feature analysis, a fault measure is discussed to quantify the possibility of a
fault line [5, 33]. This article defines a fault measure as a real variable between 0 and 1. The
smallest and biggest values 0 and 1 indicate that the line is normal and is faulty, respectively.
Suppose that the number of lines in a distribution network is N and the number of fault line
detection methods is H. The fault measure function is constructed by adopting line detection
method h (h = 1, 2, . . . , N) for line k (k = 1, 2, . . . , N) is Xh(k) = Xrh(k)Xah(k), where Xrh(k)
is the relative fault measure function reflecting the difference of the fault measures between one
line and the other lines in the distribution network; and Xah(k) is the reliability fault measure
function reflecting the reliable degree of the fault measure.

As usual, different specific calculation methods are used for different fault features. To
elaborate on the fault measure, we take the zero sequence current as an example. In a small
current grounding system, the absolute values of the magnitudes of the zero sequence current
in the fault line are equal to the sum of the absolute values of the amplitudes of all the normal
lines. For line k, the magnitude of the zero sequence current is |Ik|. If x = |Ik|/

∑N
n=1 |In| is big,

the line tends to a fault line, conversely, the line is inclined to a normal one. The relative fault
measure function of the line is described as follows:

Xr1(k) =


1, x ≥ 0.5;
2N
N−1x−

1
N−1 ,

1
2N < x < 0.5;

0, x ≤ 1
2N .

(1)

About the reliability fault measure function, when a single-phase-to-ground fault occurs in
the system, the amplitudes of the zero sequence current in all lines reach to the maximum. If
x = |Imax|/

∑N
n=1 |In| is big, the fault characteristics of this method are obvious, on the contrary,

they are not obvious. The reliability fault measure function of the line is described as follows:

Xa1(k) =


1, x ≥ 0.5;
10N
5N−6x−

6
5N−6 ,

3
5N < x < 0.5;

0, x ≤ 3
5N .

(2)

3.3 Information gain degree

Information gain degree is introduced to weight the importance of the six types of fault
features in a small current grounding system. Suppose that X is the data for a particular
sample group like the lines in this paper and A is the attribute set for the fault line detection
methods, A = {H1, H2, . . . ,Hm}. The lines are divided into two types: fault and normal ones.
So X = {X1, X2}, where |Xi| is the number of sample instances of class i and |X| is the total
number of sample instances of X.

If H(Xi) is the probability that a sample instance belongs to class i, then H(Xi) = |Xi|/|X|.
Assume that M(X) is the degree of uncertain information about X and it is

∑m
i=1[−H(Xi) log2

H(Xi)], where method H has the characters h1, h2, . . . , hj . In the case of H = hj , Cij is the
number of sample instances of class i and Yj is the total number of sample instances, thus, the
probability H(Xi|H = hj) is Cij/|Yi|, the conditional entropy of H and the classification in-
formation entropy are described as M(X,H = hj) =

∑
j [−H(Xi|H = hj) log2H(Xi|H = hj))],
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and B(X,H) =
∑

j [H(Xi|H = hj)M(X,H = hj)]. The information gain of H is ∆Qh =
M(X)−B(X,H) = M(X)−

∑
j [H(Xi|H = hj)M(X,H = hj)]. The information gain degree is

normalized and the weight of the line detection method is Xmh(k) = ∆Qh/Σ∆Q.

3.4 Rough set theory

In this study, rough set theory is used to reduce the fault features in a small current grounding
system. Rough set theory is a tool to analyze the incomplete and imprecise data [24, 43]. It is
used to simplify the rule reduction to information system. The main ideas of rough set theory
include knowledge reduction and domain reduction, which are described in a very brief way as
follows. Knowledge reduction: suppose that R is an equivalence relation, ind(R) represents the
intersection of all the equivalence relations in R, r ∈ R. If ind(R) = ind(R−{r}), then r can be
omitted, otherwise, r cannot be omitted. Domain reduction: suppose that F = {X1, X2, . . . , Xn}
is a set family, Xj ∈ U (U represents the domain). If

⋂
(F − {Xi}) =

⋂
F , then Xi can be

omitted, domain reduction can delete the same decision rules and redundant attribute values in
an information system so as to obtain the minimal solution.

In this paper, the condition attributes are the fault line detection methods and the decision
attribute decides whether a fault detection method corresponding to a kind of features is correct
or not. Conditional attributes require to be discretized. Thus, this method is used to simplify the
condition attributes and eliminate some unnecessary condition attributes and redundant decision
rules. Finally, the decisive solution is obtained.

3.5 Fault line detection models with rFRSNPS

In this section, a fuzzy reasoning spiking neural P system with real numbers (rFRSNPS) [16]
is used to build the fault line detection model. The definition of rFRSN P system is first
briefly described. Subsequently, the reasoning algorithm and fuzzy production rules of fault line
detection are discussed. Finally, the fault line detection model is presented.

Fuzzy reasoning Spiking neural P systems

The definition and reasoning algorithm of rFRSNPS is described in [16], due to space limi-
tations, this paper no longer gives a specific process.

Fuzzy production rules of fault line detection

The rFRSN P systems contain two types of neurons: proposition neurons and rule neurons,
the rule neurons also express the fuzzy production rules. In this paper, we will describe three
different kinds of fault line selection rules for rFRSN P system.

(1) (General Rules) Ri (CF = ci): IF pj(θj) THEN pk(θk), where pj and pk represent
propositions, ci represents the certainty factor of rule Ri, as a real number belonging to
[0,1], θj and θk are real numbers in [0,1] representing the truth values of pj and pk, the
truth value of pk is calculated as θk = θj ∗ ci

(2) (And Rules) Ri (CF = ci): IF p1(θ1) and . . . and pk−1(θk−1) THEN pk(θk), where p1, . . .
pk are proposition, ci represents the certainty factor of rule Ri, as a real number belonging
to [0,1], θ1, . . . θk are real numbers in [0,1] representing the truth values of p1, . . . pk, the
truth value of pk is calculated as θk = min(θ1, . . . , θk−1) ∗ ci.
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(3) (Or Rules) Ri (CF = ci): IF p1(θ1) or . . . or pk−1(θk−1) THEN pk(θk), where p1, . . . pk
are proposition, ci represents the certainty factor of rule Ri, as a real number belonging
to [0,1], θ1, . . . θk are real numbers in [0,1] representing the truth values of p1, . . . pk, the
truth value of pk is calculated as θk = max(θ1, . . . , θk−1) ∗ ci.

Fault line detection model

Based on the fuzzy production rules of fault line detection discussed above, we can establish the
fault line detection model with rFRSNPS for a line. The model is shown in Fig. 9, where b, c,
d, f and P1 represent the fault line measure values of the zero sequence current phase, the zero
sequence reactive power, the zero sequence admittance amplitude, the transient zero sequence
current and fused fault measure, respectively. The rFRSNPS for fault line detection is described
as follows:

Π1 = (O, σ1, σ2, . . . , σ18, syn, in, out)

where

(1) O={a} is the singleton alphabet (a is called spike);

(2) σ1, . . . , σ11 are proposition neurons corresponding to the propositions with fuzzy truth
values θ1, . . . , θ11;

(3) σ12, . . . , σ18 are rule neurons, where σ12, σ15 are general rule neurons; σ16, σ17 are and
rule neurons; σ18 are or rule neurons;

(4) syn = {(1, 12) , (2, 13), (3, 14), (4, 15), (5, 16), (5, 17), (6, 16), (7, 17), (8, 16), (8, 17),
(9, 18), (10, 18), (12, 5), (13, 6), (14, 7), (15, 8), (16, 9), (17, 10), (18, 11),};

(5) in={σ1, . . . , σ4};

(6) out={σ11}.

4 Case studies

The distribution network system shown in Fig. 1 is simulated on MATLAB/Simulink to
obtain training and testing samples for verifying the fault line detection. The transformer ratio
is 110kV/35kV. The simulation time is 0.2s. The lines length are 10km, 15km, 20km, 28km, 35km,
50km, respectively, the positive sequence parameters of line are 0.17ohms/km, 1.21mH/km and
36.6+j172F/km, the zero sequence parameters of line are 0.23ohms, 5.48mH/km and 6pF/km.
In the neutral ungrounded system, the testing samples are considered for several values of fault
initial phase(0, 45 and 90 degrees), fault location(10%, 50% and 90% of lines 1 to 6) and transition
resistance(0.2, 20 and 2000 ohms).

In the process of the simulation experiment, we collect 162 features from each of lines 1 to 6
and totally 972 zero sequence signal features as data sets. Next, the fault line measure values of
the zero sequence current amplitude, the zero sequence current phase, the zero sequence reactive
power, the zero sequence admittance amplitude, the wavelet energy of zero sequence current and
the transient zero sequence current can be calculated by using the zero sequence signal. In what
follows, six cases in the small current grounding system are used to test the introduced approach.
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b
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d

f

Figure 9: A certain line of fault line selection model with rFRSNPS

Case 1 : single-phase-to-ground fault occurring in line 1: initial phase is 90 degrees; the fault
is located at 90% of the line; transition resistance is 20 ohms.

Table 1 gives fault measure values of zero sequence current signals in lines 1–6. Then, the
values between 0∼0.3, 0.3∼0.7 and 0.7∼1 are discretized as 0, 1, and 2, respectively. The
results are shown in Table 2. Next, Eqs. subsection 3.3 are used to compute the weights of
the six feature analysis methods and the results are 0.4833, 0.6500, 0.6500, 0.4833, 0.6500 and
0.6500, respectively. Subsequently, rough set theory is applied to reduce the condition attributes
consisting of the features shown in Table 1. The reduced result is (b∧f∧(c∨d)), where b and f
are the core attributes. Finally, the reasoning algorithm described above and fault line detection
model with rFRSNPS are used to obtain the detection result. The detailed steps are described
as follows:

Step 1: g = 0, θ0 = (0.9583, 0.9667, 0.6467, 0.9439, 0, 0, 0, 0, 0, 0, 0, )T ,
C = diag(0.6500, 0.6500, 0.4833, 0.6500, 1, 1, 1),δ0 = 0.

D1 =

[
A1 0
0 1

]
11×7

D2 =

0 0
0 A2

0 0


11×7

D3 =

[
0 0
0 A3

]
11×7

ET =

[
0

B1

]
11×7

A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


4×4

A2 =


1 1 0
1 0 0
0 1 0
1 1 0


4×3

A3 =

0 1
0 1
0 0


3×2

B1 =



0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


7×7

Step 2: The firing condition of proposition neuron is satisfied and there is a postsynaptic
rule neuron, so the proposition neuron fires and transmits a spike to the next rule neuron by the
directed arc.

Step 3: δg+1 = (DT
1⊗θg) +(DT

2⊕θg) +(DT
3�θg), δ1 = (0.9583, 0.9667, 0.6467, 0.9439, 0, 0, 0)T .

Step 4: δ1 6= 0. The reasoning algorithm continues.
Step 5: g = 1.
Step 6: θg = ET � (D⊗ δg), θ1 = (0, 0, 0, 0, 0.6229, 0.6284, 0.3126, 0.6135, 0, 0, 0)T .
Step 7: δg+1 = (DT

1 ⊗ θg) +(DT
2 ⊕ θg) +(DT

3 � θg), δ2 = (0, 0, 0, 0, 0.6135, 0.3126, 0)T .
Step 8: δ2 6= 0. The reasoning algorithm continues.
Step 9: g = 2.
Step 10: θg = ET � (D⊗ δg), θ2 = (0, 0, 0, 0, 0, 0, 0, 0, 0.6135, 0.3126, 0)T .
Step 11: δg+1 = (DT

1 ⊗ θg) +(DT
2 ⊕ θg) +(DT

3 � θg), δ3 = (0, 0, 0, 0, 0, 0, 0.6135)T .
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Table 1: Fault measure values of zero sequence current signals in lines 1–6,
where CA, CP, RP, AA, WE and TC represent current amplitude, current phase, reactive power,
admittance amplitude, wavelet energy and transient current, respectively.

line CA CP RP AA WE TC

1 0.4371 0.9583 0.9667 0.6467 0.9182 0.9439

2 0.0675 0.0167 0.4234 0.3175 0.0483 0.3203

3 0.0945 0.1083 0.1092 0.0945 0.2531 0.0000

4 0.0506 0.3917 0.0823 0.0506 0.0658 0.0000

5 0.1182 0.1518 0.3167 0.3182 0.2146 0.0186

6 0.3691 0.2417 0.2631 0.1694 0.0731 0.3034

Table 2: Discretized fault measure values,
where CA, CP, RP, AA, WE and TC represent current amplitude, current phase, reactive power,
admittance amplitude, wavelet energy and transient current, respectively.

line CA CP RP AA WE TC

1 1 2 2 1 2 2

2 0 0 1 1 0 1

3 0 0 0 0 0 0

4 0 1 0 0 0 0

5 0 0 1 1 0 0

6 1 0 0 0 0 1

Step 12: δ3 6= 0. The reasoning algorithm continues.
Step 13: g = 3.
Step 14: θg = ET � (D⊗ δg), θ3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6135)T .
Step 15: δg+1 = (DT

1 ⊗ θg) +(DT
2 ⊕ θg) +(DT

3 � θg), δ4 = (0, 0, 0, 0, 0, 0, 0)T .
Step 16: δ4 = 0. The reasoning algorithm ends. The reasoning result can be obtained from

output neuron P1. The pulse value of the spike in P1 is 0.6135(> 0.5). The rest may be inferred
in the same way. The reasoning results of the other five lines can also be obtained and the pulse
values of the spike in P2 to P6 are 0.0109, 0, 0, 0.0121, 0.1571(< 0.2), respectively. So line 1 is
the fault line.

Case 2 : single-phase-to-ground fault occurring in line 2: initial phase is 90 degrees; the fault
is located at 90% of the line; transition resistance is 20 ohms.

Similar to Case 1, the weights of the six feature analysis methods are 0.4833, 0.6500, 0.6500,
0.4971, 0.6500 and 0.6500, respectively. The reduced result is (c∧f∧(b∨d)), where c and f are
the core attributes. The initial parameter matrices of rFRSNPS for fault line detection are as
follows:

θ0 = (0.9252, 0.9321, 0.7172, 0.9986, 0, 0, 0, 0, 0, 0, 0)T ,
C = diag(0.6500, 0.6500, 0.4971, 0.6500, 1, 1, 1), δ0 = 0.
According to the reasoning algorithm, we can get:
θ1 = (0, 0, 0, 0, 0.6014, 0.6059, 0.3565, 0.6491, 0, 0, 0)T ,
θ2 = (0, 0, 0, 0, 0, 0, 0, 0, 0.6014, 0.3565, 0)T ,
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θ3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6014)T , and δ4 = 0.
So, the pulse value of the spike in P2 is 0.6014 (> 0.5). The pulse values of the spike in P1,

P3, P4, P5 and P6 are 0.1109, 0.0251, 0.0459, 0 and 0.0241 (< 0.2), respectively. Thus, line 2 is
the fault line.

Case 3 : single-phase-to-ground fault occurring in line 3: initial phase is 90 degrees; the fault
is located at 90% of the line; transition resistance is 2000 ohms.

Similarly, the weights of the six feature analysis methods are 0.1909, 0.6500, 0.6500, 0.4833,
0.6500 and 0.6500, respectively. The reduced result is (b∧c∧(d∨e∨f)), where b and c are the
core attributes; e is the fault measure value of the wavelet energy of zero sequence current. The
initial parameter matrices of the rFRSNPS for fault line selection are as follows:

θ0 = (0.9167, 0.8723, 0.6842, 0.5974, 0.8783, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,
C = diag(0.6500, 0.6500, 0.4833, 0.6500, 0.6500, 1, 1, 1, 1), δ0 = 0.
According to the reasoning algorithm, we can get:
θ1 = (0, 0, 0, 0, 0, 0.5959, 0.5670, 0.3307, 0.3883, 0.5709, 0, 0, 0, 0)T ,
θ2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.3307, 0.3883, 0.5670, 0)T ,
θ3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5670)T , and δ4 = 0.
Thus, the pulse value of the spike in P3 is 0.5670 (> 0.5). The pulse values of the spike in

P1, P2, P4, P5 and P6 are 0.0705, 0.1308, 0, 0.0090 and 0.1588 (< 0.2), respectively. So line 3 is
the fault line.

Case 4 : single-phase-to-ground fault occurring in line 4: initial phase is 0 degrees; the fault
is located at 90% of the line; transition resistance is 2000 ohms.

The weights of the six feature analysis methods are 0.1909, 0.6500, 0.6500, 0.4971, 0.6500,
0.6500. The reduced result is (b∧f∧(c∨d)), where b and f are the core attributes. The initial
parameter matrices of the rFRSNPS for fault line selection are as follows:

θ0 = (0.8918, 0.8816, 0.5999, 0.8871, 0, 0, 0, 0, 0, 0, 0)T ,
C = diag(0.6500, 0.6500, 0.4971, 0.6500, 1, 1, 1), δ0 = 0.
According to the reasoning algorithm, we can get:
θ1 = (0, 0, 0, 0, 0.5797, 0.5730, 0.2982, 0.5766, 0, 0, 0)T ,
θ2 = (0, 0, 0, 0, 0, 0, 0, 0, 0.5730, 0.2982, 0)T ,
θ3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5730)T , and δ4 = 0.
So the pulse value of the spike in P4 is 0.5730(> 0.5). The pulse values of the spike in P1,

P2, P3, P5 and P6 are 0.0644, 0.0203, 0.1860, 0.0164 and 0.0005 (< 0.2), respectively. Thus, line
4 is the fault line.

Case 5 : single-phase-to-ground fault occurring in line 5: initial phase is 0 degrees; the fault
is located at 50% of the line; transition resistance is 20 ohms.

The weights of the six feature analysis methods are 0.4833, 0.6500, 0.6500, 0.4833, 0.6500,
0.6500. The reduced result is (f∧e∧(b∨c)∧(c∨d)), where f and e are the core attributes. The
initial parameter matrices of the rFRSNPS for fault line selection are as follows:

θ0 = (0.8866, 0.9167, 0.6879, 0.9336, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,
C = diag(0.6500, 0.6500, 0.4833, 0.6500, 0.6500, 1, 1, 1, 1)), δ0 = 0.
According to the reasoning algorithm, we can get:
θ1 = (0, 0, 0, 0, 0, 0.5763, 0.5959, 0.3325, 0.6069, 0.6500, 0, 0, 0, 0)T ,
θ2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5764, 0.3325, 0.3325, 0)T ,
θ3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5764)T , and δ4 = 0.
So the pulse value of the spike in P5 is 0.5730 (> 0.5). The pulse values of the spike in P1,

P2, P3, P4 and P6 are 0.0283, 0, 0.1528, 0 and 0.0664 (< 0.2), respectively. Thus, line 5 is the
fault line.

Case 6 : single-phase-to-ground fault occurring in line 6: initial phase is 0 degrees; the fault
is located at 10% of the line; transition resistance is 20 ohms.
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The weights of the six feature analysis methods are 0.4833, 0.6500, 0.6500, 0.4833, 0.6500,
0.6500. The reduced result is (b∧c∧f∧(e∨d)), where b, c and f are the core attributes. The initial
parameter matrices of the rFRSNPS for fault line selection are as follows:

θ0 = (0.9284, 0.8987, 0.5847, 0.9312, 0.9021, 0, 0, 0, 0, 0, 0, 0, 0)T ,
C = diag(0.6500, 0.6500, 0.4833, 0.6500, 0.6500, 1, 1, 1, 1)), δ0 = 0.
According to the reasoning algorithm, we can get:
θ1 = (0, 0, 0, 0, 0, 0.6035, 0.5842, 0.2826, 0.6053, 0.5864, 0, 0, 0)T ,
θ2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2826, 0.5842, 0)T ,
θ3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5842)T , and δ4 = 0.
So the pulse value of the spike in P6 is 0.5842 (> 0.5). The pulse values of the spike in P1,

P2, P3, P4 and P5 are 0.1083, 0.0613, 0, 0.0328 and 0.0871 (< 0.2), respectively. Thus, line 6 is
the fault line.

The experimental results of the six cases in a small grounding system indicate that the
proposed fault line detection approach is not affected by fault locations, fault resistance and
fault closing angles.

5 Conclusions

In this paper, a novel approach is introduced by fuzzy reasoning spiking neural P systems
to detect fault lines in a small current grounding system. The feature analysis is performed on
steady and transient components of zero sequence current of a small current grounding system.
Steady state features consist of zero sequence current signal amplitudes, zero-sequence reactive
power, zero sequence admittance and the fifth harmonic. Transient features are composed of
wavelet energy of zero sequence current and transient zero sequence current signal amplitudes.
Experiments conducted on several cases of a distribution network system verify the feasibility
and correctness of the presented approach. Future work will focus on the improvement of the
fault line detection accuracy and the reliability of results. Following this work, micro grids and
smart grids will be also considered in the future study.
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