
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 13(3), 323-336, June 2018.

Multi-Objective Binary PSO with Kernel P System on GPU

N. Elkhani, R. C. Muniyandi, G. Zhang

Naeimeh Elkhani*, Ravie Chandren Muniyandi
Centre for Cyber Security
Faculty of Information Sciene and Technology
Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
*Corresponding author: naeimeh.elkhani@siswa.ukm.edu.my
ravie@ukm.edu.my

Gexiang Zhang
School of Electrical Engineering
Southwest Jiaotong University
Chengdu 610031
Sichuan, P.R. China
zhgxdylan@126.com

Abstract: Computational cost is a big challenge for almost all intelligent algorithms
which are run on CPU. In this regard, our proposed kernel P system multi-objective
binary particle swarm optimization feature selection and classification method should
perform with an efficient time that we aimed to settle via using potentials of membrane
computing in parallel processing and nondeterminism. Moreover, GPUs perform bet-
ter with latency-tolerant, highly parallel and independent tasks. In this study, to
meet all the potentials of a membrane-inspired model particularly parallelism and
to improve the time cost, feature selection method implemented on GPU. The time
cost of the proposed method on CPU, GPU and Multicore indicates a significant
improvement via implementing method on GPU.
Keywords: parallel membrane computing, GPU based membrane computing, ker-
nel P system, parallel multi-objective binary PSO, parallel kernel P system-multi
objective binary PSO.

1 Introduction

In the literature [1], from one point of view, methods of feature selection for classification
can be divided into three families 1) methods for flat features (filter models, wrapper models,
embedded models), 2) methods for structured features (graph structure) and 3) methods for
streaming features. A main disadvantage of the filter approach despite its lower time consumption
is the fact that it does not interact with the classifier, usually leading to worse performance
results than those obtained with wrappers. However, the wrapper model comes with an expensive
computational cost. An intermediate solution for researchers can be the use of embedded methods
that are usually a mix of two or more feature selection methods from different origins which use
the core of the classifier to establish a criterion to rank features.

From another perspective for the division of feature selection and classification methods, wide
range of mixed methods are developed mainly based on evolutionary learning methods such as
genetic algorithm (GA), neighborhood search like K nearest neighbor (KNN) and swarm intelli-
gence algorithms such as particle swarm optimization (PSO). Based on our review on GA and
KNN, the problems of various proposed methods can be categorized to three parts. First; e.g.,
pure genetic algorithm generally has limitations such as 1) slow convergence, 2) lacks of rank
based fitness function and 3) being a time-consuming approach. Mixed methods of GA and

Copyright ©2018 CC BY-NC



324 N. Elkhani, R. C. Muniyandi, G. Zhang

KNN were not capable to tackle with these problems completely. Second; in terms of classifi-
cation accuracy, resulted accuracy in intelligent feature selection and classification algorithms
varies greatly either in different datasets, also due to building unstable method overfitting risk
increases dramatically when they examine on high density datasets. PSO because of first; its
ability to match with graph model as genes (nodes) and define relationship between them (edge),
second; higher accuracy in compared with flat (filter and wrapper) methods third; reasonable
time complexity on CPU is our candidate in proposing a membrane-inspired feature selection
method.Computational cost is a big challenge for almost all intelligent algorithms which are
run on CPU. Recently new attempts have been started to develop parallel feature selection and
classification methods such as [24] and some efforts are focused on parallelization of intelligent
optimization algorithms, such as parallel genetic algorithm on CPUs/computers to identify in-
formative genes for classification [16, 23], parallel Genetic algorithm on GPU [6, 15, 22], parallel
PSO on GPU [14, 19–21, 28] and parallel processing of microarray data [13]. In this regard, our
proposed membrane-inspired feature selection method should perform with an efficient time that
we aimed to settle via using potentials of membrane computing in parallel processing Due to
the inherent large-scale parallelism feature of membrane computing, any membrane computing
inspired model can fully represent this computation model only in the case of using the parallel
platform. From the beginning of introducing this model, it was a big concern in all membrane
related studies. For instance, to fully implement parallelism of such membrane computing model
and to support an efficient execution [25] used a platform based on reconfigurable hardware.
Without parallelism, all subsequent studies face a challenge of how to make rules available in all
steps of computation. In [2] a sequential computing of membrane computing, they just had an
option of using one membrane and made the rules periodically available based on time-varying
sequential P system. A sequential kernel P system multi objective binary particle swarm opti-
mization feature selection and classification method proposed in the study of [8,9]. Even by using
minimal parallelism of using rule; at least a rule from a set of rules in a membrane, e.g., with the
active membrane; solving NP-complete problems in polynomial time through trading space for
time leads to make a more efficient model of membrane computing. The architectural differences
between CPUs and GPUs cause CPUs to perform better on latency-sensitive, partially sequen-
tial, single sets of tasks. In contrast, GPUs performs better with latency-tolerant, highly parallel
and independent tasks. Recently, several studies attempted to utilize membrane computing to
improve intelligent algorithms. For instance, multi-core processing used in the study of [17] uti-
lized a membrane computing inspired genetic algorithm and [18] have highlighted parallelism in
membrane computing in the case of solving the N-queen’s problem.

As a variant of P system, kernel P system (KP system) introduced for the first time in the
study of [11,12]. This variant of P system integrates most of the features of membrane computing
which have been successfully used for modelling problems and are applied in various application.
Generally, there is two types of the rules in KP systems: first type of rules deals with the objects
to transfer them between compartments or send the objects from compartment to environment
and vice versa; second type of rules deal with the membrane structure to change the topology of
the compartments. Multi objective optimization refers to the problem of finding a set of values
which meet the limitations and are capable of optimizing the set of values to another set of values
which are the objective of optimization. PSO method itself is divided to two different approaches
called single objective and multi-objective. These two approaches meet different requirements.
Single objective is appropriate for the problems have only one correct solution. In versus, most
of the hard problems are often confronted with multi-objective decision problem that their goal
is to find the "best" solution which corresponds to the minimum or maximum value of a single
objective that lumps all different objectives into one. The combination of membrane computing
with optimization algorithm has been used in many studies such as [26,27].



Multi-Objective Binary PSO with Kernel P System on GPU 325

In this study, all the rules of KP system as rewriting and communication rule, division,
input/output, link creation have used to develop the proposed KP-MObPSO model. A multi-
core kernel P system multi objective binary particle swarm optimization feature selection and
classification method proposed in the study of [8]. The most important attempts to parallelize
membrane computing models are being done via using of graphic processing units (GPUs) [3–5,
7, 10]. All of these efforts have demonstrated that a parallel architecture is better positioned in
performance than traditional CPUs to simulate P systems, due to the inherently parallel nature
of them, and specifically GPUs obtain very good preliminary results simulating P systems.

2 Criteria to execute kernel P system multi objective binary PSO
on GPU

The important factor in implementing a P system-based model on GPU is to attention
the rate of communication between the threads, which is related to the dependencies between
objects [17, 18]. Previous approaches of implementing P system on GPU did not consider this
factor that exert effect on the performance of executing model on GPU. According to Figure
1, every single thread using the local memory and a thread block uses the share memory and
a grid of thread blocks use global memory. The main strategy will be assigning dependent
objects to the same thread for execution. Dependent objects in the proposed model are those
objects that should be produced by prior rule and enter the compartment as input object to
trigger the next rule. This is the reason rules are following priority for execution means those
rules have higher priority should be execute first to generate the objects which are necessary
to trigger the execution of other rules. Thus, in our model those objects that their existence is
dependent to the existence of other objects in the compartment will execute on the same thread
along with their parent objects. To design KP-MObPSO-SVM model on GPU, two important
points are concerned, first, the dependency between the objects and rules to decrease the rate of
communication, second; access to the lesser cost memories in the execution of threads like local
and shared memory. As it is shown in the Figure 1, a single thread is used to assign objects and
rules which are dependent to each other and they can use the local memory to keep the value
for the objects and send the value to another rule to trigger its execution. When the execution
of dependent rules is done, and completed in single threads, it will be needed to share the result
of the threads and make a decision to choose the best result to continue the execution of model.
To do this, a thread block which belongs to the current single threads can exchange the result
via shared memory.

According to [12], A KP system of degree n is a tuple,

kΠ = (O,µ,C1, . . . , Cn, i0)

where O is a finite set of objects, called an alphabet; µ defines the membrane structure, which
is a graph, (V,E), where V represents vertices indicating compartments and belongs to a set of
labels L(li, . . . ), and E represents edges; Ci = (ti, wi), 1 ≤ i ≤ n, is a compartment of the system
consisting of a compartment type from T and an initial multiset, wi, over O; i0 is the output
compartment, where the result is obtained (this will not be used in this study). Each rule r may
have a guard g, in which case r is applicable when g is evaluated to true. Its generic form is
r{g}. KP systems use a graph-like structure (similar to that of tissue P systems) and two types
of rules

1. Rules to process objects: these rules used to transform object or to move objects inside
compartments or between compartments. These rules are called rewriting, communication
and input-output rules:



326 N. Elkhani, R. C. Muniyandi, G. Zhang

Figure 1: GPU Memory

a Rewriting and communication rule: x→ y{g}, where x ∈ A+, y ∈ A?, g ∈ Finite regular
Expressions FE over (A

⋃
Ā); y at the right side defines as y = (a1, t1), . . . , (ah, th),

where aj ∈ A and tj ∈ L, 1 ≤ j ≤ h, aj is an object and tj is a target, respectively.

b The input-output rule: (x/y){g}, where x, y ∈ A?, g ∈ Finite regular Expressions FE
over (A

⋃
Ā); means that x can be sent from current compartment to the environment

or y can be brought from environment to the target compartment.

2. System structure rules: these rules make a fundamental change in the topology of the
membranes for example with division rule on a compartment, dissolution rule on a specific
compartment, make a link between compartments or dissolve the link between them. These
rules are described as follow:

a Division rule: []li →lil...lih {g}, where g ∈ Finite regular Expressions FE over (A
⋃
Ā);

means compartment li can be replaced with h number of compartments. All newly
created compartments inherit objects and links of li;

b Dissolution rule: []li → λ{g}; means compartment li is not exist anymore as well as all
its links with other compartments.



Multi-Objective Binary PSO with Kernel P System on GPU 327

c Link-creation rule: []li ; []lj → []li − −[]lj{cg}; means a link will be created between
compartment li with compartment lj . If there is more than one compartment with the
label lj , one of them will have a link with lj non-deterministically.

d Link-destruction rule: []li −−[]lj → []li ; []lj{cg}; means the existence link between li and
lj will eliminate and there will not be any link between them anymore. The same as link
creation, if there are more than one compartment which have a link with li then one of
them will be selected non-deterministically to apply this rule.

3 Proposed model

The entire proposed model includes two main parts, first part, features selection based on KP-
MObPSO plus classification based on (kernel P system-support vector machine) KP-SVM and
second part, KP-embedded feature selection/SVM classification. The first part defines modelling
and implementing previous MObPSO based on KP system rules with some improvements which
leads to the result consists of different set of marker genes, so called KP-MObPSO feature
selection. Thereafter, an error rate calculator based on KP-SVM applied to measure the error
rate of marker gene sets. To design the first part of the model, first it is needed to design
improved version of KP-MObPSO on GPU. To do so, we assume there are 4 compartments each
including 6 particles as Figure 2 and Figure 3. The same process will repeat for each particle as
follow:

Step 1: to assign one thread for each gene of dataset (which is including of 100 genes) first
we need to allocate memory in the Host for dataset of genes. Each gene keeps the values of six
samples, therefore an array of threads of at least size 6 is needed. Moreover, some other threads
are defined to save the values will be generated in the processing steps on the GPU and will return
back to the Host. Step 2: after allocating Host memory to each gene in the dataset, genes are
needed to transfer to Device memory to execute on GPU. Step 3: by assigning random number
of genes inside each particle, the main process will start by executing KP-MObPSO-SVM. The
kernel defined as "addkernel" will add the genes inside the particles and will execute the rules
on each thread. The sets of rules called "subgraph" and "Mycost" carry the dependent rules
as R1 to R10 (Table 1). Thus, these rules will execute on each single threads of genes. Local
memory will keep the value of all variables which are defined as objects and all the rules have
access to the same local memory to pull and push the value of objects. After that, the value of
object "Fit" for each thread and the initial value for the object "pBestScore" need to save in
shared memory to execute the function called "compare" according to the rules R11 and R12 to
refresh the value of object "pBestScore" with the minimum value of objects "Fit". This function
will implement on all threads from thread 1 to thread 4. Then, the velocity function according
to the R13 to R16 will be executed on each thread with utilizing of local memory Figure ??.
Also, two sets of rules including replacing rules and decision rules will be executed on threads
to initiate the cycle of particle preparation inside the compartments and restart the first part of
model again till predefined iteration (it=100). Then after getting the marker genes collected by
each thread, KP-SVM rules will apply to calculate the error rate for each set of marker genes.
These rules are reminded in (Table 2). Step 4: at the end of first part of the model, the error
rates of each set of marker genes will be calculated. According to the Table 2, (R1) is flag which
is an object with default value zero. R2, flag value will rewrite to 1 if it meets the guard values
including an error rate between 0 and 0.3 as well as having at least two cancerous genes indexes
in marker genes. R3, q and e are the counters of normal genes and cancerous genes respectively
which rewrite to a default value zero, and marker genes 2 keep a backup of marker genes resulted
from first part of the model.



328 N. Elkhani, R. C. Muniyandi, G. Zhang

Table 1: KP-MObPSO Rules

R1:Rewriting
[[p,max_c]position]0 → [[(position1 . . . positionn)1 . . . (position1 . . .
positionn)p]0[[]1[]position]0
R2:Communication
[[(position1 . . . positionn)1 . . . (position1 . . . positionn)p]position]0 →
[(position1 . . . positionn)1 . . . (position1 . . . positionn)p]1]0
R3:Communication
[(position1 . . . positionn) . . . (position1 . . . positionn)p]1 → [(position1 . . .
positionn)]p1 . . . [(position1 . . . positionn)p]]1
Rulesinsideeachp : []p1 . . . []pn : r4 > r5 > r6 > r7

R4:Rewriting
[(position, a,maxc, p)]→ [NGENES], [NGENES]→ [NewNGENES,Q, c]

R5:(Communication/Rewriting)
[(NewNGENES, c, p, a)]→ [C], [C]→ [sumdiss], [a]→ [snr]
[snr]→ [sumsnr], [sumdiss, sumsnr]→ [FIT ]

R6:Link creation
[]position−−−−[]master

R7:(Communication/Rewriting)
[FIT ]→ [pBestScoren]master, [Qn]→ [Qn]master

R8:Division
[[Pn][pBestScoren, Qn]master]1]0 →
[P ]1 . . . [P ]n[pBestScoren, Qn, gBestScore]master]1[[]p1 . . . [P ]n
[fitness, pBest, gBest, V elocity, c1, c2, w, V max, s]master]1]0
R9: Membrane Dissolution
[[[]P1 . . . []Pn[]master]1]θ → λ

R10: Link Creation
[[[]P1 . . . []Pn[pBestScoren]master]1]0, [[[]P1 . . . []Pn[fitnessn]master]1]0 →
[[]P1 . . . []Pn[pBestScoren]master]1]0 −−−−− [[[]P1 . . . []Pn[fitnessn]master]1]0
R11: Communication/rewriting
[[[pBestScoren]master]1]0 → [[fitnessn]master]1]0, [[[pBestn]master]2]0 →
[[[fitnessn]master]2]0 < [[[pBestScoren]master]1]0, 1 ≤ n ≤ p
[[[gBestScore]master]1]0 → [[pBestScoren]master]1]0, [[[gBestn]master]2]0 →
[[[pBestScoren]master]1]0 < [[[gBestScore]master]1]0, 1 ≤ n ≤ p
[[[converge]master]1]0 → in[[[[pBestScore]]master]1]0
R12:Communication
[[[position]]1]0 → [[[position]master]1]0
R13: Communication/rewriting
[[[positionn, c1, c2, c, w, pBest, gBest, p,maxc, rand]master]1]0 → [[[V elocity]master]2]0
[[[V elocity]master]2]0 → [V max]master]1, V elocity > V max
[[[V elocity]master]1]0 → [−V max]master]2, V elocity < −V max
[[[[position]]master]1]0 →, rand <= 1/(1 + exp(−2 ∗ V elocity)
[[[[position]]master]2]0 → 0, rand > 1/(1 + exp(−2 ∗ V elocity)

R14:Output/link creation/communication & rewrite
[[[[position]]master]1]0 → [[position]1]0[[]1]0, [[]position]0 → []1]0 −−−−
[[]position]0[[[position]]1]0 → [[position]position]0
R15: Division rule
[[]p1 . . . []pn[]master]12[[]p1 . . . []pn[]master]121[[]p1 . . . []pn[]master]122

r16: Membrane dissolution [[]p1 . . . []pn[]master]12→ λ



Multi-Objective Binary PSO with Kernel P System on GPU 329

Table 2: KP-SVM Rules

R1:Rewriting (s)→ find(M(:) == i), table(i)→ lenght(s), 1 ≤ i ≤ 100

R2:Rewriting markergenes(i, it+ 1)→ i, table(i) > it, 1 ≤ i ≤ 100, 1 ≤ it ≤ n
R3:Rewriting
y(i, 1)→ +1,max_j → max_j + 1, 1 ≤ i ≤ 50

R4:Rewriting
y(i, 1)→ −1,max_f → max_f + 1, 51 ≤ i ≤ 100

R5:Rewriting
Badgenes(it+ 1, 1)→ max_f
R6:Rewriting
Y (j, 1)→ +1, 1 ≤ j ≤ max_j ∗ 3
Y (j, 1)→ −1,max_j ∗ 3 ≤ j ≤ max_j ∗ 3 +max_f ∗ 3

R7:Input
wholedata(k, 1)→ a(i, j), 1 ≤ i ≤ 100, table(i) > it, j = 1, k → k + 1
wholedata(k, 1)→ a(i, j), 1 ≤ i ≤ 100, table(i) > it, j = 3or5
wholedata(k, 2)→ a(i, j)1 ≤ i ≤ 100, table(i) > it, j = 2or4
wholedata(k, 2)→ a(i, j), k → k + 11 ≤ i ≤ 100, table(i) > it, j = 6

R8:Rewriting
wholedata(k, 1), wholedata(k, 2)→ XY,Holdout = 0.10→ Pcvpartition
X(P.training), Y (P.training)→ SVMStructsvmtrain
SVMStruct,X(P.test)→ CsvmclassifySum(Y (P.test)C)/P.testsize errRate
Y (P.test), C → conMat
ERR(1, 1)→ errRatefirst 100 times iteration, gBestScore = inf
ERR(it+ 1, 1)→ errRate
Constant→ ERR(it+ 1, 1)not first 100 times iteration, gBestScore 6= qinf

R9:Rewriting
particle2→Markergenes(:, it+ 1)1 ≤ it ≤ n, 0 ≤ ERR(it+ 1, 1) ≤ 0.3

R10:Division
a(i, j)→ (Particle2, it = 1), (Particle2, it = 2), . . . , (Particle2, it = n)



330 N. Elkhani, R. C. Muniyandi, G. Zhang

Figure 2: Designing on GPU

Step 5: elapsed time so far for feature selection executed on one particle is 5.914 Sec.
Step 6: Let assume compartment number 1 is chosen because of meeting the criteria of

having better error rate. Marker genes 2 object will be used for further procedure on GPU. To
implement embed feature selection method, another kernel defined as "second kernel". For each
gene number from 1 to 100, rules number r4-r10 will apply to see whether entering a new gene
can improve the error rate of that particle or no. R4 and R5, gives a flag to index of genes based
on the type of genes whether they are belonged to normal genes or cancerous genes as +1 and
-1, respectively.

In parallel, q and e which are the counters of normal genes and cancerous genes will be update.
R6, the object maxj and maxf updates the number of normal and cancerous genes. R7, clear
the value of q and e. R8 reserve a place for the samples of gene indexes are selected as marker
genes and R9, inputs the real value of reserved samples inside a compartment called wholedata.
Wholedata compartment keeps real data samples for gene indexes are already highlighted as



Multi-Objective Binary PSO with Kernel P System on GPU 331

Figure 3: Continue Designing on GPU

marker genes. R10, applies an SVM package with rewriting rules to evaluate error rates. To
decide whether adding a new gene can improve the error rate or no, rule number 11 compares
error rates after adding each gene (from 1 to 100) with the constant error rate object resulted
in the first part of modelling for each set of marker genes. If adding a new can already can
improve constant error rate of that set of marker genes, the r11 will add this gene index to the
set of marker genes. Otherwise if a gene value already enter to the particle cannot improve the
error rate, it should be exit from the particle. Rules, R12-15 apply output and rewriting rules to
eliminate gene values inside the particle. After executing the computation model for n number
of iterations which each iteration represents one particle from it=1 to it=n, particles of marker
genes will update by new genes and result a new set of particles as (particle 3, it=1/ particle 3,
it=2/. . ./ particle 3, it=n). It means by the end of embedded feature selection and classification;
real data set will divide to a new compartment. Every time one gene will be added to the set
of genes and error rate will calculate to decide adding the gene to the set is suitable or no. If



332 N. Elkhani, R. C. Muniyandi, G. Zhang

Table 3: Benchmark

KP-MObPSO-SVM
Maxc =100 Maximum number of genes

P=25 Number of particles
Maxiteration=100 Maximum number of generating

fitness, gbestscore, pbestscore Objects to save the results
Hardware CPU Core(TM)i5-6200U CPU @2.30 GHz (RAM): 12.0 GB
Hardware GPU NVIDA Geforce 680

adding the gene decrease the error rate means the gene will be kept and if increase the error rate
means the gene will be removed of the chosen gene set. New value for "SUM", "mean" value,
"SNR" (signal to noise) value, "dissimilarity" value, "fit" (fitness) value, "velocity" value, "std"
(standard deviation) value, "gBestvalue" value. Total elapsed time for all processes of 2 particles
is 13.12 Sec.

4 Evaluation and result

The objective of this study was to improve the time efficiency in implementing a membrane-
based optimization algorithm. In this regard, two models as KP-MObPSO and KP-MObPSO-
SVM are implemented on CPU, multicore and GPU to compare their time complexity. The
comparison of the time cost between two models indicates GPU based executions can increase
time efficiency of the models drastically. The benchmark of evaluation in terms of the maxi-
mum number of the genes, number of particles, maximum number of iterations, and hardware
specification of CPU and GPU are explained in the Table 3. According ot Table 4 and Ta-
ble 5 with the same example of 25 particles executed on multi-core and GPU with 4 workers
and independent iteration respectively, time cost dropped significantly from 5.5 min to 73.87
sec in KP-MObPSO feature selection and from 15 min to 164 sec in KP-MObPSO feature
selection and classification. While execution on CPU was taken 3.68 min in KP-MObPSO
feature selection and 8 min in Embed KP-MObPSO-SVM feature selection and classification.
Comparing CPU and multicore indicates, due to the frequent interaction between clients and
workers, it takes longer time and does not lead to improvement in timely execution of mul-
ticore KP-MObPSO. Therefore, as it is shown by example, a GPU based KP-MObPSO and
KP-MObPSO-SVM are more time efficient than CPU based models. Regardless of taking ex-
ample, Table 3 indicates the time complexity of the parallel KP-MObPSO-SVM on GPU ac-
cording to the big O calculated as O(NM) + O(N) + O(N/P ∗M) + O(N/P ) + O(M/2P )) +
O(M/P )+O(M/(P ∗Q))+O(M2/P 2)+O(M2/2P 2)+O(Q2/P 2)+O(2Q/P )+O(M ∗Q2/P 2)
where (N=Max number of particles, M=Max number of genes, I=Max number of iteration,
Q: Max number of samples, P=Max number of processors). The time complexity of sequen-
tial KP-MObPSO-SVM is O(NM) + O(INM)) + O(IN) + O(M/2) + O(M2/2) + O(M/2) +
O(MQ) + O(M) + O(M2) + O(Q2) + O(Q) + O(MQ2) + O(N) where (N=Max number of
particles, M=Max number of genes, I=Max number of iteration, Q: Max number of samples).
O(M2)+O(MQ2)andO(M2/P 2)+O(Q2/P 2) are the highest time cost for sequential and paral-
lel KP-MObPSO-SVM respectively. It is shown how the number of processors decrease the time
cost of implementing KP-MObPSO-SVM on GPU and leads to more time efficient method.



Multi-Objective Binary PSO with Kernel P System on GPU 333

Table 4: KP-MObPSO

KP-MObPSO-SVM
CPU 25 particles: 3.68 min (10 times of 100 iteration)

Multi-Core 25 particles: 5.5 min (4 workers)
GPU 2 particles: 5.91 Sec 25 particles: 73.87 Sec (independent iteration)

Table 5: KP-MObPSO-SVM

KP-MObPSO-SVM
CPU 25 particles: 8 min (10 times of 100 iteration)

Multi-Core 25 particles: 15 min (4 workers)
GPU 2 particles: 13.12 Sec 25 particles: 164 Sec (independent iteration)



334 N. Elkhani, R. C. Muniyandi, G. Zhang

5 Conclusion

To design KP-MOBPSO-SVM model on GPU, two important points are concerned, first, the
dependency between the objects and rules to decrease the rate of communication, second; access
to the lesser cost memories in the execution of threads like local and shared memory. Thus,
according to the first criteria, those objects that their existence is dependent to the existence
of other objects in the compartment will execute on the same thread along with their parent
objects. Based on the second criteria, objects and rules which are dependent to each other
will use the local memory to keep the value for the objects and will send the value to another
rule to trigger its execution. When the execution of dependent rules is done, and completed
in single threads, it will be needed to share the result of the threads and make a decision to
choose the best result to continue the execution of model. To do this, a thread block which
belongs to the current single threads can exchange the result via shared memory. The time cost
of KP-MObPSO and Embedded KP-MObPSO-SVM on GPU, CPU and Multicore are compared
in the Table 3 which indicates a significant improvement in time cost via executing both KP-
MObPSO and Embedded KP-MObPSO-SVM on GPU. In 25 particles, KP-MObPSO takes 3.68
min to complete a set of 100 iteration. While the multicore due to frequent visiting of client to
exchange the result was not capable of improving time complexity, GPU does better. In GPU-
based execution of KP-MObPSO, 25 particles take 73.87 sec to complete. Therefore, a four times
improvement has happened in time efficiency. In terms of KP-MObPSO-SVM, 8 min execution
time have not improved by multicore while GPU has improved the efficiency to 5-fold. The big
O calculation indicates the time efficiency of the proposed KP-MObPSO-SVM improved from
O(M2)+O(MQ2) in sequential method to O(M2/P2)+O(Q2/P2) in parallel execution.

Acknowledgment

The work of N. Elkhani and R. C. Muniyandi has been supported by FRGS/1/2015/ICT04/UKM
/02/3, National University of Malaysia, Ministry of Higher Education, Malaysia. The work of G.
Zhang was supported by National Natural Science Foundation of China (61672437, 61702428)
and by Sichuan Science and Technology Program (18ZDYF2877, 18ZDYF1985, 2017GZ0159).

Bibliography

[1] Alelyani, S.; Tang, J.; Liu, H. (2013); Feature Selection for Clustering: A Review, Data
Clustering: Algorithms and Applications, 29, 110-121, 2013.

[2] Alhazov, A.; Freund, R.; Heikenwalder, H.; Oswald, M; Rogozhin, Y.; Verlan, S. (2012);
Sequential P systems with regular control, Paper presented at the International Conference
on Membrane Computing, 2012.

[3] Cabarle, F. G. C.; Adorna, H.; Martinez-Del-Amor, M. A.; Perez-Jimenez, M. J. (2012);
Improving GPU simulations of spiking neural P systems, Romanian Journal of Information
Science and Technology, 15(1), 5-20, 2012.

[4] Cecilia, J. M.; Garcia, J. M.; Guerrero, G. D.; Martinez-del-Amor, M. A.; Perez-Hurtado,
I.; Perez-Jimenez, M. J. (2009), Simulation of P systems with active membranes on CUDA,
Briefings in bioinformatics, 11(3), 313-322, 2009.



Multi-Objective Binary PSO with Kernel P System on GPU 335

[5] Cecilia, J. M.; Garcia, J. M.; Guerrero, G. D.; Martinez-del-Amor, M. A.; Perez-Hurtado,
I.; Perez-Jimenez, M. J. (2010); Simulating a P system based efficient solution to SAT by
using GPUs, The Journal of Logic and Algebraic Programming, 79(6), 317-325, 2010.

[6] Cano, A.; Zafra, A.; Ventura, S. (2010); Solving classification problems using genetic pro-
gramming algorithms on GPUs, Hybrid Artificial Intelligence Systems, 17-26, 2010.

[7] Dematte, L.; Prandi, D. (2010); GPU computing for systems biology, Briefings in bioinfor-
matics, 11(3), 323-333, 2010.

[8] Elkhani, N.; Chandren Muniyandi, R. (2017); A Multiple Core Execution for Multiobjective
Binary Particle Swarm Optimization Feature Selection Method with the Kernel P System
Framework, Journal of Optimization, 2017.

[9] Elkhani, N.; Muniyandi, R. C. (2015); Membrane computing to model feature selection of
microarray cancer data, Proceedings of the ASE BigData & SocialInformatics, 2015.

[10] Garcia-Quismondo, M.; Perez-Jimenez, M. J. Implementing ENPS by Means of GPUs for
AI Applications, Proc. Beyond AI: Interdisciplinary Aspects of Artificial Intelligence, 27-33,
2011.

[11] Gheorghe, M.; Ceterchi, R.; Ipate, F.; Konur, S.; Lefticaru, R. (2018); Kernel P systems:
from modelling to verification and testing, Theoretical Computer Science, 724, 45-60, 2018.

[12] Gheorghe, M.; Ipate, F.; Dragomir, C.; Mierla, L.; Valencia-Cabrera, L.; Garcia-Quismondo,
M.; Perez-Jimenez, M. J. (2013); Kernel P Systems-Version I, Membrane Computing,
Eleventh Brainstorming Week, BWMC, 97-124, 2013.

[13] Guzzi, P. H.; Agapito, G.; Cannataro, M. (2014); coreSNP: Parallel processing of microarray
data, IEEE Transactions on Computers, 63(12), 2961-2974, 2014.

[14] Kentzoglanakis, K.; Poole, M. (2012); A swarm intelligence framework for reconstructing
gene networks: searching for biologically plausible architectures, IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 9(2), 358-371, 2012.

[15] Li, J.-M.; Wang, X.-J.; He, R.-S.; Chi, Z.-X. (2007); An efficient fine-grained parallel genetic
algorithm based on GPU-accelerated, Network and parallel computing workshops, 2007,
NPC workshops, IFIP international conference on, 855-862, 2007.

[16] Liu, J.; Iba, H.; Ishizuka, M. (2001); Selecting informative genes with parallel genetic algo-
rithms in tissue classification, Genome Informatics, 12, 14-23, 2009.

[17] Maroosi, A.; Muniyandi, R. C. (2013); Accelerated simulation of membrane computing to
solve the n-queens problem on multi-core, International Conference on Swarm, Evolutionary,
and Memetic Computing, 257-267, 2013.

[18] Maroosi, A.; Muniyandi, R. C. (2013); Membrane computing inspired genetic, Journal of
Computer Science, 9(2), 264-270, 2013.

[19] Mussi, L.; Daolio, F.; Cagnoni, S. (2011); Evaluation of parallel particle swarm optimization
algorithms within the CUDA(TM) architecture, Information Sciences, 181(20), 4642-4657,
2011.



336 N. Elkhani, R. C. Muniyandi, G. Zhang

[20] Nobile, M.; Besozzi, D.; Cazzaniga, P.; Mauri, G.; Pescini, D. (2012); A GPU-based multi-
swarm PSO method for parameter estimation in stochastic biological systems exploiting
discrete-time target series, Evolutionary Computation, Machine Learning and Data Mining
in Bioinformatics, 74-85, 2012.

[21] Nobile, M. S.; Besozzi, D., Cazzaniga; P., Pescini, D.; Mauri, G. (2013); Reverse engineer-
ing of kinetic reaction networks by means of Cartesian Genetic Programming and Particle
Swarm Optimization, Evolutionary Computation (CEC), 2013 IEEE Congress on, 1594-
1601, 2013.

[22] Pospichal, P.; Jaros, J.; Schwarz, J. (2010); Parallel genetic algorithm on the cuda architec-
ture, Applications of Evolutionary Computation, 442-451, 2010.

[23] Sarkar, B. K.; Sana, S. S.; Chaudhuri, K. (2011); Selecting informative rules with parallel
genetic algorithm in classification problem, Applied Mathematics and Computation, 218(7),
3247-3264, 2011.

[24] Slavik, M.; Zhu, X.; Mahgoub, I.; Shoaib, M. (2009); Parallel Selection of Informative Genes
for Classification, Bioinformatics and Computational Biology. Lecture Notes in Computer
Science, 5462, 388-399, 2009.

[25] Van Nguyen, D. K.; Gioiosa, G. (2010); A region-oriented hardware implementation for
membrane computing applications, Membrane Computing. WMC 2009. Lecture Notes in
Computer Science, 5957, 385-409, 2009.

[26] Zhang, G.; Perez-Jimenez, M. J.; Gheorghe, M. (2017), Real-life applications with membrane
computing, (Vol. 25): Springer, 2017.

[27] Zhang, G.; Cheng, J.; Gheorghe, M.; Meng, Q. (2013), A hybrid approach based on differen-
tial evolution and tissue membrane systems for solving constrained manufacturing parameter
optimization problems, Applied Soft Computing, 13(3), 1528-1542, 2013.

[28] Zhou, Y.; Tan, Y. (2009); GPU-based parallel particle swarm optimization, Evolutionary
Computation, 2009, CEC’09. IEEE Congress on, 1493-1500, 2009.


