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Abstract: Human Activity Recognition (HAR) is a challenging task in the field of
human-related signal processing. Owing to the development of wearable sensing tech-
nology, an emerging research approach in HAR is to identify user-performed tasks by
using data collected from wearable sensors. In this paper, we propose a novel system
for monitoring and recognizing daily living activities using an off-the-shelf smart band
and two smart shoes. The system aims at providing a useful tool for solving problems
regarding body part placement, fusion of multimodal sensors and feature selection for
a specific set of activities. The system collects inertial and plantar pressure data at
wrist and foot to analyze and then, extract, select important features for recognition.
We construct and compare two predictive models of classifying activities from the
reduced feature set. A comparison of the classification for each wearable device and
a fusion scheme is provided to identify the best body part for activity recognition:
either the wrist or the feet. This comparison also demonstrated the effective HAR
performance of the proposed system.
Keywords: Human Activity Recognition (HAR); Daily Activity Recognition (DAR);
Daily Living Activity (DLA); Feature Selection; Smart-Band; Smart-Shoes.

1 Introduction

Human Activity Recognition (HAR) is an emerging research area in human-machine inter-
action [5, 16, 19]. HAR is also an essential aspect of other fields, especially localization [21, 26],
health monitoring [28], medical diagnostics and rehabilitation [14,33]. HAR has challenges that
are common with those in other recognition areas, such as face recognition and speech recognition.
Some of these challenges include the determination of which attributes to measure, the design of
feature-extraction algorithms, and the development of efficient computational techniques. Never-
theless, HAR exhibits higher complexity because human activities are more various to formulate
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its structure compared with face or speech. Additionally, HAR requires different sensing systems
for different applications. The recognition of some certain periodic activities, such as walking, is
clear [20,37]. However, the recognition of other activities is challenged because people performs
a lot of activities a day. Moreover, people occasionally perform many activities at the same time.

Recently, the development of sensor technologies, especially wearable sensors, has advanced
numerous design for activity recognition [4,8,18,22]. Wang et al. [35] used a single waist-worn tri-
axial accelerometer to recognize six activities based on a hidden Markov model. Banos et al. [2]
presented a mobile system based on wearable inertial and electromyography sensors to measure
trunk postures and muscle signals. Their evaluation proved that the system can be acceptable
for use in measuring trunk endurance. Laudanski et al. [17] mounted two inertial measurement
units (IMU) consisting of accelerometer and gyroscope sensors onto user’s shanks to classify gait
activities. After deriving frequency features, a k-nearest neighbor (KNN) algorithm was used
to classify the activities. Najafi et al. [23] developed an ambulatory system using accelerometer
and gyroscope sensors, and attached it onto human chest to recognize daily activities. Storm
et al. [32] utilized commercial instruments to examine step detection and HAR using triaxial
accelerometers. In their study, HAR was performed using a DynaPort move-monitor worn on
the lower back and an ActivPAL kit attached to the shanks of users. Their method performed
well in terms of recognizing five basic ambulatory activities.

HAR systems based on smartphones have also been developed [26,27,29,30]. Pei et al. [26]
constructed a Least Square SVM-based model to classify six activities using sensors from a
smartphone. Using the smartphone’s inertial data, a HAR dataset was created and published
as a benchmark for human activity recognition [27]. On this database, San-Segundo et al. [30]
created frequency features and developed a Gaussian Mixture model to segment the activities.
Another approach used for HAR systems is based on smart watches [11,24,29]. Gyorbiro et al. [11]
used a smart watch connected to a smartphone via Bluetooth to collect acceleration, magnetic,
and angular speed data of six activities at the wrist, hip, and ankle. A neural network model
was then applied to classify these activities. Moreover, convolution neural network (CNN) have
been previously applied to recognize human activities using inertial data from smartphones [29].

HAR systems based on smart shoes have also been presented [13, 38]. In a previous publi-
cation, we used two smart shoes to classify three ambulatory activities based on a new pressure-
based feature. Zhang et al. utilized foot-force sensors and derived basic statistical features to
classify five mobile activities. Fusing the aforementioned sensing approaches, different models
have been presented to solve the HAR problem [3,9,20]. Bao et al. [3] classified twenty activities
using five biaxial accelerometers on the arm, hip, thigh, wrist, and ankle with an accuracy of
84.26% using decision tree classifiers. Huynh et al. [12] placed totally 12 accelerometers on the
shoulders, wrists, elbows, knees, ankles and both sides of the hip and then combined multiple
eigenspaces with Support Vector Machine (SVM) to recognize eight daily activities. In sum-
mary, in the approaches focused on wearable sensors, researchers commonly addressed HAR by
identifying tasks performed by users using inertial sensors, particularly accelerometers.

Many features derived from acceleration data have been presented for addressing HAR
problems. These features are essentially based on statistical computations such as the mean,
median, [1, 26, 34, 36], or correlation between the axes of acceleration [6, 10, 36]. Features have
also been created based on signal-magnitude processing [6,11]. Another category of acceleration-
derived features is frequency-based features [3, 7]. Several researchers have summarized the
presented features and tested them with particular sensor setups [1,10]. Gonzalez et al. [10] used
two smart watches to record accelerations at the wrists of users during three activities, namely
walking, standing and resting, and then derived a list of common statistical features. A filter
feature selection (FS) and a wrapper feature selection were then applied sequentially to select
important feature sets for classification. A Genetic Fuzzy Finite State Machine (GFFSM) model
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was presented to classify activities based on the selected feature sets.

Although advances in wearable sensors have facilitated the design and deployment of HAR
systems, developing HAR applications with high accuracy remains a challenging task. It is
because human activity is highly diverse, and therefore, HAR requires effective selection and
efficient incorporation of sensors to obtain an accurate classification. In this paper, we aim
at addressing some of the important issues in wearable-sensors-based HAR regarding sensor
placement, sensor fusion, and feature selection from inertial and plantar-based data. These
issues are evaluated in a user-dependent approach for daily activity recognition using a smart
band and two smart shoes. We design a wearable monitoring system using a smart band, a pair
of smart shoes and a smartphone to synchronously gather data from two users. The wearable
monitoring system gathers inertial data at the user’s wrist using built-in accelerometer and
gyroscope sensors of the smart band. Using the sensors integrated into the smart shoes, the
system collects acceleration, angular speed, and plantar pressure from the left and right feet.
The plantar pressure consists of eight sensing data from eight metatarsal areas on each foot. The
collected data are used to analyze and recognize the daily activities. The contribution of the
paper includes: presenting a wearable monitoring system that can synchronously track human
activities; exploring the optimal body part between the wrist and feet to attach sensors for the
best HAR; evaluating activity classification using a data-fusion platform; examining state-of-the
art features derived from inertial data to determine the useful features for activities; comparing
predictive models for classifying daily activities.

The remainder of this paper is organized as follows. Section 2 provides the details of the
wearable monitoring system that is used to collect data from the daily activities. Section 3 de-
scribes the nine aforementioned activities, summarizes the state-of-the-art features, and explains
the feature-selection method and the predictive models for recognizing these activities. The ex-
perimental results are presented in Section 4. Finally, we conclude and identify future works in
Section 5.

2 Wearable sensing system for daily activity monitoring

In this section, we describe the design of the proposed wearable sensing system and the
techniques used to synchronously collect inertial and plantar-pressure data from the wearable
devices. To recognize human activities, we created a wearable sensing system to acquire the
motion data of user activities based on a smart band and two smart shoes. We used the smart
band to obtain triaxial acceleration and triaxial angular speed data from the participants’ wrist,
whereas, the smart shoes were utilized to collect triaxial acceleration and eight pressure values
from the insoles of shoes. These devices were connected to a smartphone via Bluetooth to control
and synchronize data acquisition. Figure 1 shows the architecture of the proposed sensing system.

Gao et al. [9] stated that recognition accuracy does not vary more than 1% when the sampling
rate is increased above 50Hz. In [31], authors concluded that using a low sampling rate (25Hz)
for accelerometers and pressure sensors possibly produces high accuracy for posture and activity
recognition. Therefore, to save energy and facilitate implementation, we set the sampling rate of
the wearable system to 50Hz. We required the user to wear the smart shoes and smart band and
to hold the smartphone in his pocket during experimentation. The participants conducted each
separate activity for a specific duration. The collected data are continuously saved into a SQL
database that can be uploaded to cloud for remote processing. The database is also used for
offline analysis and classification to evaluate the performance in terms of the mentioned issues.
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Figure 1: Wearable sensing system

3 Daily activity recognition

This section describes the activities of interest and the experimental setup in the study.
We depict and analyze the corresponding inertial and plantar-pressure data of these activities
obtained from the right wrist and both feet. In particular, we consider nine daily activities that
require movement of both hands and feet. Figure 2 shows the activities studied in the paper.

The nine conducted activities were formed from three groups of similar activities, as de-
scribed in Table 1. Group 1 represents ambulatory activities, which are closely related to foot
movement. Group 2 represents activities that are dominated by hand movement. Finally, group
3 represents activities that include a balanced mixture of hand and foot movement. The com-
bination of these activity groups is used to evaluate the importance of the relationship between
the sensor placement and the activities.

Table 1: Groups of daily activities.

Group Activity (Denotation)
1 Standing (A1) Walking (A2) Jogging (A3)
2 Window cleaning (A4) Tooth brushing (A5) PC using (A6)
3 Door opening (A7) Floor mopping (A8) Book carrying (A9)

To recognize activities, the sensory data from different sensors in the three devices are first
smoothed using a low-pass Butterworth filter. The filtered data are then merged sequentially
to evaluate their importance in activity recognition. Then, we derive all possible features from
these data based on statistics, customization, and energy computation. Finally, we analyze and
rank all of the features derived from the sensory data, and select subsets of important features
for classification. This process is described in Figure 3.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2: Descriptions of the experimental activities: (a) Standing; (b) Walking; (c) Jogging;
(d) PC Using; (e) Tooth Brushing; (f) Window Cleaning; (g) Door Opening; (h) Floor Mopping;
(i) Book Carrying
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Figure 3: Architecture of activity recognition

3.1 Experimental configuration

Users wear the sensor devices and run the wearable system while conducting the activities.
The wearable sensing system continuously records all sensory data and saves data in a SQL-
formatted dictionary for offline processing. Figure 4 and 5 depict the acceleration and angular
speed, respectively, obtained at a user’s wrist for the nine activities. The angular speed data of
the activities on the right shoe are shown in Figure 6.

Herein, we accounted for the issues in offline-segmented activity recognition, by starting the
system immediately before the activities begans and stopping it immediately after the activities
concluded, which ensured that only the motion data from the activities were obtained. Then,
in the offline database, we divided the data into equal-time segments for all activities. We
used both the event-defined and the sliding windows for segmentation. We allowed the users
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Figure 4: Wrist acceleration for the nine studied activities: (a) Book Carrying; (b) Door Opening;
(c) Floor Mopping; (d) PC Using; (e) Jogging; (f) Standing; (g) Tooth Brushing; (h) Walking;
(i) Window Cleaning

to separately conduct the "Door Opening" and "Book Carrying" activities, which are distinct
actions, and collected the data for each action. For the other activities, the users performed the
corresponding actions continuously for 5-10 minutes. We recorded all sensory data and equally
segmented the data offline into 10-seconds samples.

3.2 Feature extraction

From the collected data for each segmented activity, we extracted significant motion features
to recognize each activity. Specifically, we considered features based on statistics, correlation,
frequency, and magnitude. The following features, derived from the inertial data, were taken
into accounts:
(1) The statistic features comprised the mean, median, mode, range, skewness, kurtosis, 4-th
and 5-th central moment, standard deviation, variance, mean absolute deviation, and sum of
absolute values. The description of these features are as follows:
- Mean [1,6, 10,26,34,36]: the average of the data segmentation X

µ =
1

n

n∑
i=1

xi (1)
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Figure 5: Wrist angular speeds for the nine studied activities: (a) Book Carrying; (b) Door
Opening; (c) Floor Mopping; (d) PC Using; (e) Jogging; (f) Standing; (g) Tooth Brushing; (h)
Walking; (i) Window Cleaning

- Median [1, 7, 26]: the middle value of the data segmentation X

µ̃ =

{
X(n+1

2 ) n : oddvalue
X(n

2
)+X(n

2
+1)

2 n : evenvalue
(2)

- Mode [1, 26]: the most frequently occurring value µ̂ in the data segment X - Range [1]: the
maximum difference between the values within the sliding window

r = maxni=1(xi)−minni=1(xi) (3)

- Skewness [1, 26]:

γ1 =
1
n

∑n
i=1 (xi − x)3

(
√

1
n

∑n
i=1 (xi − x)2)3

(4)

- Kurtosis [1, 26]:

γ2 =
1
n

∑n
i=1 (xi − x)4

(
√

1
n

∑n
i=1 (xi − x)2)2

(5)

- Moment [1, 10, 34, 36]: we selected the 4-th and 5-th moments of the data segment as derived
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Figure 6: Angular speeds measured at the(g) Tooth Brushing; (h) Walking; (i) Window Cleaning

features.

µ4 =
1

n

n∑
i=1

(xi − x)4 (6)

µ5 =
1

n

n∑
i=1

(xi − x)5 (7)

- Standard deviation [6, 7, 10,34,36]:

σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2 (8)

- Variance [1, 6, 26]:

σ2 =
1

n

n∑
i=1

(xi − µ)2 (9)

(2) Magnitude-based features comprised the mean absolute deviation (MAD), signal magnitude
area (SMA), root mean square (RMS), intensity of movement (IM), sum of absolute values (SAV).
The description of these features are as follows:
- Mean absolute deviation [6, 10]:

MAD =
1

n

n∑
i=1

|xi − µ| (10)
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- Signal Magnitude Area [7, 10,34,36]:

SMA =
1

n

n∑
i=1

|xi − x| (11)

- Root mean square [6, 10]:

RMS =

√√√√ 1

n

n∑
i=1

x2
i (12)

- Intensity of movement [10,11]:

IM =
1

n

n∑
i=1

|xn−i+1 − xn−i| (13)

- Sum of absolute values [10]:

SA =
1

n

n∑
i=1

|xi − x| (14)

(3) Correlation-based features comprised the correlation-between-axes values. The description
of these features are as follows:
- Correlation between axes [6, 10, 36]: the Pearson correlation coefficient between two data seg-
ments X = x1, x2, ..., xn and Y = y1, y2, ..., yn is defined as:

ρXY =
n (
∑n

i=1 xiyi)−
∑n

i=1 xi
∑n

i=1 yi(
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
) (
n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2
) (15)

(4) Frequency-domain features comprised the average energy (AE), dominant frequency (DF),
and amplitude values. The description of these features are as follows:
- Average energy [1, 3, 6, 10, 34, 36]: the average of the energies in three axes of the triaxial
sensors. The energy is calculated by summing all squared discrete fast Fourier transform (FFT)
component magnitudes of the signal.
- Dominant frequency [7,26]: the frequency determined in the FFT-domain at which the discrete
FFT component magnitude is the largest.
- Amplitude [1, 7, 26]: the amplitude at the dominant frequency in the FFT-domain.
To extract the indicators from the plantar-pressure data obtained from the eight pressure sensors,
we derived the following features:
◦ Statistical features [38]: these features comprised the mean, max, and standard deviation
of the pressure data. The formulas for these functions are the same as those described above.
◦ Correlation between the counterpart sensors from both feet [38]: we calculated the corre-
lation of the plantar-pressure data collected from counterpart sensors that are placed corre-
spondingly under two feet. The correlation computation is as described in Eq. 15.
◦ Pressure area [13]: this feature is computed as the integral of the pressure data. In an
earlier study [13], we used this feature for each step to classify three ambulatory activities
with an accuracy rate of 95.2%. The formula to calculate this feature for a segment of k-th
pressure, Pk = {Pk(1), Pk(2), , ..., Pk(n)}, is described as follows:

SPk
=

n∑
i=1

Pk(i). (16)
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We applied different approaches to the acceleration, angular speed and plantar-pressure data
to obtain features for classification. Table 2 summarizes the list of derived features. Here, (x, y, z)
and (b, rs, ls) represent the (X,Y, Z) axes and (band, right shoe, left shoe), respectively. The
second column of the table denotes the notations of the corresponding feature names in the first
column. The third column contains the listed segmented data that are employed to extract the
corresponding feature groups in the first column. The last four rows, i.e., mean, max, standard
deviation, and pressure area, are the four features that are extracted from the plantar-pressure
data.

Table 2: List of derived features.

Feature Name Notation Applied Data
mean µ
mode µ̂
median µ̃
range r

skewness γ1 abx, a
b
y, a

b
z, ω

b
x, ω

b
y, ω

b
z, a

rs
x , a

rs
y , a

rs
z , ω

rs
x , ω

rs
y , ω

rs
z , a

ls
x , a

ls
y , a

ls
z , ω

ls
x , ω

ls
y , ω

ls
z

kurtosis γ2

4-th moment µ4

5-th moment µ5

standard deviation σ
variance σ2

mean absolute deviation MAD
signal magnitude area SMA

root mean square RMS abx, a
b
y, a

b
z, ω

b
x, ω

b
y, ω

b
z, a

rs
x , a

rs
y , a

rs
z , ω

rs
x , ω

rs
y , ω

rs
z , a

ls
x , a

ls
y , a

ls
z , ω

ls
x , ω

ls
y , ω

ls
z

intensity of movement IM
sum of absolute values SA

correlation ρ

(abx, a
b
y), (a

b
y, a

b
z), (a

b
z, a

b
x), (ωbx, ω

b
y), (ω

b
y, ω

b
z), (ω

b
z, ω

b
x),

(arsx , a
rs
y ), (arsy , a

rs
z ), (arsz , a

rs
x ), (ωrsx , ω

rs
y ), (ωrsy , ω

rs
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3.3 Feature selection

In this paper, we used the filter technique to reduce the computational complexity and
accelerate feature selection. Specifically, we applied the RELIEF-F method [15] to score the
extracted features. The RELIEF-F method is based on the average of the K near misses from
each class. We analyzed and ranked all features derived from the sensory data, and then, selected
subsets of important features for classification. Here, sensory data from each device are indepen-
dently passed into the feature extractor to derive the features. The feature selector scores and
ranks these features to form an effective subset of feature for classification. We also merged the
corresponding features from the devices to assess activity recognition with sensor fusion schemes.
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3.4 Classification

To classify nine daily living activities, we constructed two classifiers, i.e., KNN and CART.
Using the results from the feature selector, we passed the selected features subset into the clas-
sifiers and compared the performance of the predictive models. Given a feature subset of m
training samples

{
x(i), y(i)

}m
i=1

, the KNN classifier classifies each test sample x(k) based on the
Euclidean distance of the test sample x(k) to each training sample x(i). The Euclidean distance
is calculated as follows:

d(x(k), x(i)) =

√√√√ N∑
j=1

(x
(i)
j − x

(k)
j )2. (17)

The k training samples corresponding to the k shortest distances are used to categorize the test
sample. We utilize the bagging approach for KNN classification. Specifically, the k training
samples that have the shortest distances to the test sample are bagged in a group G. Then, the
labels of these k samples are considered. The test sample is classified into the class that has the
highest occurrence probability in the group G. The decision tree classifier is constructed based
on a flowchart-like structure. At each internal node, a value test is conducted on an attribute of
the selected feature subset to split the outcome into two groups. In other words, at each node,
the tree divides the data into two branches. This splitting process is recursively repeated until
either the groups at a node belong to the same class or the groups have the same attribute values.

4 Experimental results

In the experiments, we set the sampling rate of the system to 50Hz and required two par-
ticipants to the wear smart band and smart shoes and perform each segmented activity for 10
seconds to collect data. We used a separate sliding window to divide the data series into equal
segments of recorded data. Each segment was used as a sample of an activity for recognition.
In total, there were 363 samples of nine activities. We applied the proposed method presented
to each sample to recognize its corresponding activity label. First, we removed noise in the
signal by applying a low-pass Butterworth filter with the order of N = 6 and cut-off frequency
fc = 10Hz. Then, we create feature sets using a feature extractor with the operations listed in
Table 2. Finally, applying the feature selection scheme RELIEF-F with K=10 on the feature
sets, we identified the most important features for classifying activities on each device and fusion
of devices.

Figure 7a and 7b depict results of feature selection for the features derived at the right smart-
shoe and the corporation of both shoes in the descending order of their importance, respectively.
Figure 7c depicts the 20 most important features derived at the band using the feature selection
scheme in the descending order of their importance. Fusing all features created from all sensors
of all devices and evaluating their importance, we obtain a set of 20 most important features
as shown in Figure 7d. From this evaluation, we can see that the features derived from inertial
data at the foot contribute a more important impact on recognition of the 9 activities than the
features derived from inertial data at the wrist because the first 20 most important features in
Figure 7b and 7a are all selected from data collected on the smart-shoes. Furthermore, it can
be observed from Figure 7b and 7a that the two smart-shoes have a similarly influence on the
recognition. From Figure 7a, 7b and 7c, we can draw a statement that using gyroscope sensors
in the smart-shoes provides a better performance of recognizing the nine activities than using
accelerometers at the feet because the all 20 first features in these figures are related to the smart-
shoes. From the feature subsets, we applied 2 classifiers, i.e., KNN and CART, to recognize the
activity of each sample. We examined the prediction on various feature sets to evaluate the
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Figure 7: List of most important features for all activity classification: (a) Important features of
a smart shoe; (b) Important features of two smart shoes; (c) Important features of smart band;
(d) Important features of the sensor fusion

ability of each classifier. It should be noted that we do not need to test all features in the feature
sets. Because the importance values of the features in each set have been measured in FS step,
we sequentially selected features from the evaluated set according to descending importance.
Herein, we examined sets of 1-40 features for each case. Figure 8 shows the accuracy rates of
different classifiers with respect to the number of features for each case.
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Figure 8: Accuracy of all activity classification versus the number of selected features: (a) A
smart band; (b) A smart shoe; (c) A pair of smart shoes; (d) Sensor fusion

It can be seen that in overall, the KNN classifier exhibits a better performance than the
CART classifier for recognizing the nine studied activities. Using the KNN classifier, the maximal
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result (89.1%) for recognition is obtained with 21 features for the smart band case. For features
derived from a smart shoe, the KNN-based recognition exhibits the optimal performance at 39
features. More features are required for the best recognition when using the smart shoe than
when using the smart band, but the result is much lower (77%). Merging two smart shoes can
improve the recognition up to 80% with 33 features. Finally, the data fusion scheme provides
the best result (90.7%) with the fewest features used, i.e., 18 features. Therefore, we recommend
the use of the data fusion scheme and application of the KNN classifier to recognize the nine
studied activities with the 18 features depicted in Figure 7d.

Table 3 shows the details of the recognition results for all nine activities. The smart band
was effective in recognizing the Door Opening and PC Using activities, which are significantly
dependent on the hand movement. Particularly, the precision, recall and f1-score values of the
recognition for Door Opening and PC Using using the smart band’s sensors were all higher than
the recognition values using the total combination of sensors. The f1-scores when using the smart
band’s sensors were 3.6% and 2.1% higher than the f1-scores when using the total combination of
sensors for Door Opening and PC Using, respectively. The smart shoes can recognize theWalking
and Jogging activities better than the smart band. The shoes-based recognition of these activities
yielded an f1-score improvement of 2.2% and 2.0% compared with that of the smart band-based
recognition. For the remain activities, the smart band-based recognition clearly surpasses the
smart-shoes-based recognition. Combining all sensors provided the best recognition ability for
all nine activities. Using the sensor fusion approach, the f1-score of all activities was 1.6% and
11.3% better than when using the smart-band and smart-shoe approaches, respectively.

Table 3: Classification metrics of each activity with different approaches

Sensing method Smart-band sensors Smart-shoe sensors Combination of sensors
Activity precision recall f1-score precision recall f1-score precision recall f1-score
BookLoading 88.2% 93.8% 90.9% 73.3% 68.8% 71.0% 88.2% 93.8% 90.9%
DoorOpening 87.5% 93.3% 90.3% 68.4% 86.7% 76.5% 86.7% 86.7% 86.7%
PCUsing 100.0% 95.7% 97.8% 95.7% 95.7% 95.7% 95.7% 95.7% 95.7%
Standing 94.1% 80.0% 86.5% 71.4% 75.0% 73.2% 94.1% 80.0% 86.5%
ToothBrushing 89.3% 96.2% 92.6% 83.3% 57.7% 68.2% 92.6% 96.2% 94.3%
Mopping 95.8% 95.8% 95.8% 82.1% 95.8% 88.5% 96.0% 100.0% 98.0%
WindowsCleaning 90.9% 87.0% 88.9% 77.3% 73.9% 75.6% 95.7% 95.7% 95.7%
Walking 86.4% 95.0% 90.5% 90.5% 95.0% 92.7% 95.0% 95.0% 95.0%
Jogging 90.0% 93.8% 91.8% 93.8% 93.8% 93.8% 100.0% 93.8% 96.8%
Mean 91.4% 92.3% 91.7% 81.8% 82.5% 81.7% 93.8% 93.0% 93.0%

Figure 9 shows the average value of the performance metrics of the smart band-smart shoes
fusion (B-S Fusion) and the reference methods. The multi-sensor method [9] yielded the best
recognition result by fusing data from the accelerometers on the chest waist, thigh, and side; then,
extracting the mean and var features; and, finally, using a decision tree classifier to recognize the
activities. We utilized this approach on the collected database by applying the presented feature
extractor on acceleration data from all devices and use a decision tree on the extracted feature
set to evaluate the method performance. The RF+KNN method [25] extracted 12 features for
each sample of acceleration collected at the wrist based on the mean, energy, frequency entropy,
correlation between axes. Then, a variety of classifiers was applied to classify activities. Among
these classifiers, a combination of random forest (RF) and KNN using the average of probabilities
approach provided the best result.

It is clear that the proposed fusion approach outperformed the reference methods for activity
recognition in terms of all four metrics, i.e., precision, recall, f-1 score, and accuracy. In particular,
the accuracy rate of the B-S fusion method was 7.9% and 7.1% higher on average than the
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Figure 9: Performance comparison of the proposed method and the reference methods

mMulti-sensor [9] and RF + KNN [25] in accuracy rate, respectively. The B-S fusion method
recognized activities better than the RF + KNN method because the B-S fusion method utilized
more sensors in different locations, which in turn can better track the motion of different body
parts during daily activities. This result confirms once again the results shown in Figure 8 and
Table 3. In particular, when applying the same technique, the results of using the B-S fusion
data surpassed the results of using only wrist-related data. Although the multi-sensor method
also used a combination of accelerometers at the right wrist and both feet, this method did not
utilize gyroscope data. Besides, the original paper for the multi-sensor method [9] dealt with
four ambulatory activities, i.e., walking, standing, lying, sitting, and transitional states of these
activities. Therefore, their selected features were not well-performed in this study.

5 Conclusion

This paper addressed the issues of sensor placement, feature selection, and classification in
daily activity recognition using wearable sensors. A combination of a smart band and a pair
of smart shoes was used to collect motion data from users and transfer data to a smartphone
for offline activity classification. In our experiments, the participants wore the smart shoes
and smart band and then, completed the experiments separately for each activity. Using a
separate sliding window, we divided the data series into various segments of recorded data.
From the segmented samples, we derived features and applied a filter feature selection algorithm
to select important subsets. Two classifiers, i.e, KNN and CART, were employed to recognize
the activities. The experimental results showed that the KNN classifier yielded better results
than the CART classifier; the smart band outperformed the smart shoes in recognizing all nine
activities in terms of accuracy and fewer features; the smart band is the best fit for recognizing the
two hand-movement-dominated activities; the smart shoes are the best choice for the two foot-
movement-dominated activities; and using a total combination of sensors is the best approach
for recognizing all nine daily activities in terms of both accuracy and the number of required
features.
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