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Abstract: Trajectory tracking control strategy and algorithm for the tracked vehicle
moving on the seafloor has aroused much concerns due to the commonly occurred se-
rious slip and trajectory deviation caused by the seafloor extremely soft and cohesive
sediment. An improved multi-body dynamic model of a seafloor tracked vehicle (STV)
has been established in a simulation code RecurDyn/Track. A particular terrame-
chanics model with a dynamic shear displacement expression for the vehicle-sediment
interaction has been built and integrated into the multi-body dynamic model. The
collaborative simulation between the mechanical multi-body dynamic model in Recur-
Dyn/Track and the control model in MATLAB/Simulink has been achieved. Different
control algorithms performances including a PID control, a fuzzy control and a neu-
ral control, have been compared and proved the traditional or individual intelligent
controls are not particularly suitable for the tracked vehicle on the seafloor. Conse-
quently, an adaptive neural-fuzzy inference system (ANFIS) control algorithm with
hybrid learning method for parameter learning which is an integrated control method
combined with the fuzzy and neural control, has been adopted and designed. A series
of collaborative simulations have been performed and proved the ANFIS algorithm
can achieve a better trajectory tracking control performance for the STV as its tra-
jectory deviation can be maintained within a permissible range.
Keywords: seafloor tracked vehicle, multi-body dynamic model, adaptive neural-
fuzzy inference system (ANFIS), collaborative simulation, trajectory tracking control.

1 Introduction

Tracked vehicles are widely used in the deep seafloor engineering fields, such as seafloor
exploration, seafloor cable laying and installation, seafloor dredging, seafloor mineral resources
exploitation, etc. The deep seafloor extremely soft and cohesive sediment is completely different
from land-surface soils, which makes the tracked vehicle more likely to be involved in serious
slip, large sinkage and motion trajectory deviation. Its locomotion performance and control
characteristics directly affect the continuous operation performance and operation safety for the
tracked vehicle on the seafloor.

Influenced by the seafloor complex and changeable environmental loads, it is particularly
difficult to master and evaluate the mobility and locomotion of the seafloor tracked vehicle,
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Sup et al. adopted a new technology based on Euler parameters for evaluating the dynamic
properties of a tracked vehicle on seafloor [13] and further put forward a subsystem synthesis
method to analyse a multi-body model of a tracked vehicle [15]. Kim et al. researched the
complicated dynamics of an articulated tracked vehicle crawling on the seafloor inclined and
undulating terrain [14]; furthermore the effects of the buoyancy position layout on the dynamics
of the vehicle were analysed [16]. Li et al. built a virtual prototype of a seafloor tracked mining
vehicle and conducted simulations to estimate the vehicle’s locomotion and trafficability [17]. Li
et al. studied the effect of the grouser height of a seafloor tracked mining vehicle on its tractive
performance through an established relationship between the total driving force and the slip of
the mining vehicle [18]. Dai et al. developed new multi-body dynamic models for three types of
seafloor tracked vehicles and performed simulations to evaluate their locomotion and trafficability
performances [5–7]; besides, the complex integrated dynamic performances for seafloor tracked
vehicles connecting to pipeline systems and surface ships were investigated and evaluated [8, 9].

To control the locomotion state and trajectory of the tracked vehicle on the seafloor, Herzog
et al. established an automatic hydraulic drive mode with slip control of the driving track for
a seafloor tracked vehicle; meanwhile an experimental system for the slip control development
along with the logic of the automatic driving model was presented [12]. Yeu et al. proposed
a path tracking method for tracked vehicle on the seafloor with a vector pursuit algorithm to
make the vehicle’s motion following the specified path [28]. Yeu et al. further based on the
kinematics of the seafloor tracked mining vehicle to propose two navigation algorithms, known
as dead-reckoning and extended Kalman filter [29]. Yoon et al. used the indirect Kalman filter
method with the inner measuring sensors to underwater localization of a seafloor tracked mining
vehicle [30]. Zhang et al. presented a control method for a straight-line path tracking of a
seabed mining vehicle based on the ANFIS control; however only a single straight-line path was
tracked without comparisons to other control methods [19]. Han et al. proposed a PID control
algorithm and achieved an anticipated goal for a seafloor tracked miner moving along a desired
path [10, 11]. Wang et al. presented a fuzzy and a predictive controller, further the efficiency
of the control method was verified by the computer simulation and experimental results [24]. Li
et al. built a hydraulic system model of a seafloor self-propelled tracked mining vehicle, and its
kinematic control by a fuzzy algorithm was discussed [20]. Besides, various path tracking control
method researches for vehicles or robots have been conducted. Cui et al. investigated a trajectory
tracking problem for a fully actuated autonomous underwater vehicle (AUV), and two neural
networks (NNs) were integrated into an adaptive control design, the robustness and effectiveness
of the proposed control method were tested and validated through extensive numerical simulation
results [4]. Sokolov et al. presented a neuro-evolution approach for a crawler robot motion that
can autonomously solve the sequences of the navigation and flipper control tasks to overcome
obstacles [23]. Bozic et al. based on a combination of neural networks and genetic algorithm to
intelligent modelling and optimization of energy usage for a wheel-legged (Wheg) robot running;
simulation of neuro-fuzzy control system was developed for minimization of energy usage during
the Wheg’s running [2]. Chen et al. proposed a robust adaptive position/force control algorithm
to track the desired posture and force in opening a door for a mobile robot manipulator, and
co-simulation between MATLAB and RecurDyn were performed to verify the dynamic model
and control method [3]. Barai et al. proposed a two-degree-of-freedom fuzzy controller for foot
trajectory tracking control of a hydraulically actuated hexapod robot, and the fuzzy pre-filter was
designed by a genetic algorithm (GA) based optimization [1]. Wang et al. developed an adaptive
position tracking system and a force control strategy for a non-holonomic mobile manipulator
robot, which combined the merits of Recurrent Fuzzy Wavelet Neural Networks (RFWNNs), and
the simulation and experimental results verified the effectiveness and robustness of the proposed
method [25]. Widyotriatmo et al. proposed a control method for a team of multiple mobile
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robots, the individual mobile robots tracked the assigned trajectories and also should to collision
among the mobile robots by the artificial potential field algorithm [26]. Ngo et al. developed a
robust adaptive self-organizing control system based on a novel wavelet fuzzy cerebellar model
articulation controller for a robot manipulator, and verified its effectiveness through simulation
and experimental results [21,22].

However, until now, it still remains typical problems need to be further resolved, an opti-
mized trajectory tracking control strategy for the tracked vehicle on the seafloor has not yet been
designed; furthermore, a collaborative model with real-time information interactions between the
mechanical-control systems has not yet been achieved, so the trajectory tracking control perfor-
mance and accuracy can not be evaluated and optimized. As it is costly and extremely difficult to
perform seafloor in-situ tests, the collaborative simulation for the combined mechanical-control
systems is an effective way. An optimized trajectory tracking control strategy and a mechanical-
control systems collaborative simulation research were conducted in the paper.

2 Multi-body dynamic model of a STV

The dynamic simulation code RecurDyn/Track, based on a relative coordinate system and a
recursive algorithm relative, was adopted to establish an improved multi-body dynamic model
of a STV as shown in Fig. 1. Table 1 gives its main structural parameters.

Figure 1: A 3D improved multi-body dynamic model of a STV

A user-written subroutine for characterizing the particular terramechanics model of the
seafloor sediment was developed in the C language in the Visual Studio.Net environment and then
integrated into the RecurDyn/Track environment. Meanwhile the dynamic processes between
the track-sediment interactions were taken into account. Through laboratory simulant experi-
ments as shown in Fig. 2, a pressure-sinkage relationship and a shear stress-shear displacement
relationship between the track-sediment interactions have been obtained.

The normal force Fni acting on each track link ith element can computed by multiplying the
pressure with area of each track link as [27]:

Fni = pxi ·∆Ai =

[(
kc
b

+ kϕ

)
· (∆zi)n

]
·∆Ai (1)
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Table 1: Structural parameters of the STV

Parameters Values
Total weight underwater (tons) 2.35

Overall dimension (m): Length × width × height 2.3×1.6×1.2
Track contact length (m) 1.6

Track width (m) 0.36
Distance between centre lines of tracks (m) 1.2

Track pitch (m) 0.15
Grouser height (m) 0.15

Diameter of road wheel (m) 0.04
Number of road wheel per track 7
Diameter of support roller (m) 0.04

Number of support roller per track 5

Figure 2: Laboratory experimental system for simulant track-sediment interaction mechanics

Where pxi is the normal pressure, ∆Ai is the area of each tack link, b is the width of track
link, kc is the sediment cohesion deformation modulus, kϕ is the sediment friction deformation
modulus, ∆zi is the sinkage, n is the sediment deformation exponent.

The longitudinal shear force Flongi is computed by multiplying shear stress with area of each
track link:

Flongi = sgn (jxi) τxi ·∆A

= sgn (jxi) τmax ·Kr ·
{

1 +

[
1

Kr(1− e−1)
− 1

]
e1−jxi/Kω

}(
1− e−jxi/Kω

)
·∆A

(2)

Where "sgn" is the signum function, jxi is the dynamic longitudinal shear displacement, τmax

is the maximum shear stress, Kr is the ratio of the residual shear stress τres to τmax, and Kω is
the shear displacement when τmax occurs.

The dynamic longitudinal shear displacement can be expressed as a differential equation:

d

dt
jxi (xi, t) +

rsωs (t)

xi
· jxi (xi, t) = rsωs (t)− vx (t) (3)

Where rs and ωs (t) are the radius and angular velocity of the vehicle’s sprocket, xi and vx(t)
represent the distance and actual velocity of the centre of each track link.

Similarly, the lateral shear force Flati acting on each track link is computed as:
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Flati = −sgn (jyi) τxi ·∆A

= −sgn (jyi) τmax ·Kr ·
{

1 +

[
1

Kr(1− e−1)
− 1

]
e1−jyi/Kω

}(
1− e−jyi/Kω

)
·∆A

(4)

Where jyi is the dynamic lateral shear displacement.
While the dynamic lateral shear displacement as be expressed as:

d

dt
jyi (xi, t) +

rsωs (t)

xi
jyi (xi, t) = vyi (t) (5)

Where vyi represent actual lateral velocity of the centre of each track link.
Fig. 3 presents a group of turning simulations trajectories of the STV with different turning

velocity ratios (TVRs). The input velocity for the inner track was set to 0.5 m/s, while, the
input velocities for the outer track were set to 0.6 m/s, 0.65 m/s and 0.7 m/s, respectively.
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Figure 3: Simulation trajectories of the STV with different turning velocity ratios 
 

   It can be seen with the increase although a small value of the turning velocity ratio, the turning 
radius will increase obviously. According to the requirement of the turning velocity ratio for the STV 
that should not exceed 1.4, the minimum turning radius for the STV is about 12 m, which is much 

Figure 3: Simulation trajectories of the STV with different turning velocity ratios

It can be seen with the increase although a small value of the turning velocity ratio, the
turning radius will increase obviously. According to the requirement of the turning velocity ratio
for the STV that should not exceed 1.4, the minimum turning radius for the STV is about 12 m,
which is much larger than that on land-surface soft soil and also much larger than the theoretical
computational turning radius. Fig.4 presents the slips of the inner and outer tracks when the
TVR is only 1.2.

It can be observed a serious slip condition occurred for the outer track of the STV in spite of
a low TVR, and further exhibited a serious slip commonly occurred on the seafloor will result in
a much larger turning radius for the tracked vehicle compared to move on the land-surface soft
soils.

3 Trajectory tracking collaborative control simulations for a STV

A control design code MATLAB/Simulink was adopted to establish different control models
for the STV. An interface toolkit RecurDyn/Control was designed to realize the information
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Figure 4: Slips of the left and right tracks of the STV  

   It can be observed a serious slip condition occurred for the outer track of the STV in spite of a 
low TVR, and further exhibited a serious slip commonly occurred on the seafloor will result in a 
much larger turning radius for the tracked vehicle compared to move on the land-surface soft soils.     

3  Trajectory tracking collaborative control simulations for a STV 

   A control design code MATLAB/Simulink was adopted to establish different control models for 
the STV. An interface toolkit RecurDyn/Control was designed to realize the information 
communication between the control system model and mechanical dynamic model. The 
MATLAB/Simulink was taken as the main interface. The plant input and plant output of the 
mechanical dynamic model were set, meanwhile, a M file for exporting the mechanical dynamic 
model was compiled. 

3.1  Comparisons of different control algorithms 

   A RecurDyn/Track plant block representing a mechanical dynamic model of the STV was 
created in the MATLAB/Simulink; then the mechanical-control collaborative simulation can be 
achieved. The theoretical input velocity for the STV is 0.6 m/s in the collaborative simulation. 
Several different control methods including a PID control, a fuzzy logic control and a neural network 
control were performed and compared. Fig.5 shows the co-simulation model interface of a PID 
control with mechanical dynamic model, and corresponding simulation results with and without 
external jamming signal for the input velocity also compared. It can be seen the PID control is 
insensitive to the external disturbance.     

Figure 4: Slips of the left and right tracks of the STV

communication between the control system model and mechanical dynamic model. The MAT-
LAB/Simulink was taken as the main interface. The plant input and plant output of the me-
chanical dynamic model were set, while, a M file for exporting the mechanical dynamic model
was compiled.

3.1 Comparisons of different control algorithms

A RecurDyn/Track plant block representing a mechanical dynamic model of the STV was
created in the MATLAB/Simulink; then the mechanical-control collaborative simulation can be
achieved. The theoretical input velocity for the STV is 0.6 m/s in the collaborative simulation.
Several different control methods including a PID control, a fuzzy logic control and a neural
network control were performed and compared. Fig.5 shows the co-simulation model interface of
a PID control with mechanical dynamic model, and corresponding simulation results with and
without external jamming signal for the input velocity also compared. It can be seen the PID
control is insensitive to the external disturbance.
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Figure 5: Co-simulation model interface and results of PID control with dynamic model  

 
   Fig. 6 shows a co-simulation model interface of an adaptive fuzzy logic control model with 
mechanical dynamic model, and the simulation results with and without external jamming signal 
compared. The inputs for the fuzzy logic controller were velocity error (E) and velocity error 
derivative (EC), which were the difference between the target velocity and ideal velocity. The output 
was the velocity compensation (U). Compared with the PID control algorithm, the fuzzy logic 
algorithm has a stronger anti-disturbance ability and better robustness, which was more suitable for 
the STV motion control. Nevertheless, the control precision of the conventional fuzzy logic is not 
high.  
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   Fig.7 shows a co-simulation model interface of a BP neural network algorithm control model 
with dynamic model, and simulation results with and without external jamming signal compared. 
The neural network has the features of self-adapting and self-learning; however, it is weak in 
expressing the rule knowledge. It can be seen the neural network algorithm has a weak 
anti-disturbance ability compared to a fuzzy control method. 

Figure 5: Co-simulation model interface and results of PID control with dynamic model

Fig. 6 shows a co-simulation model interface of an adaptive fuzzy logic control model with
mechanical dynamic model, and the simulation results with and without external jamming signal
compared. The inputs for the fuzzy logic controller were velocity error (E) and velocity error
derivative (EC), which were the difference between the target velocity and ideal velocity. The
output was the velocity compensation (U). Compared with the PID control algorithm, the fuzzy
logic algorithm has a stronger anti-disturbance ability and better robustness, which was more
suitable for the STV motion control. Nevertheless, the control precision of the conventional fuzzy
logic is not high.
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Fig.7 shows a co-simulation model interface of a BP neural network algorithm control model
with dynamic model, and simulation results with and without external jamming signal compared.
The neural network has the features of self-adapting and self-learning; however, it is weak in
expressing the rule knowledge. As it can be seen the neural network algorithm has a weak
anti-disturbance ability compared to a fuzzy control method. 
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   In order to overcome the shortcomings of a single fuzzy control or a single neural control, a 
Fuzzy-Neural control method that incorporates the fuzzy control and the neural control was adopted 
and designed. The fuzzy Takagi-Sugeno (T-S) model that is more simple for calculation and better 
for mathematical analysis, was combined with an adaptive neural control systems, then an Adaptive 
Neural-Fuzzy Inference System (ANFIS) was presented for controlling the STV motion state in the 
paper. The critical step in this ANFIS architecture is to realize the self-learning and adaptive of the 
control parameter. Hybrid learning algorithm, namely, a combination of least-squares estimation and 
back-propagation, was developed for the parameter learning of the membership function. 

 The simulation model interface of the ANFIS collaborated with the dynamic model for the STV 
was presented in Fig.8. It can be seen a desirable control effect can be obtained by using this control 
scheme. However, this hybrid algorithm method required more computation and analysis. 
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3.2   Trajectory tracking collaborative control simulations and comparisons 

   Actually, mechanics properties of the seafloor sediment are always uneven distribution, which 
will cause the differences of the shear forces and traction forces under two tracks. As a result, a 
turning moment will be generated, and make the STV move deviate from its predetermined 
straight-line and circle trajectory. The shear strengths under the left track were set to 3.0 kPa and 4.0 
kPa respectively, while the shear strength under the right track was set to a constant value 5 kPa. 
Fig.9 shows the simulation trajectories of the STV under these two conditions. While the green 
dashed lines both in Fig.9 and Fig.10 represent the predetermined straight-line paths. It can be seen 
the actual motion trajectories will deviate from its predetermined straight-line trajectory due to the 
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In order to overcome the shortcomings of a single fuzzy control or a single neural control,
a Fuzzy-Neural control method that incorporates the fuzzy control and the neural control was
adopted and designed. The fuzzy Takagi-Sugeno (T-S) model that is more simple for calculation
and better for mathematical analysis, was combined with an adaptive neural control systems,
then an Adaptive Neural-Fuzzy Inference System (ANFIS) was presented for controlling the
STV motion state in the paper. The critical step in this ANFIS architecture is to realize the
self-learning and adaptive of the control parameter. Hybrid learning algorithm, namely, a com-
bination of least-squares estimation and back-propagation, was developed for the parameter
learning of the membership function.

The simulation model interface of the ANFIS collaborated with the dynamic model for the
STV was presented in Fig. 8. It can be seen a desirable control effect can be obtained by using
this control scheme. However, this hybrid algorithm method required more computation and
analysis.

3.2 Trajectory tracking collaborative control simulations and comparisons

Actually, mechanics properties of the seafloor sediment are always uneven distribution, which
will cause the differences of the shear forces and traction forces under two tracks. As a result,
a turning moment will be generated, and make the STV move deviate from its predetermined
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Straight-line motion trajectory control simulations comparisons between different controls
The above used fuzzy logic control, neural control and ANFIS control were carried out re-

spectively for the trajectory control as shown in Fig. 11. It can be seen obviously that with the
ANFIS control, the trajectory deviation is the minimum; when the longitudinal displacement is
about 16 m, its lateral trajectory deviation is just about 0.01 m, which indicate the ANFIS con-
trol has a better effect for the STV compared to other control methods. If without an optimized
or proper control for the STV, its lateral trajectory deviation will continuously enlarge along
with its longitudinal motion.
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Figure 11: Combined path co-simulation model interface of the ANFIS control model with
dynamic model
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A predetermined combined path including straight-line and turning paths was set for tracking
simulation. The input velocity of the STV was set to 0.5 m/s; the turning velocity ratio was
set to 1.2. The straight-line and turning motions time were set to 20 s and 90 s, respectively.
The motion trajectories simulations between the fuzzy logic control, neural network control and
ANFIS, were conducted and compared relative to the predetermined path in Fig. 12.

It can be seen that with the ANFIS control, the trajectory deviation for the STV relative to its
predetermined path was the minimum compared to other control methods. For above one round
of the predetermined path tracking, the maximum trajectory deviation under ANFIS control
can be maintained around 0.5 m within the allowable range of -1 m to 1m. It can be predicted
that with the continuous motions of the STV along with more rounds of above predetermined
combined paths, the control effect of the ANFIS will be more obvious and efficient.

4 Conclusions

The major conclusions as follows can be drawn from this work.
(1) An improved multi-body dynamic model of a STV with integration of a dynamic terrame-

chanics model of the particular sediment has been established and verified. A new collaborative
simulation model of the STV integrating a mechanical multi-body dynamic model in RecurDyn/-
Track and a control model in MATLAB/Simulink has been developed and co-simulations were
achieved. Different control algorithms performances including a PID control, a fuzzy control and
a neural control, have been compared and proved that the traditional or individual intelligent
controls are not particularly suitable for the STV motion control.

(2) An adaptive neural-fuzzy inference system (ANFIS) control algorithm incorporating the
fuzzy control and neural network control has been adopted and designed for the STV motion
control. A straight-line path tracking controls for the STV by the fuzzy, neural network and
ANFIS controls have performed and proved the ANFIS control algorithm can achieve a desired
control performance for the STV compared to the other controls.

(3) A predetermined combined path, including the straight-line and turning paths, has been
tracked for the STV by an ANFIS control algorithm compared to a fuzzy logic and neural network
controls. The collaborative simulations have proved the ANFIS control method can achieve
a better control effect among these control algorithms, with its actual maximum trajectory
deviation can be maintained around 0.5 m within the permissible range.
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