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Abstract: Hyperparameter selection has always been the key to machine learning.
The Bayesian optimization algorithm has recently achieved great success, but it has
certain constraints and limitations in selecting hyperparameters. In response to these
constraints and limitations, this paper proposed the N-RReliefF algorithm, which
can evaluate the importance of hyperparameters and the importance weights between
hyperparameters. The N-RReliefF algorithm estimates the contribution of a single
hyperparameter to the performance according to the influence degree of each hyper-
parameter on the performance and calculates the weight of importance between the
hyperparameters according to the improved normalization formula. The N-RReliefF
algorithm analyses the hyperparameter configuration and performance set generated
by Bayesian optimization, and obtains the important hyperparameters in random for-
est algorithm and SVM algorithm. The experimental results verify the effectiveness
of the N-RReliefF algorithm.
Keywords: Hyperparameter optimization, Bayesian optimization, RReliefF Algo-
rithm.

1 Introduction

In the process of machine learning, the performance of the algorithm highly depends on the
selection of hyperparameters, which has always been a crucial step in the process of machine
learning. Automated machine learning, represented by Bayesian optimization algorithm, has
recently achieved great success in hyperparameter optimization, which exceeds the performance
of human experts in some cases.

Copyright ©2019 CC BY-NC
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However, there are some constraints and limitations in the selection of hyperparameters
for Bayesian optimization algorithm. Researchers and users can only get the hyperparameter
configuration after the operation of Bayesian optimization algorithm and cannot get the im-
portance analysis of the hyperparameter configuration. Therefore, it is necessary to study the
algorithm of hyperparameter importance analysis based on a wide range of data sets, so that re-
searchers and users can understand which hyperparameter adjustment will significantly improve
the performance of the algorithm.

This paper introduces the basic principle of Bayesian optimization algorithm and optimized
random forest and SVM based on OpenML100 data set. By comparing with grid search and
random search algorithm, it could be seen that the hyperparameter performance of Bayesian
optimization algorithm is high and time-consuming. Therefore, we used the hyperparameter
configuration and performance data generated by Bayesian optimization algorithm to analyze
hyperparameter importance. Hyperparameter configuration based on the experimental data, we
used N-RReliefF algorithm to evaluate the importance of interaction between hyperparameter, so
as to determine the important hyperparameter in random forest algorithm and SVM algorithm.

2 Related works

Hyperparameter selection is a key step in machine learning process [12]. From the initial
manual selection to automatic optimization using algorithms later, the evolving optimization
algorithms have made great contributions to improving performance. Hyperparameter selection
algorithms can be roughly divided into four categories: traditional algorithms (e.g., grid search
algorithm [26], random search algorithm [2]), heuristic optimization algorithm [4, 18, 30], meta-
learning algorithm [13,22], Bayesian optimization algorithm [14,28], etc.

The disadvantage of these hyperparameter selection algorithms is that they cannot provide
researchers and users with information about the importance analysis of the selected hyperparam-
eters and cannot understand the impact of different hyperparameters and their interactions on
performance. Scientists have proposed a method for evaluating the importance of hyperparame-
ter machine learning algorithms. Sequential parameter optimization (SPO) [1] is a model-based
parameter optimization approach. SPO starts by running the target algorithm with parameter
configurations. It then builds a response surface model based on Gaussian process regression
and uses the models predictions and predictive uncertainties to determine the next parameter
cofiguration to evaluate. In 2007, Nannen et al. [20] proposed an evolutionary algorithm for
parameter correlation estimation. In 2009, Chiarandini et al. [6] used a linear mixed effect model
to design and analyze the optimization algorithm. With a mixed-effects multi-linear regression
they [8] assessed the individual and joint effect of problem features on the performance of both
algorithms, within and across the instance classes defined by benchmark parameters. In [21]
Probst formalized the problem of tuning from a statistical point of view, define data-based de-
faults and suggest general measures quantifying the tunability of hyperparameters of algorithms.
Falkner proposed a new hyperparameter optimization method-BOHB [10], which combines the
benefits of both Bayesian optimization and bandit-based methods, consistently outperforms both
Bayesian optimization and Hyperband on a wide range of problem types. Breiman [29] uses ran-
dom forests to assess the importance of attributes: If attributes are deleted from the data set,
performance will be degraded, indicating that this attribute is important. Based on this prin-
ciple, Forward Selection [15] predicts the performance of machine learning algorithms using a
subset of hyperparameters, which is initialized to be empty and greedily chooses the next most
important hyperparameter. Ablation Analysis [15] requires default settings and optimization set-
tings, and calculates the ablation trajectory, which reflects the contribution of hyperparameters
to the performance difference between the two settings.
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3 N-RReliefF algorithm design

This paper introduces the basic principle of hyperparameter optimization of Bayesian op-
timization algorithm based on Gauss process modeling. To hyperparameter configuration and
performance data generated by optimization process, we used N-RReliefF algorithm to evaluate
the importance of hyperparameter, so that users can understand the important hyperparame-
ter. As shown in Fig. 1, the input of hyperparameter optimization includes: algorithm A with
configuration space, instance set and cost matrix C. The optimal hyperparameter configuration
can be obtained by modeling and optimization of Bayesian optimization algorithm. At the same
time, the trajectory of searching for the optimal hyperparameter configuration, as well as the
hyperparameter configuration and its performance data can be obtained. Based on the output
data, N-RReliefF algorithm is used to evaluate the importance of hyper-parameters and the effect
of interaction between them on performance. Next, the two parts are explained in detail.

Figure 1: Algorithm configuration and analysis workflows

3.1 Bayesian optimization algorithm

Question definition

The hyperparameter selection problem of machine learning model is regarded as an unknown
black box function optimization problem reflecting generalization performance. Let θ1, ..., θn
represent n hyperparameters of machine learning algorithm, whose domain space is expressed as
Θ1, ...,Θn. The configuration space of the algorithm is defined as Θ = Θ1 × ... × Θn. The
hyperparameters θ ∈ Θ are trained on the training data set Dtrain, and the loss function
l(θ,Dtrain, Dvalid) of machine learning algorithm is obtained on the verification set.

The objective function of hyperparametric combinations in optimization problems is defined
as follows [11]:

f(θ) =
1

k

k∑
i=1

l(θ,D
(i)
train, D

(i)
valid) (1)

θ∗ = argθ∈Θminf(θ)

For an unknown objective function f(θ), Bayesian optimization algorithm searches for a hy-
perparameter configuration that minimizes the function f(θ) on a bounded set Θ. The basic idea
of Bayesian optimization algorithm is to construct a probability model for functionf(θ), estab-
lish evaluation criteria based on this model, determine the next hyperparameter for evaluation in
configuration space Θ, and at the same time, all the information available in previous evaluation
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can be reused for learning the shape of objective function [9]. The use of historical data enables
Bayesian optimization to find the minimum value of complex non-convex functions through fewer
evaluations, but the corresponding cost is to perform more calculations to determine the next
sampling point.

Therefore, the key of Bayesian optimization algorithm can be summarized as the following
two parts [7]:

• Establishing a probabilistic model to evaluate the objective function instead of the original
complex objective function, which is expensive to evaluate.

• The acquisition function is constructed by using the posterior information of the probability
model to determine the next sampling point.

Question definition

There are many models to model the objective function, among which the Gauss process has
been proved to be a convenient and powerful model optimization algorithm. Gauss process is a
set of random variables. If these random variables obey Gauss distribution, then these random
variables are Gauss process. A Gauss process consists of a mean function m : Θ→ R(m(θ) = 0)
and a covariance function (kernelfunction)m : Θ→ R(m(θ) = 0).

Its concrete form is [25]:
f(θ) ∼ GP (m(θ), k(θ, θ′)) (2)

Mean function m(θ) = E[f(θ)], covariance function k(θ, θ′) = E[(f(θ) − m(θ)(f(θ′) −
m(θ′)))], for simplicity, usually set mean function m(θ) = 0. Covariance function is a func-
tion of calculating the similarity between two data points in Gauss process, which specifies
the smoothness and amplitude of the unknown objective function. The selection of covariance
function is very important, which affects the matching degree between Gauss process and data
properties. This paper chooses Matérn 5

2 Kernel Function [15]. Compared with other popular
Gauss Kernel Functions, it has fewer constrained smoothness assumptions and is very helpful to
the optimization settings.

The formulas are as follows:

k 2
5
(θ, θ′) = θ0(1k 2

5
(θ, θ′) = θ0(1+

√
5dλ(θ, θ′)+

3

5
d2λ(θ, θ′))e−

√
5dλ(θ,θ

′)+
√

5dλ(θ, θ′)+
3

5
d2λ(θ, θ′))e−

√
5dλ(θ,θ

′)

(3)
Among them, θ0 and λ denote the covariance amplitude and length dimensions respectively,

and dλ(θ, θ′) = (θ, θ′)Tdiag(λ)(θ − θ′) denotes the Mahalanobis distance.
Given the input set G = θ1, .., θt and the output y = f(θ1), f(θ2), ..., f(θt) of the observation

set, the Gauss process GP (m, k) is adjusted. Due to the mixing of noise, the observed value
is likely to be affected, and there is a certain deviation from the actual output value. In order
to approach the actual situation, noise should be added to the probability distribution in the
experiment.

The formula is as follows:

y = f(θ) + ε (4)

The noise ε satisfies the independent and identically distributed Gauss distribution: p(ε) ∼
N(0, σ2). The prior distribution of y is y ∼ N(0, S + σ2I), I is n-dimensional unit matrix, and
S represents the covariance matrix k(θ, θ′).

The joint prior distribution of the observed value y and predicted value f(θ∗) is as follows:
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[
y

f(θ∗)

]
N

(
0,

[
S + σ2I K∗
KT
∗ K∗∗

])
(5)

In the formula, θ∗ represents the predictive input,KT
∗ = k(θ1, θ∗), k(θ2, θ∗), ..., k(θt, θ∗),K∗∗ =

k(θ∗, θ∗).
According to the estimation of posterior probability of input value by Gauss distribution,

the predicted distribution at a given test point θ∗ is expressed as [7]:

p(f(θ∗)|G, y, θ∗) = N(f(θ∗), cov(f(θ∗))) (6)

Among,

f(θ∗) = KT
∗ [S + σ2I]− 1y, cov(f(θ∗)) = K ∗ ∗ −K ∗ T [S + σ2I]− 1K∗ (7)

GP evaluates f(θ∗) with all historical observation points as conditions, and then uses the
posterior mean and variance of prediction to select the next set of superparameters on the basis
of balanced development and exploration acquisition functions.

Acquisition function

This section introduces the active strategy of selecting the next evaluation point in Bayesian
optimization: acquisition function, which is a functionα : χ×Θ→ R mapped from input space
χ, observation space R and hyperparameter space Θ to real space.

The function is constructed from a posterior distribution obtained from known observation
data sets D1:t, and the next evaluation point θt+1 is selected by maximizing its guidance:

θt+1 ∈ maxx∈χαt(θ;D1:t) (8)

This paper uses the promotion-based (Expected Improvement, EI) strategy [19], which per-
forms better. EI strategy has been proved to be effective in the evaluation of global optimization
of many black box functions.

The closed form of EI strategy in Gauss process is as follows:

aEI(θ;D1:t) = E[max(fmin − f(θ), 0)] (9)

fmin is the optimal solution based on observation set so far. Formula below describes the
balance between the development and exploration of new sampling points. If the standard
deviation of the prediction point is large, it means that the understanding of the point is small,
and it is worth exploring; if the mean value is large, it means that the point may be the maximum
point, which is worth developing. Because the initial sampling data is very few, the algorithm
will sample the points with large standard deviation; when the sampling points increase, the
standard deviation decreases, and the algorithm tends to the points with large sampling mean,
and eventually converges to the global optimal value.

3.2 Importance assessment of hyperparameter

Bayesian optimization algorithm obtains the optimal hyperparameter configuration of ma-
chine learning algorithm through two important steps: GP process and iteration of acquisition
function. However, due to the abstraction and black-box nature of its internal process, it is
impossible to analyze the importance of hyperparameters. In order to increase the interpretabil-
ity of the hyperparameters selected by Bayesian optimization algorithm and to understand the
importance ranking of the hyper-parameters of the algorithm itself, an N-RReliefF algorithm is
proposed to evaluate the importance of the hyperparameters.
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Relief algorithm

The Relief algorithm [17] was originally used in the field of feature selection. The main idea
of the Relief algorithm is to estimate the ability of this feature to distinguish adjacent samples
according to the degree of discrimination of each attribute to an instance. Relief’s process is to
randomly select an instance I in the training set, search for k instances Ij which are similar to
instance I, and the samples which belong to the same category with instance I in Ij are called
H, and the samples of different categories are called M [9].

The weight W [A] of attributes A are estimated according to the values of example I and H
and M in Ij , and the approximate values of the probabilistic difference shown in formula below
are obtained:

W [A] = P (diff.valueofA|nearestinst.fromdiff.class)−P (diff.valueofA|nearestinst.fromsameclass)
(10)

If instances I and H have different attribute values A, then attribute a separates two in-
stances from the same kind of instances, and the formula is expressed as reducing the weight
estimation W [A]. If instances I and M have different attribute values A, then attribute values a
separates two instances from different instances in a formula that correspondingly increases the
weight estimation W [A]. The bigger the weight of the feature is, the stronger the classification
ability of the feature is; on the contrary, the weaker the classification ability of the feature is [27].

Among them, the difference of attribute value A between different instances I1 and I2 in
W [A] is defined as [27]:

dif(A, I1, I2) = 0, value(A, I1) = value(A, I2)1, value(A, I1) 6= value(A, I2) (11)

The above formulas can be further calculated as follows:

dif(A, I1, I2) =
|value(A, I1)− value(A, I2)

max(A)−min(A)
(12)

N-RReliefF algorithm

The importance of hyperparameters of machine learning algorithm is evaluated. The input data
used are the hyperparameter configuration and performance data of machine learning algorithm.
On such data sets, performance data are continuous values, and can not be calculated using the
latest samples of the same or different types presented in Relief. In order to solve this problem,
RReliefF [23] introduces the probability of two different instances to determine whether two
instances belong to the same class. The probability definition can simulate and predict the
relative distance between two instances. RReliefF is currently mainly used in the field of feature
selection. This section improves and fuses the RReliefF algorithm and proposes an N-RReliefF
algorithm to evaluate the importance of the interaction between hyperparameters.

The main idea of the N-RReliefF algorithm for evaluating the importance of hyperparameters
is to estimate the contribution of each hyperparameter to performance according to the degree
of influence of each hyperparameter on performance. The N-RReliefF algorithm consists of two
parts. The first part is to evaluate the importance of a single hyperparameter. In the training set,
we randomly select a hyperparameter configuration instance I and select k instances Ij which
are similar to the instance I. In order to judge whether the instance Ij and I belong to the same
class, we introduce probability simulation and prediction of the relative distance between the two
instances [24], as shown in formula below. Among them, θ denotes the probability of different
hyperparameter values, PdifA denotes the probability of different categories in similar instances,
PdifC denotes the probability of different categories in similar instances, and PdifC|difA denotes
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the probability of different categories in similar instances with different hyperparameter values.

PdifA = P (difvalue (θ) |similarinstance) P difC = P (difprediction|similar instance) (13)

According to conditional probability:

PdifC|difA = P (difprediction|difvalue(θ) similar instance) (14)

Combined formula (11) is available:

W [θ] = PdifC|difA× PdifAPdifC − (1− PdifC|difA)× PdifA1− PdifC (15)

Repeat the above process k times to get W [θ], and evaluate the importance of a single
hyperparameter according to the weight W [θ].

The second part is to measure the importance of hyper-parameters and understand the
influence of the interaction between hyperparameters on the performance of machine learning
algorithm. The N-RReliefF algorithm divide the contribution of the hyperparameters by the sum
of all the contributions of the hyperparameters to normalization to calculates the importance of
the hyperparameters.

The formula is defined as (17):

W [θm&θn] =
eW [θm]+W [θn]

e
∑
W [θ]

(16)

θm and θn denote two different hyperparameters, and
∑
W [θ] denotes the sum of the importance

weights of all hyperparameters.
This formula is a distortion of the normalization formula, which can more stably evaluate

the influence of the interaction between hyperparameters on the performance. The whole pro-
cess of the N-RReliefF algorithm is as follows: firstly, the contribution (weight) vector of each
hyperparameter to the performance is calculated, the elements in the vector are accumulated,
the importance of each hyperparameter is sorted by the accumulated value, and t significant
hyperparameters are selected to enter the candidate subset of the hyperparameter, thus the it-
eration process begins. In the iteration process, the importance weights between the significant
hyperparameters are calculated, and the importance weights between all the hyperparameters
and the hyperparameters are finally output.

The flow chart of the algorithm is shown in algorithm 1.
In the algorithm, Ndc, NdA[θ] and NdC&dA[θ] represent weight vectors of different predicted

values (line 8), weight vectors of different attributes (line 10), and weight vectors of different
predicted values and attributes (line 11). The algorithm calculates the importance weight W [θ]
of each hyperparameter in line 16. Hlist denotes the most important first t hyperparameters.

Variables d(i, j) (lines 8, 10, 11) are used to measure the distance between two instances Ri
and Ij . The basic principle is that closer instances should have greater impact:

d(i, j) =
d1(i, j)∑k
l=1 d1(i, l)

d1(i, j) = e−(
rank(Ri,Ij)

σ
)2 (17)

rank(Ri, Ij) is the ranking of distance between instance Ij and instance Ri. σ is used to control
distance, which is customized by users. Because the expected results can be interpreted by
probability, divide the contribution of each instance in k-nearest neighbor instance by the sum of
all K contributions to normalization. The reason for using rankings instead of actual distances is
that actual distances are related to specific issues, and by using rankings, we ensure that recent
instances always have the same impact on weights.
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Algorithm 1 N-RRelief algorithm
1: Input: A training set Dtrain consisting of a hyperparameters set G(θ1, .., θn) and performance

set C(c1, .., cn), Dtrain = ((θ1, c1), (θ2, c2), ..., (θn, cn));
2: Output: Weight evaluation vector W of Interaction between hyperparameters.
3: Initialize Ndc, NdA[θ], NdC&dA[θ], w[θ], Hlist to 0.
4: for i = 1 to m do
5: Random selection example Ri;
6: Selecting k Neighbors Ij ;
7: for j = 1 to k do
8: NdC = NdC + diff(C,Ri, Ij) · d(i, j);
9: for θ = 1 to n do

10: NdA[θ] = NdA[θ] + diff(θ,Ri, Ij) · d(i, j);
11: NdC&dA[θ] = NdC&dA[θ] + diff(C,Ri, Ij) · diff(θ,Ri, Ij) · d(i, j);
12: end for
13: end for
14: end for
15: for θ = 1 to t do
16: W [θ] = NdC&dA[θ]/NdC − (NdA[θ]−NdC&dA[θ])/(m−NdC);
17: According to the importance weights of hyperparameters from high to low, and taking

the first t into the set of hyperparameters, calculate the interactive importance of hyperpa-
rameters in Hlist:

18: for a = 1 to t do
19: for b = a+ 1 to t do
20: W [θm&θn] = eW [θm]+W [θn]

e
∑
W [θ] ;

21: end for
22: end for
23: end for
24: Return W [θ] and W [θm&θn]
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The N-RReliefF algorithm evaluates the importance measure of the interaction between hy-
perparameters, assigns a weight value to each hyperparameter, and evaluates how the weight is
affected by the hyperparameters, so as to determine a series of the most important algorithm hy-
perparameters. Hyperparameters with large weight and hyperparameters combination indicate
that the adjustment of these hyperparameters is very important to the performance of machine
learning algorithm, while other hyperparameters with small weight mean that even if the hy-
perparameters are adjusted repeatedly, the influence on the performance of machine learning
algorithm is not great. When the computational resources are limited, we can focus on adjusting
the hyperparameters with large weights. For the hyperparameters with small weights, we can
use their default values in machine learning algorithm. When sufficient computing resources are
available, it is still recommended to adjust all hyperparameters. N-RReliefF algorithm can iden-
tify important hyperparameters in machine learning algorithm. The results can guide Bayesian
optimization algorithm to optimize the hyperparameters and improve the performance and effi-
ciency of the algorithm.

4 Experiment

The experiment in this section is divided into two parts. The first part is to analyze the
performance of several hyperparameter optimization algorithms in machine learning hyperparam-
eter optimization process through experiments, and select the best performance hyperparameter
optimization algorithm, using its hyperparameter configuration history data to evaluate the im-
portance of hyperparameter experiments; the second part is to use the N-RReliefF algorithm
based on the hyperparameter configuration history data obtained from experiments. Evaluate
the importance of super parameters and combinations of machine learning algorithms and ob-
tain a series of super parameters which have a significant impact on the performance of the
algorithms. Bayesian optimization algorithm is used to validate the effectiveness of the results
obtained by N-RReliefF algorithm, which further ensures that the importance ranking of the
machine learning algorithm is accurate.

4.1 Hyperparameter tuning

Experimental data and methods

In order to fully verify the superiority of Bayesian optimization algorithm, all experiments are
carried out on the data set from OpenML100 [3] this section. OpenML100 is a benchmark suite
that contains 100 data sets from different domains and 500 to 1000 data points with balanced
distribution.

Two classification methods were analyzed on data sets from OpenML100: SVMs [5] and
Random Forest [15]. For SVMs [5], two types of kernels are analyzed: radial basis function and
sigmoid kernels. All algorithms use the same data pretreatment steps, including interpolation
of missing data and coding of discrete features by One-Hot-Encoding. Support Vector Machine
(SVM) is sensitive to the proportion of input variables, so it is necessary to standardize the input
variables.

After data pretreatment, each classification method is optimized by using grid search, ran-
dom search and Bayesian optimization algorithm. In order to ensure that the hyperparameter
optimization method does not produce any deviation because of the configuration space of the
hyperparameter, this section uses the same type and range of hyperparameter for the three hyper-
parameter optimization methods. The hyperparameter types and ranges of the two algorithms
are shown in Tables 1 and 2.
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Table 1: Hyperparameter configuration space in SVM algorithm

SVM hyperparameters Types Configuration space Default value
complexity float [0.001, 1000.0] [1.0]

coef0 integer [0.0, 10.0] [0.0]
gamma float [2−15, 23] [2−15]
shrinking categorical true, false [true]
tolerance float [10−5, 10−1] [10−2]
imputation categorical mean, median, mode [mean]

Table 2: Hyperparameter configuration space in random forest algorithm

Random forest hyperparameter Types Configuration space Default value
split criterion categorical entropy, gini [entropy]
bootstrap categorical true, false [true]

max.features float [0.1, 0.9] [0.1]
min.samples leaf integer [1, 20] [1]
min.samples split integer [2, 20] [2]

imputation categorical mean, median, mode [mean]

Experimental results

Table 3 and 4 show the SVMs performance results of different hyperparameter tuning meth-
ods under the RBF kernel function and sigmoid kernel function, respectively. Table 5 shows
the performance results of random forest algorithm under different hyperparameter optimization
methods. In order to increase the credibility of the results, this section uses 100 data sets from
different domains to verify the average results of each index of SVMs and random forest algo-
rithm using default parameters, grid search parameters, random search parameters and Bayesian
optimization algorithm parameters. The experimental results show that Bayesian optimization
algorithm can obtain the optimal performance and running time in the process of SVMs and
random forest algorithm optimization.

Table 3: Average performance results of the SVM (RBF) algorithms under different hyperpa-
rameter tuning algorithms

Parameter adjustment method Precision F1 − score Recall Runtime
No (using the default value) 0.22 0.30 0.47 1.8s

Grid search algorithm 0.78 0.80 0.78 40.3s
Random search algorithm 0.82 0.82 0.82 28s

Bayesian optimization algorithm 0.94 0.92 0.94 18.2s

Table 4: Average Performance Results of the SVM (sigmoid) Algorithms under Different hyper-
parameter Tuning Algorithms

Parameter adjustment method Precision F1 − score Recall Runtime
No (using the default value) 0.54 0.37 0.49 2s

Grid search algorithm 0.80 0.82 0.81 42.9s
Random search algorithm 0.85 0.83 0.81 30s

Bayesian optimization algorithm 0.95 0.94 0.94 20.1s
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Table 5: Average performance results of the random forest algorithms under different hyperpa-
rameter tuning algorithms

Parameter adjustment method Precision F1 − score Recall Runtime
No (using the default value) 0.87 0.89 0.87 2.5s

Grid search algorithm 0.93 0.93 0.90 45.2s
Random search algorithm 0.94 0.93 0.93 35.3s

Bayesian optimization algorithm 0.98 0.97 0.97 25.5s

4.2 Importance assessment of hyperparameter

In Section 4.1, two classifiers use hyperparameter optimization N-RReliefF algorithm to
generate a large number of hyperparameter configuration and performance data (including the
optimal hyperparameter configuration and performance) during the operation process. These
data are used to evaluate the importance of hyperparameter in the two classifiers.

Each classifier is shown by a figure and a table. Fig. 2 shows the average hyperparameter
importance of hyperparameter and hyperparameter combination by bar graph. The X axis rep-
resents the hyperparameter and hyperparameter combination name, and the Y axis represents
the hyperparameter importance weight. The higher the weight, the greater the impact of hyper-
parameters or combinations on performance. If it can not be adjusted to the appropriate value,
the accuracy of the algorithm will be reduced.

Figure 2: N-RReliefF algorithm evaluate hyperparameter and combination importance-
SVM(RBF kernel)

Table 6 uses the Bayesian optimization algorithm to fix the two most important hyperpa-
rameters (using their default values) and adjust the other hyperparameters according to the most
important hyperparameters selected by the N-RReliefF algorithm. The performance and run-
ning time of hyperparameter optimization are compared when all hyperparameters are adjusted
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and only the first three hyperparameters with great importance are adjusted according to the
algorithm.

Table 6: Bayesian optimization algorithm to adjust the performance of different
hyperparameters-SVM(RBF kernel)

Hyperparameters Precision F1 − score Recall Runtime
Fixed Gamma 0.35 0.32 0.35 16.3s

Fixed Complexity 0.75 0.70 0.72 15.8s
Adjust all hyperparameters 0.94 0.92 0.94 18.2s
Adjust N-RReliefF and

select top three hyperparameters 0.92 0.92 0.90 9.4s

SVM results: Fig. 2 and Fig. 3 analyze two kinds of kernel functions of SVMs, RBF
kernel function and sigmoid kernel function, respectively. The experimental results clearly show
that the most important hyperparameter in both cases are gamma, and the second important is
complexity. This conclusion is validated by the experiments of different hyperparameter adjust-
ment by Bayesian optimization algorithm: the hyperparameter gamma without optimizing, even
if all other hyperparameters are adjusted, the classifier will get the worst performance, so it is
the most important hyperparameter, complexity is the second. In addition, the performance of
Bayesian optimization algorithm adjusting the first three important hyperparameters according
to N-RReliefF algorithm is not different from that of adjusting all the super-parameters, and the
optimization time is greatly accelerated. Fig. 3 shows that the interaction between hyperparam-
eters Gamma and Complexity is more important than that of Complexity itself when using the
sigmoid kernel. Experience shows that Gamma and Complexity are important hyperparameters
in SVM (see Table.7).This paper uses a wide range of data sets to provide systematic validation
for traditional experience. The least important hyperparameter for SVM’s accuracy is whether
to use shrinkage heuristic algorithm. The purpose of this hyperparameter is to reduce computing
resources rather than improve prediction performance. According to the criteria for calculating
the impact of hyperparameters on performance, its importance weight accords with the actual
results.

Table 7: Bayesian optimization algorithm to adjust the performance of different
hyperparameters-SVM(sigmoid)

Hyperparameters Precision F1 − score Recall Runtime
Fixed Gamma 0.60 0.62 0.66 15.3s

Fixed Complexity 0.75 0.75 0.73 16.2s
Adjust all hyperparameters 0.95 0.94 0.94 20.1s
Adjust N-RReliefF and

select top three hyperparameters 0.93 0.92 0.93 10.2s

Results of the random forest algorithm: Fig. 4 shows the experimental results of the
random forest algorithm. The performance of the random forest algorithm is contributed by a
small number of hyperparameters. Min. sample leaf and Max. features are the most important
hyperparameters (see Table.8). In the experimental process, bootstrap is the most important
hyperparameter on only a few data sets. The split criterion is the most important parameter
in the data set ’scene’. Similarly, the experimental results are consistent with the Bayesian
optimization algorithm validation experiment and manual parameter adjustment experience.

The final conclusion: For all classifiers, the performance changes in most cases depend
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Figure 3: N-RReliefF algorithm evaluate hyperparameter and combination importance-
SVM(sigmoid)

Table 8: Bayesian optimization algorithm to adjust the performance of different
hyperparameters-random forest

Hyperparameters Precision F1 − score Recall Runtime
Fixed Gamma 0.92 0.90 0.90 20.3s

Fixed Complexity 0.93 0.92 0.92 18.9s
Adjust all hyperparameters 0.98 0.97 0.97 25.5s
Adjust N-RReliefF and

select top three hyperparameters 0.96 0.95 0.95 13.5s

on a small number of hyperparameters. In many cases, the same set of hyperparameters can
be applied to different data sets that have the same domain and similar data characteristics.
Therefore, it is necessary to understand the importance of hyperparameters in many cases,
such as setting the default value of the algorithm, analyzing the automated hyperparameter
optimization program and so on. In addition, understanding the importance of hyperparameters
is a scientific attempt in itself, and can also provide guidance for algorithmic developers.

More interestingly, the experimental results show that the hyperparametric interpolation
strategy has little effect on the performance of the classifier. In people’s experience, the inter-
polation strategy is important, but this experiment shows that for interpolation, which strategy
has little effect on the results.

It should be noted that the results provided in this section do not mean that only adjusting
the most important hyperparameters and combinations is sufficient. Although Hutter [16] and
others have shown that this can indeed lead to faster improvements, they also say that when
there are enough computing resources, it is still recommended to adjust all hyperparameters.
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Figure 4: N-RReliefF algorithm evaluate hyperparameter and combination importance-random
forest

5 Conclusion

In this paper, we compare the performance of Bayesian optimization algorithm, grid search
and random search on several datasets. The results show that Bayesian optimization algorithm
is superior to other two algorithms in classifier performance and running time. At the same
time, N-RReliefF algorithm is used to determine the importance of the interaction between
hyperparameters and hyperparameters on 100 data sets. The results show that the same hy-
perparameters have similar importance on different data sets. For SVMs, the hyperparameters
Gamma and Complexity are the most important, and for random forest, Min. sample leaf and
Max features are the most important. In order to verify the experimental results, Bayesian op-
timization algorithm optimizes different hyperparameters for each classifier. The results of this
experiment are consistent with those of N-RReliefF, and to a large extent with popular views.
A surprising result of this analysis is that data interpolation strategy has little impact on perfor-
mance, which may be limited to the interpolation strategy used in this experiment. It is further
proved that this conclusion needs to be studied as a whole and other interpolation strategies are
added.

Future work will analyze which values of important hyperparameters are important, and
provide users with the range and information of hyperparameters that can achieve better per-
formance. In addition, it can be extended to regression and clustering algorithms to provide
useful experimental support for the field of machine learning algorithm hyperparameter tuning
optimization. In addition, the algorithm will be extended to the field of in-depth learning to
optimize various network models (e.g. CNN, RNN models) and determine the importance of
hyperparameters.
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