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Abstract

Due to the increasing complexity in green supplier selection, there would be some important
issues for expressing inherent uncertainty or imprecision of decision makers’ cognitive information
in decision making process. As an extension of intuitionistic fuzzy sets (IFSs) and neutrosophic
sets (NSs), picture fuzzy sets (PFSs) can better model and represent the hesitancy and uncertainty
of decision makers’ preference information. In this study, an attempt has been made to present a
multi-criteria picture fuzzy decision-making model for green supplier selection based on fractional
programming. In this approach, the ratings of alternatives and weights of criteria are represented
by PFSs and IFSs, respectively. Based on the available information, some pairs of fractional
programming models are derived from the Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS) and the proposed biparametric picture fuzzy distance measure to determine the
relative closeness coefficient intervals of green suppliers, which are aggregated for the criteria to
generate the ranking order of all green suppliers by computing their optimal degrees of membership
based on the ranking method of interval numbers. Finally, an example is conducted to validate the
effectiveness of the proposed multi-criteria decision making (MCMD) method.

Keywords: multi-criteria decision making (MCMD), picture fuzzy sets (PFSs), fractional pro-
gramming, biparametric picture fuzzy distance measure, green supplier selection.

1 Introduction
In the past two decades, increased environmental pollution is forcing companies to obtain sensitivity

to environmental awareness [6]. Manufacturers have applied various approaches to improve their
supply chain’s environment performance [25]. Green supply chain integrates environmental thinking
into supply chain management, including product design, material procurement, production processes,
product delivery [2], and managing end-of-life products and waste. Green supplier selection is a critical
component of the green supply chain management strategy [10, 23]. As a result, many researchers
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and practitioners have put their efforts on developing various strategies to improve the green supply
chain management process.

It has been asserted that selecting the right green suppliers has proven to be one of the key issues
faced by operations and purchasing managers to remain competitive [15], and also helps manufacturers
in increasing customer satisfaction and quality of the product. Since it requires considering many new
problems, it is obvious that the decision-making process would be more complex and comprehensive in
the green supply chain management. An important phenomenon among these issues is uncertain and
imprecise data. If the fuzziness and vagueness presented in the decision-making process is ignored,
the results could be misleading. Aiming at reflecting the bounded rationality of decision makers,
Fuzzy set theory is of importance as a result of its merits of mathematically expressing ambiguity and
vagueness. Numerous decision making methods has been extended to multiple fuzzy environments,
such as Neutrosophic sets, Pythagorean fuzzy sets [9], Hesitant fuzzy sets, Intuitionistic fuzzy sets,
and Probability hesitant fuzzy sets [16]. Based on the concept of fuzzy sets (FSs), Atanassov [3]
first introduced the concept of IFS, which is an extension of Zadeh’s FSs [8]. And then, Cuong [7]
proposed the concept of the picture fuzzy set (PFS) to address such a problem that human opinions
involve several types of answers such as yes, abstain, no, or refusal and so on. PFS is characterized
by a positive-membership function (µ(x)), a negative-membership function (ν(x)) and a neutral-
membership function (γ(x)) such that 0 ≤ µ(x) + ν(x) + γ(x) ≤ 1. Different from NS, there is a
restriction on the sum of the three types of membership degrees in PFS, which implies that they
are dependent with each other. PFS is also a very effective tool to express inherent uncertainty
or imprecision of decision makers’ cognitive information in decision making process. However, the
application of multi-criteria picture fuzzy decision-making for green supplier selection is a limited area
of study in literature.

Green supplier selection is a multi-criteria decision-making problem [14]. Decisions are performed
based on the assessment of quantitative and qualitative criteria in two fields including economic and
environmental criteria. Nowadays, various techniques were adopted to select green suppliers. Liang
et al. presented a multi-criteria decision making method based on multi-granularity interval 2-Tuple
fuzzy linguistic set for solving the green supplier selection problems. Govindan et al. [14] proposed
an approach integrated of multi-criteria decision making and multi-objective linear programming. Lo
et al. [20] developed a hybrid model that integrated the best–worst method, TOPSIS and fuzzy
multi-objective linear programming to solve problems in green supplier selection and order allocation.
Gitinavard et al. proposed an extended elimination and choice translating reality method in interval-
valued hesitant fuzzy environment [13]. Mohammadi et al. presented a method of supplier selection
based on interval type-2 fuzzy sets to deal with uncertain information. It can be concluded that various
studies have focused on different fuzzy-based techniques to assess and select green suppliers, including
probabilistic linguistic preference relations[11], interval type-2 fuzzy sets[18, 22, 29], intuitionistic
uncertain linguistic set[17], triangular fuzzy number[4], intuitionistic fuzzy sets[21, 32], trapezoidal
fuzzy numbers [28? ] and neutrosophic set [1]. Most of these studies are based on the assumptions
that the weights of a criterion are represented by the known crisp numbers. However, there exist
little investigation on multi-attribute decision-making problems with both ratings of green suppliers
on criteria and weights being expressed with fuzzy sets [12]. Thus, an interesting and important issue
is how to utilize the unknown weights information of a criterion to select the most desirable green
supplier. Consequently, it is beneficial to combine the advantages of picture fuzzy sets in representing
information and the superiority of fractional programming.

In this paper, we propose a new MCDM method with the concept of the relative-closeness coeffi-
cient, where the weight and the evaluating value of a criterion are represented by intuitionistic fuzzy
sets and picture fuzzy sets, respectively. Moreover, the fractional programming model is used to obtain
the optimal weights of the criteria based on TOPSIS and the proposed biparametric picture distance
measure, which provides us with a very useful way for dealing with MCDM problems in picture fuzzy
environments.

The remainder of this paper is organized as follows. Section 2 introduces the definition of a PFS,
some existing picture fuzzy distance measures and the concept of likelihood for interval numbers.
Section 3 proposes a new biparametric picture fuzzy distance measure. Based on the concept of
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relative-closeness coefficients, Section 4 establishes some auxiliary fractional programming models and
develops a new approach to solve the decision making problems under the PFSs environment. Section
5 presents a numerical example to illustrate the effectiveness of the proposed approach. Finally, a
concrete conclusion is drawn in Section 6.

2 Preliminaries
In this section, we present some basic definitions and results for PFS, picture fuzzy distance

measure and interval numbers.

Definition 1. [7]. A picture fuzzy set (PFS) A in a finite set X is defined as follows:
A = {< x, µA(x), νA(x), γA(x) >, x ∈ X},
where µA(x), νA(x) and γA(x) represent the positive-membership function, negative-membership

function and neutral-membership function of x to set A, respectively. For each point x in X, we have
µA(x), νA(x), γA(x)→ [0, 1] and 0 ≤ µA(x) + νA(x) + γA(x) ≤ 1.

Similar to the IFS, πA(x) = 1− (µA(x) + νA(x) + γA(x)) could be called the refusal-membership
agree of x to set A. For convenience, we can use x = (µA, νA, γA) to represent an element in PFSs.

Definition 2. [7]: Given any two PFSs A and B in a finite set X, their inclusion, union, intersection
and complement are respectively defined as follows:

(1) A ⊆ B iff ∀x ∈ X, µA(x) ≤ µB(x), νA(x) ≥ νB(x), γA(x) ≥ γB(x)

(2) A = B iff ∀x ∈ X, A ⊆ B and A ⊇ B

(3) A ∪B = {x, (max(µA(x), µB(x)),min(νA(x), νB(x)),min(γA(x), γB(x))}

(4) A ∩B = {x, (min(µA(x), µB(x)),max(νA(x), νB(x)),min(γA(x), γB(x))}

(5) coA = Ā = {< x, νA(x), µA(x), γA(x) >, x ∈ X}

Definition 3. d(A,B) is a distance measure between A ∈ PFS(X) and B ∈ PFS(X) if it satisfies
the following properties:

(1) 0 ≤ d(A,B) ≤ 1

(2) if A = B, then d(A,B) = 0

(3) d(A,B) = d(B,A)

(4) if A ⊆ B ⊆ C, then d(A,B) + d(B,C) ≥ d(A,C)

Definition 4. [26, 27]. Given any two PFSs A and B, the normalized picture Hamming distance,
the normalized picture Euclidean distance and the generalized picture distance measure between A and
B are respectively defined as follows:

dH(A,B) = 1
n

n∑
j=1

(|µA(xj)− µB(xj)|+ |νA(xj)− νB(xj)|+ |γA(xj)− γB(xj)|) (1)

dE(A,B) =

√√√√ 1
n

n∑
j=1

(µA(xj)− µB(xj))2 + (νA(xj)− νB(xj))2 + (γA(xj)− γ(xj))2 (2)

dG(A,B) = 1
5(|µA(xj)− µB(xj)|P + |νA(xj)− νB(xj)|P + |γA(xj)− γ(xj)|P

+ |max(µA(xj), νB(xj))−max(µB(xj), νA(xj))|P

+ |max(µA(xj), γB(xj))−max(γA(xj), µB(xj))|P )1/P

(3)
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Definition 5. [31]. Given any two interval numbers a =
[
a−, a+] and b =

[
b−, b+], the likelihood of

a ≥ b is defined as follows:

p(a ≥ b = max

{
(1−max( b+ − a−

L(a) + L(b)), 0), 0
}

(4)

where L(a) = a+ − a− and L(b) = b+ − b−.

3 A new distance measure between picture fuzzy sets
Distance measure plays an important role in a lot of areas. Initially, many studies have focused

on this issue on fuzzy sets, IFSs, NSs and so on, such as Euclidean distance and Hamming distance.
Later, other extensions of the above distance measures were developed for picture fuzzy sets, such as the
normalized picture Hamming distance, the normalized picture Euclidean distance and the generalized
picture distance measure. Although the picture Hamming distance measure and the normalized picture
Euclidean distance measure have their successful application in picture fuzzy clustering and multi-
criteria decision-making, some counter-intuitive phenomenon may occur in practical application. For
example, let A = (0.1, 0.1, 0), B = (0.2, 0.2, 0), and C = (0.2, 0.1, 0) be three picture fuzzy sets. As
we know, when the degree of neutral-membership is equal to zero, PFS reduces to IFS. Thus, A, B,
and C all belong to IFSs. According to the ranking function for the IFSs given in Definition 2, we
have A < B < C, and the Hamming distance measure between A and C should be higher than that
between A and B. According to Definition 4, however, we have dH(A,B) = 0.1, dH(A,C) = 0.05, and
dH(A,B) > dH(A,C), which is against our intuition. To overcome this drawback, we propose a new
biparametric distance measure for PFSs, which is a generalization of the biparametric intuitionistic
distance measure proposed by Boran and Akay [5].

Definition 6. Given any two PFSs A and B, the biparametric distance measure between PFSs A and
B is defined as follows:

d(A,B) = ( 1
3n(t+ 1)P

n∑
j=1

(|t(µA(xj)− µB(xj))− (νA(xj)− νB(xj))− (γA(xj)− γB(xj))|P

+
n∑
j=1
|t(νA(xj)− νB(xj))− (µA(xj)− µB(xj))− (γA(xj)− γB(xj))|P

+
n∑
j=1
|t(γA(xj)− γB(xj))− (µA(xj)− µB(xj))− (νA(xj)− νB(xj))|P )1/P

(5)

Where t=2, 3, 4, ... , parameter t identifies the level of uncertainty.

The biparametric parametric picture distance measure has the capability of distinguishing positive
difference from negative difference, and does not yield the counter-intuitive phenomena. For example,
suppose A = (0.1, 0.1, 0), B = (0.2, 0.2, 0), and C = (0.2, 0.1, 0) be three PFSs. Let t=2 and p=1,
according to Definition 5, we have d(A,B) = 0.017 and d(A,C) = 0.033. The distance measure
between A and B is lower than that between A and C. Meanwhile the measure is consistent with
the fact that A < B < C. However, with Definition 4, we have dH(A,B) > dH(A,C). This implies
our proposed parametric distance measure is more reasonable than the normalized picture Hamming
distance measure.

Theorem 7. d(A,B) is a biparametric parametric distance between two PFSs A and B in X.

Proof. We prove Theorem 1 according to Definition 6. We first show that 0 ≤ d(A,B) ≤ 1. Note that

|t(µA(xj)− µB(xj))− (νA(xj)− νB(xj))− (γA(xj)− γB(xj))| =
|(tµA(xj)− νA(xj)− γA(xj))− (tµB(xj)− νB(xj)− γB(xj))|
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|t(νA(xj)− νB(xj))− (µA(xj)− µB(xj))− (γA(xj)− γB(xj))| =
|(tνA(xj)− µA(xj)− γA(xj))− (tνB(xj)− µB(xj)− γB(xj))|

|t(γA(xj)− γB(xj))− (µA(xj)− µB(xj))− (νA(xj)− νB(xj))| =
|(tγA(xj)− µA(xj)− νA(xj))− (tγB(xj)− µB(xj)− νB(xj))|

since µA(x), νA(x), γA(x) ∈ [0, 1], and µA(x) + νA(x) + γA(x) ∈ [0, 1], we have the following
inequations:

−1 ≤ (tµA(xi)− νA(xi)− γA(xi)) ≤ t

−t ≤ −(tµB(xi)− νB(xi)− γB(xi)) ≤ 1

Then we have

−(t+ 1) ≤ (tµA(xj)− νA(xj)− γA(xj))− (tµB(xj)− νB(xj)− γB(xj)) ≤ t+ 1

This implies

0 ≤ |(tµA(xj)− νA(xj)− γA(xj))− (tµB(xj)− νB(xj)− γB(xj))|p ≤ (t+ 1)p

Similarly, we have the following inequations:

0 ≤ |(tνA(xj)− µA(xj)− γA(xj))− (tνB(xj)− µB(xj)− γB(xj))|p ≤ (t+ 1)p

0 ≤ |(tγA(xj)− µA(xj)− νA(xj))− (tγB(xj)− µB(xj)− νB(xj))|p ≤ (t+ 1)p

Finally, we have the following inequations:

0 ≤( 1
3n(t+ 1)P

n∑
j=1

(|(tµA(xj)− µB(xj))− (νA(xj)− νB(xj))− (γA(xj)− γB(xj))|P

+ |t(νA(xj)− νB(xj))− (µA(xj)− µB(xj))− (γA(xj)− γB(xj))|P

+ |t(γA(xj)− γB(xj))− (µA(xj)− µB(xj))− (νA(xj)− νB(xj))|P ))1/P

Thus, 0 ≤ d(A,B) ≤ 1
Now we prove that d(A,B) = 0 if A = B. If µA(xj) = µB(xj), νA(xj) = νB(xj) and γA(xj) =

γB(xj), we have µA(xj) − µB(xj) = 0, νA(xj) − νB(xj) = 0 and γA(xj) − γB(xj) = 0. Thus, the
distance measure d(A,B) is equal to zero.

We now prove that d(A,B) = d(B,A). Note that

|t(µA(xj)− µB(xj))− (νA(xj)− νB(xj))− (γA(xj)− γB(xj))|P =
|(−1) {t(µB(xj)− µA(xj))− (νB(xj)− νA(xj))− (γB(xj)− γA(xj))}|P ;

|t(νA(xj)− νB(xj))− (µA(xj)− µB(xj))− (γA(xj)− γB(xj))|P

= |(−1) {t(νB(xj)− νA(xj))− (µB(xj)− µA(xj))− (γB(xj)− γA(xj))}|P

|t(γA(xj)− γB(xj))− (µA(xj)− µB(xj))− (νA(xj)− νB(xj))|P

= |(−1) {t(γB(xj)− γA(xj))− (µB(xj)− µA(xj))− (νB(xj)− νA(xj))}|P

Based on definition of absolute value, we have

|t(µA(xj)− µB(xj))− (νA(xj)− νB(xj))− (γA(xj)− γB(xj))|P

= |t(µB(xj)− µA(xj))− (νB(xj)− νA(xj))− (γB(xj)− γA(xj))|P

|t(γA(xj)− γB(xj))− (µA(xj)− µB(xj))− (νA(xj)− νB(xj))|P

= |t(γB(xj)− γA(xj))− (µB(xj)− µA(xj))− (νB(xj)− νA(xj))|P

|t(νA(xj)− νB(xj))− (µA(xj)− µB(xj))− (γA(xj)− γB(xj))|P

= |t(νB(xj)− νA(xj))− (µB(xj)− µA(xj))− (γB(xj)− γA(xj))|P
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Thus, d(A,B) = d(B,A). We now prove the fourth condition of Definition 6. By Definition 6, the
distance measures d(A,B) and d(A,C) are respectively given as follows:

d(A,B) = ( 1
3n(t+ 1)P

n∑
j=1

(|t(µA(xj)− µB(xj))− (νA(xj)− νB(xj))− (γA(xj)− γB(xj))|P

+ |t(νA(xj)− νB(xj))− (µA(xj)− µB(xj))− (γA(xj)− γB(xj))|P

+ |t(γA(xj)− γB(xj))− (µA(xj)− µB(xj))− (νA(xj)− νB(xj))|P ))1/P

d(A,C) = ( 1
3n(t+ 1)P

n∑
j=1

(|t(µA(xj)− µC(xj))− (νA(xj)− νC(xj))− (γA(xj)− γC(xj))|P

+ |t(νA(xj)− νC(xj))− (µA(xj)− µC(xj))− (γA(xj)− γC(xj))|P

+ |t(γA(xj)− γC(xj))− (µA(xj)− µC(xj))− (νA(xj)− νC(xj))|P ))1/P

If A ⊆ B ⊆ C, according to Definition 6 we have 0 ≤ µA(xj) ≤ µB(xj) ≤ µC(xj) ≤ 1, 0 ≤
νC(xj) ≤ νB(xj) ≤ νA(xj) ≤ 1 and 0 ≤ γC(xj) ≤ γB(xj) ≤ γA(xj) ≤ 1. Then we obtain the following
inequations:

|t(µA(xj)− µC(xj))− (νA(xj)− νC(xj))− (γA(xj)− γC(xj))|P
= (|t(µA(xj)− µC(xj))− (νA(xj)− νC(xj))− (γA(xj)− γC(xj))

+tµB(xj)− tµB(xj) + νB(xj)− νB(xj) + γB(xj)− γB(xj)|)P

= (|[t(µA(xj)− µB(xj))− (νA(xj)− νB(xj))− (γA(xj)− γB(xj))]

[t(µB(xj)− µC(xj))− (νB(xj)− νC(xj))− (γB(xj)− γC(xj)]|)p

≤ (|t(µA(xj)− µB(xj))− (νA(xj)− νB(xj))− (γA(xj)− γB(xj)|)

+|t(µB(xj)− µC(xj))− (νB(xj)− νC(xj))− (γB(xj)− γC(xj))|)p

Similarly, we have the following inequations:

|t(νA(xj)− νC(xj))− (µA(xj)− µC(xj))− (γA(xj)− γC(xj))|P

≤ (|t(µA(xj)− µB(xj))− (νA(xj)− νB(xj))− (γA(xj)− γB(xj)|)

+ |t(νB(xj)− νC(xj))− (µB(xj)− µC(xj))− (γB(xj)− γC(xj))|P )

|t(γA(xj)− γC(xj))− (µA(xj)− µC(xj))− (νA(xj)− νC(xj))|

≤ |t(γA(xj)− γB(xj))− (µA(xj)− µB(xj))− (νA(xj)− νB(xj))|

+ |t(γB(xj)− γC(xj))− (µB(xj)− µC(xj))− (νB(xj)− νC(xj))|P )

And then, we have the following inequations:

dP (A,C) = ( 1
3n(t+ 1)P

n∑
j=1

(|t(µA(xj)− µC(xj))− (νA(xj)− νC(xj))− (γA(xj)− γC(xj))|P

+ |t(νA(xj)− νC(xj))− (µA(xj)− µC(xj))− (γA(xj)− γC(xj))|P

+ |t(γA(xj)− γC(xj))− (µA(xj)− µC(xj))− (νA(xj)− νC(xj))|P )

≤ 1
3n(t+ 1)P

n∑
j=1

(|t(µA(xj)− µB(xj))− (νA(xj)− νB(xj))− (γA(xj)− γB(xj))|)

+|t(µB(xj)− µC(xj))− (νB(xj)− νC(xj))− (γB(xj)− γC(xj))|)p

+ 1
3n(t+ 1)P

n∑
j=1

(|t(νA(xj)− νB(xj))− (µA(xj)− µB(xj))− (γA(xj)− γB(xj))|)

+ |t(νB(xj)− νC(xj))− (µB(xj)− µC(xj))− (γB(xj)− γC(xj))|P )
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+ 1
3n(t+ 1)P

n∑
j=1

(|t(γA(xj)− γB(xj))− (µA(xj)− µB(xj))− (νA(xj)− νB(xj))|)

+ |t(γB(xj)− γC(xj))− (µB(xj)− µC(xj))− (νB(xj)− νC(xj))|P )

≤ 1
3n(t+ 1)P

n∑
j=1

[(|t(µA(xj)− µB(xj))− (νA(xj)− νB(xj))− (γA(xj)− γB(xj))|

+|t(µB(xj)− µC(xj))− (νB(xj)− νC(xj))− (γB(xj)− γC(xj))|

+(|t(νA(xj)− νB(xj))− (µA(xj)− µB(xj))− (γA(xj)− γB(xj))|)

+ |t(νB(xj)− νC(xj))− (µB(xj)− µC(xj))− (γB(xj)− γC(xj))| )

+(|t(γA(xj)− γB(xj))− (µA(xj)− µB(xj))− (νA(xj)− νB(xj))|)

+ |t(γB(xj)− γC(xj))− (µB(xj)− µC(xj))− (νB(xj)− νC(xj))|]P

≤ (d(A,B) + d(B,C))P

We know that d(A,C) ≥ 0, d(A,B) ≥ 0, and d(B,C) ≥ 0, and therefore we have the following
inequalities:

d(A,C) ≤ d(A,B) + d(B,C)

We thus prove that d(A,B) is a biparametric parametric distance measure between picture fuzzy sets
A and B, since d(A,B) satisfies Definition 3.

Definition 8. Given any two PFVs α1 and α2, a biparametric distance measure between α1 and α2
is defined as follows:

d(α1, α2) = ( 1
3(t+ 1)P (|t(µα1 − µα2)− (να1 − να2)− (γα1 − γα2)|P

+ |t(να1 − να2)− (µα1 − µα2)− (γα1 − γα2)|P

+ |t(γα1 − γα2)− (να1 − να2)− (µα1 − µα2)|P )1/P (6)

where t = 2, 3, 4, · · · , parameter, and t identifies the level of uncertainty.

4 Fractional programming models for solving MCDM problems with
PFSs environments

For a MCMD problem under picture fuzzy environment, let C = (C1, C2, · · · , Cn) be a set of
criteria, and X = (X1, X2, · · · , Xm) be a set of alternatives to be selected. Let X = (αij)m×n be a
picture fuzzy decision matrix, where αij = (µαij , ναij , γαij ) is a PFV for alternative Xi with respect
to criteria Cj provided by decision-maker, such that 0 ≤ µαij ≤ 1,0 ≤ ναij ≤ 1, 0 ≤ γαij ≤ 1,
0 ≤ µαij + ναij + γαij ≤ 1, i = 1, 2, · · · ,m and j = 1, 2, · · · , n. Therefore, a positive ideal solution X+

and a negative ideal solution X− may be defined in the following way. The degree µ̄αij of positive
membership, the degree ν̄αij of negative membership, and the degree γ̄αij of neutral membership with
respect to attribute Cj ∈ C are 1 and 0, respectively, which can be written as α+

ij = (µ+
αij
, ν+
αij
, γ+
αij

) =
(1, 0, 0) and α−

ij = (µ−
αij
, ν−
αij
, γ−
αij

) = (0, 1, 0). Then, the distance matrix can be given as D+ = (d+
ij),

and D− = (d−
ij), where d

+
ij is the distance between α

+
ij and αij , and d

−
ij is the distance between α

−
ij and

αij , respectively. Assumed that the decision maker constructs a PFS Wj = (Aj , ωj), where ωj is the
weight of the criteria Cj ∈ C on the fuzzy concept “importance”, where ωj ∈ [0, 1], and

∑n
j=1$j = 1.

The importance indices allow us to calculate the best final result as well as the smallest one, which we
can expect in a process leading to a final decision. During the making decision process, the decision
maker may change his/her evaluating weights by adjusting the value of the weight index. So in fact
his/her weight lies in the closed interval ωj =

[
ωlj , ω

u
j

]
, where 0 ≤ ωlj ≤ ωuj ≤ 1. Based on TOPSIS,

the relative-closeness coefficient of each Xj ∈ X, (i = 1, 2, · · · ,m) with respect to X+
i is defined as

follows:
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Ci =

√∑n
j=1(ωjd+

ij)2√∑n
j=1(ωjd+

ij)2 +
√∑n

j=1(ωjd−
ij)2

(7)

Where ωlj ≤ ωj ≤ ωuj for all i = 1, 2, · · · ,m and j = 1, 2, · · · , n.
Obviously, Ci is different for different ωj ∈

[
ωlj , ω

u
j

]
. Values of Ci should be in some range when

Ci takes all values in the interval
[
ωlj , ω

u
j

]
. In other words, Ci is an interval number, denoted by

Rj =
[
C lj , C

u
j

]
. The lower and upper bounds C lj and Cuj of Ci can be captured by solving the

following pair of fractional programming models:

C li = minCi =

√∑n
j=1(ωjd+

ij)2√∑n
j=1(ωjd+

ij)2 +
√∑n

j=1(ωjd−
ij)2

(8)

s.t.C lj ,≤ Cj ≤ Cuj ; j = 1, 2, · · · , n

, and

C li = maxCi =

√∑n
j=1(ωjd+

ij)2√∑n
j=1(ωjd+

ij)2 +
√∑n

j=1(ωjd−
ij)2

(9)

s.t.C lj ,≤ Cj ≤ Cuj ; j = 1, 2, · · · , n

Due to the fact that

∂Ci
∂ωj

=
(ωj)2d+

ij

√∑n
j=1(ωjd−

ij)2/
∑n
j=1(ωjd+

ij)2 + (ωj)2d−
ij

√∑n
j=1(ωjd+

ij)2/
∑n
j=1(ωjd−

ij)2

(
√∑n

j=1(ωjd+
ij)2 +

√∑n
j=1(ωjd−

ij)2)2
≥ 0

Therefore, for j = 1, 2, · · · , n, Ci is a monotonically increasing function of ωij , which means that
Cj reaches its maximum at ωuj and arrives at its minimum at ωlj .

Then, the relative closeness coefficient interval Rj =
[
C lj , C

u
j

]
of the alternative Xi ∈ X for the

decision-maker can be obtained by solving Eqs. (8) and (9) using the existing optimization software
such as Lingo and Excel. Later, using Eq. (4), the likelihood of Xs � Xt for alternatives Xs and Xt

in X can be determined as follows:

P (Xs � Xt) = P (Cs � Ct) = max

{
(1−max( Cut − C ls

L(Cs) + L(Ct)
), 0), 0

}
(10)

where L(Cs) = Cuj − C lj and L(Ct) = Cuj − C lj . Then the likelihood matrix can be obtained as
follows:

P = P (pst)m×n =


p11 p12 · · · p1m
p21 p22 · · · p2m
...

... · · ·
...

pm1 pm2 · · · pmm


Where pst = (Ps ≥ Pt) for alternatives Xs and Xt in X. Thus, an optimal degree of membership

for alternative Xi ∈ X, i = 1, 2, · · · ,m is defined as follows [30]:

rank(Xi) = 1
m(m− 1)(

m∑
s=1

pis + m

2 − 1) (11)

Obviously, rank(Xi) ∈ [0, 1] for alternative Xi ∈ X, i = 1, 2, · · · ,m , and Xs ≥ Xt if and only if
rank(Xs) ≥ rank(Xt).
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The complete procedure for multi-criteria decision making based on the picture fuzzy sets and
fractional programming models can be summarized as follows:

Step 1: Obtain the performance data in the form of picture fuzzy sets αij = (µαij , ναij , γαij )
(i = 1, 2, · · · ,m; j = 1, 2, · · · , n) for m alternatives over n criteria and establish a picture fuzzy decision
matrix X = (αij)m×n.

Step 2: Transform the criteria values of cost type into those of benefit type. i.e., transform
X̃ = (α̃ij)m×n into the normalized picture fuzzy decision matrix R̃ = (r̃ij)m×n, where

r̃ij =
{

αij , for benefit criteria
(αij)c, for cost criteria

(12)

where (αij)c is the complement of αij such that (αij)c = (νij , µij , γij).
Step 3: Identify the picture fuzzy positive ideal solution (PFPIS) and picture fuzzy negative ideal

solution (PFNIS) based on the PFSs, and calculate the positive / negative picture fuzzy distance
matrix D+ = (d+

j ) and D− = (d−
j ).

Step 4: Determine the relative closeness coefficient of each alternative by using Eqs. (8) and (9).
Step 5: Determine the likelihood of Xs � Xt for alternatives Xs and Xt in X.
Step 6: Calculate the optimal degree of membership for alternative, and rank the alternatives

according to optimal degree rank(Xi).

5 A numerical example and comparison with the results of other
method

5.1 A numerical example

In this section, a numerical example adapted from [24] is worked out to illustrate the proposed
method.

A company located in Ankara wants to select a best green supplier, where there are four alternatives
to be selected: X1, X2, X3, and X4. X1 is located in the Marmara Region and exports to 4 countries.
X2 is located in the Marmara Region and exports to 2 countries. X3 is located in the Central
Anatolia Region. Moreover, X4 is located in the Marmara Region and exports to 6 countries. The
four alternatives currently have approximately 200–500 employees. The team of decision makers is
composed of experts from the finance department, engineering department and purchasing department.
They believe that the information and data about performance of the green supplier can be reported
using fuzzy approach. After experts’ preliminary screening, 5 criteria are determined, such as Quality
(C1), Cost (C2), Service and Delivery(C3), Sustainability (C4), and Environmental Management and
Control (C5). To obtain an optimal green supplier, the following steps are given as follows.

Step 1. To select an ideal green supplier, the team of decision makers has agreed to assess each
criteria Cj (j = 1, 2, · · · , 5) of alternative Xi (i = 1, 2, 3, 4) under picture fuzzy environment and
constructs a decision matrix X = (aij)4×5,which are shown in Tab.1. The importance of each attribute
Cj , (j = 1, 2, · · · , 5) are given in the form of intervals weight vectors as ω1 = [0.15, 0.83], ω2 =
[0.26, 0.68], ω3 = [0.47, 0.48], ω4 = [0.16, 0.82] and ω5 = [0.35, 0.63].

Table 1: Picture fuzzy decision-making matrix
C1 C2 C3 C4 C5

X1 [0.78, 0.11, 0.11] [0.85, 0.05, 0.10] [0.80, 0.09, 0.11] [0.64, 0.27, 0.08] [0.63, 0.29, 0.08]
X2 [1.00, 0.00, 0.00] [1.00, 0.00, 0.00] [0.85, 0.05, 0.10] [1.00, 0.00, 0.00] [1.00, 0.00, 0.00]
X3 [0.76, 0.12, 0.11] [0.70, 0.20, 0.10] [0.58, 0.34, 0.08] [0.43, 0.53, 0.04] [0.37, 0.52, 0.11]
X4 [1.00, 0.00, 0.00] [1.00, 0.00, 0.00] [0.82, 0.07, 0.11] [1.00, 0.00, 0.00] [1.00, 0.00, 0.00]

Step 2. Considering that cost is a criterion of cost type, it must transform cost type criterion into
that of benefit type. With Eq. (12), the normalized picture fuzzy decision matrix is shown in Tab.2.
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Table 2: Normalized Picture fuzzy decision-making matrix
C1 C2 C3 C4 C5

X1 [0.78, 0.11, 0.11] [0.05, 0.85, 0.10] [0.80, 0.09, 0.11] [0.64, 0.27, 0.08] [0.63, 0.29, 0.08]
X2 [1.00, 0.00, 0.00] [0.00, 1.00, 0.00] [0.85, 0.05, 0.10] [1.00, 0.00, 0.00] [1.00, 0.00, 0.00]
X3 [0.76, 0.12, 0.11] [0.20, 0.70, 0.10] [0.58, 0.34, 0.08] [0.43, 0.53, 0.04] [0.37, 0.52, 0.11]
X4 [1.00, 0.00, 0.00] [0.00, 1.00, 0.00] [0.82, 0.07, 0.11] [1.00, 0.00, 0.00] [1.00, 0.00, 0.00]

Step 3. In this paper, PFPIS is defined as [(1, 0, 0), (1, 0, 0), (1, 0, 0), (1, 0, 0) and (1, 0, 0)], and
PFNIS is defined as [(0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0) and (0, 1, 0)], respectively. And then, with
Eq. (5), let t=2 and p=2, the biparametric distance of each green supplier from PFPIS and PFNIS is
given in Tab. 3.

Table 3: Distance matric between alternatives and PFPIS and PFNIS
d+ d−

c1 0.156 0.816 0.167 0.816 0.686 0.000 0.674 0.000
c2 0.108 0.816 0.216 0.816 0.738 0.000 0.616 0.000
c3 0.142 0.738 0.315 0.128 0.702 0.108 0.509 0.719
c4 0.264 0.816 0.450 0.816 0.562 0.000 0.369 0.000
c5 0.275 0.816 0.476 0.816 0.550 0.000 0.356 0.000

Step 4. According to Eqs. (8) and (9), four pairs of fractional programming models for alternatives
Xi (i = 1, 2, 3, 4) can be obtained. Let us illustrate this step by using (C l1, Cu1 ) as an example.

C li = min(
√

(0.156ω1)2 + (0.108ω2)2 + (0.142ω3)2 + (0.264ω4)2 + (0.275ω5)2( √
(0.156ω1)2 + (0.108ω2)2 + (0.142ω3)2 + (0.264ω4)2 + (0.275ω5)2+√

(0.686ω1)2 + (0.738ω2)2 + (0.702ω3)2 + (0.562ω4)2 + (0.550ω5)2

))

s.t.

{
0.15 ≤ ω1 ≤ 0.83; 0.26 ≤ ω2 ≤ 0.68; 0.47 ≤ ω3 ≤ 0.48;

0.16 ≤ ω4 ≤ 0.82; 0.35 ≤ ω5 ≤ 0.63

, and

Cui = max(
√

(0.156ω1)2 + (0.108ω2)2 + (0.142ω3)2 + (0.264ω4)2 + (0.275ω5)2( √
(0.156ω1)2 + (0.108ω2)2 + (0.142ω3)2 + (0.264ω4)2 + (0.275ω5)2+√

(0.686ω1)2 + (0.738ω2)2 + (0.702ω3)2 + (0.562ω4)2 + (0.550ω5)2

))

s.t.

{
0.15 ≤ ω1 ≤ 0.83; 0.26 ≤ ω2 ≤ 0.68; 0.47 ≤ ω3 ≤ 0.48;

0.16 ≤ ω4 ≤ 0.82; 0.35 ≤ ω5 ≤ 0.63

Using WINQSB, the optimal values of the objective function given in these models are C l1 =
0.0213 and Cu1 = 0.0829, i.e., the relative-closeness coefficient interval of green supplier X1 is R1=
[0.0213, 0.0829]. Similarly, the relative-closeness intervals of the green suppliers X(k) (k = 2, 3, 4) are
respectively obtained as R2 = [0.9908, 0.992], R3= [0.079, 0.3165] and R4= [0.5771, 0.9747].

Step 5. Based on those relative closeness intervals of the green suppliers, with Eq. (10), the
likelihood probability values of the pairwise components of X (k) (k = 1, 2, 3, 4) can be calculated as
follows:

P = P (pst) =


0.50 0.00 0.01 0.00
1.00 0.50 1.00 1.00
0.99 0.00 0.50 0.54
0.576 0.00 0.00 0.50


Step 6: The optimal degrees of the membership for the green suppliers Xk (k = 1, 2, 3, 4) can

be obtained as rank (X1) = 0.126, rank (X2) = 0.375, rank (X3) = 0.207 and rank (X4) = 0.292,
respectively. This shows that rank (X1) < rank (X3) < rank (X4) < rank (X2), and hence X2 is
the best green supplier. This order is the same as the result in [24] and explains the validity of our
proposed method.
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5.2 Comparison with the result of TOPSIS method

Now, we make a comparative analysis of the proposed method with the existing TOPSIS approach.
First, by extending intuitionistic fuzzy weighs to picture fuzzy ones, we have the picture fuzz weight
vectors of criteria as w1 = [0.15, 0.83, 0.02], w2 = [0.26, 0.68, 0.05], w3 = [0.47, 0.48, 0.05], w4
= [0.16, 0.82, 0.03] and w5 = [0.35, 0.63, 0.03]. Considering that picture fuzzy set is a special
form of neutrosophic sets, we have the weighted picture fuzzy matrix by using the operating laws of
neutrosophic sets defined in [19], which is shown in Tab. 4.

Table 4: Weighted Picture fuzzy decision-making matrix
C1 C2 C3 C4 C5

X1 [0.117, 0.849, 0.002] [0.221, 0.696, 0.005] [0.376, 0.527, 0.006] [0.102, 0.869, 0.002] [0.221, 0.737, 0.002]
X2 [0.150, 0.830, 0.000] [0.260, 0.680, 0.000] [0.400, 0.506, 0.005] [0.160, 0.820, 0.000] [0.350, 0.630, 0.000]
X3 [0.114, 0.850, 0.002] [0.182, 0.744, 0.005] [0.235, 0.657, 0.004] [0.069, 0.915, 0.001] [0.130, 0.822, 0.003]
X4 [0.150, 0.830, 0.000] [0.260, 0.680, 0.000] [0.385, 0.516, 0.006] [0.160, 0.820, 0.000] [0.350, 0.630, 0.000]

Next, PFPIS is defined as [(1, 0, 0), (1, 0, 0), (1, 0, 0), (1, 0, 0) and (1, 0, 0)], and PFNIS is
defined as [(0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0) and (0, 1, 0)], respectively. According to Eq. (1), the
normalized picture Hamming distance of each green supplier from PFPIS and PFNIS is given in Tab.
5.

Table 5: Distance matric between alternatives and PFPIS and PFNIS
d+ d−

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5
X1 1.734 1.480 1.156 1.769 1.519 0.271 0.530 0.855 0.236 0.486
X2 1.680 1.420 1.112 1.660 1.280 0.320 0.580 0.899 0.340 0.720
X3 1.739 1.567 1.426 1.848 1.696 0.266 0.443 0.582 0.155 0.310
X4 1.680 1.420 1.137 1.660 1.280 0.320 0.580 0.875 0.340 0.720

At last, we use the relative-closeness coefficient of an alternative to determine the final ranking,
and we have rank (X1) = 0.237, rank (X2) = 0.286, rank (X3) = 0.175 and rank (X4) = 0.283,
respectively. This shows that rank (X3) < rank (X1) < rank (X4) < rank (X2), and hence X2 is the
best green supplier. This order is the same as our method proposed in this study.

6 Conclusion
PFS is a useful tool to express inherent uncertainty or imprecision of decision makers’ cognitive

information in human decision making process. In this paper, we have proposed a method for solving
the multi-criteria decision making problems under the Picture fuzzy environment, in which the ratings
of alternatives on criteria and weights of criteria are represented by PFSs and IFSs, respectively.
Moreover, some fractional programming models are established to obtain a relative closeness coefficient
interval where preference information is independently determined for each alternative. This allows
us to use flexible ways to simulate real decision scenarios. Finally, a numerical analysis is conducted
to illustrate the practicality and effectiveness of the proposed MCMD approach. In future research,
the proposed method could be extended to interval-valued picture fuzzy sets and trapezoidal picture
fuzzy sets. Another interesting direction could be to develop other types of picture fuzzy aggregation
operators.
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