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Abstract

The output power prediction of wind farm is the key to effective utilization of wind energy
and reduction of wind curtailment. However, the prediction of output power has long been a
difficulty faced by both academia and the wind power industry, due to the high stochasticity of
wind energy. This paper attempts to improve the ultra-short-term prediction accuracy of output
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power in wind farm. For this purpose, an output power prediction model was constructed for wind
farm based on the time sliding window (TSW) and long short-term memory (LSTM) network.
Firstly, the wind power data from multiple sources were fused, and cleaned through operations like
dimension reduction and standardization. Then, the cyclic features of the actual output powers
were extracted, and used to construct the input dataset by the TSW algorithm. On this basis,
the TSW-LSTM prediction model was established to predict the output power of wind farm in
ultra-short-term. Next, two regression evaluation metrics were designed to evaluate the prediction
accuracy. Finally, the proposed TSW-LSTM model was compared with four other models through
experiments on the dataset from an actual wind farm. Our model achieved a super-high prediction
accuracy 92.7% as measured by d_MAE, an evidence of its effectiveness. To sum up, this research
simplifies the complex prediction features, unifies the evaluation metrics, and provides an accurate
prediction model for output power of wind farm with strong generalization ability.

Keywords: wind power, output power, ultra-short-term prediction, deep learning (DL), long
short-term memory (LSTM) model.

1 Introduction
The output power of wind turbines is very unstable, due to the stochasticity and volatility of wind

energy. The grid-connection of a massive amount of wind power poses a huge challenge to the operation
and dispatching of the power system and the security of the grid [4, 7]. Against this backdrop, it is
very meaningful to predict the output power of wind farms in a future period. Accurate predictions
help to rationalize dispatch and maintenance plans, and improve the utilization of wind power and
wind energy [15, 18].

By time scale, the output power prediction of wind farms falls into long-term prediction, medium-
term prediction, and ultra-short-term prediction. The final category refers to the rolling forecast of the
output power of wind farms in the coming hours. If predicted accurately, the data on ultra-short-term
output power can be used to ease the pressure on frequency adjustment, and reduce the capacity of
spinning reserve, making the power system and power supply more reliable [10, 23].

For decades, both the industry and academia have probed deep into the output power prediction
of wind farms. Three types of prediction methods have been developed with stable performance [9]:
physical modelling [3], statistical modelling [1] and intelligent computing [2].

To obtain the output power, physical modelling derives the output power curve of wind farms
through hydrodynamic and thermodynamic analyses on the results of numerical weather prediction
(NWP) and the surface and spatial correlation data around the wind farms. This prediction strategy,
involving complex models, numerous empirical parameters, and massive data on terrain and mete-
orology, is faced with heavy computing loads and slow updates. Therefore, physical modelling only
applies to medium to long-term prediction. In this paper, the predictions of physical models are used
for comparative analysis in experiments.

Based on time series of output power and wind speed, statistical modelling forecasts future output
power by mapping the input features to the time series of output power, in the light of historical data
only. The common methods of statistical modeling include the Kalman filter [28], stochastic time
series method [12, 14], and support vector machine [6, 8, 20]. This prediction strategy cannot always
make accurate predictions, owing to the difficulty in modelling, complexity of parameters and poor
ability of generalization.

Intelligent computing is increasingly popular in the output power prediction of wind farms, thanks
to the development of computer hardware and software and artificial intelligence (AI). Intelligent
algorithms like wavelet analysis and genetic algorithm (GA) have all been introduced to output power
prediction [11, 26]. Under different principles, these algorithms extract data features with varied
structural designs. The applications of intelligent computing have enriched the theories on output
power prediction of wind farms. However, the prediction effects fall short of the expectations of wind
power enterprises, as the parameters are too complex and randomly initialized.

With the boom of deep learning (DL) [5, 17], many researchers have attempted to apply the
DL in intelligent computing. The multilayered structure of deep neural networks (DNNs) can fit
complex nonlinear mappings, and effectively prevent vanishing gradient [13, 16]. Hence, the DNNs
have clear advantages in handling massive samples and nonlinear data. Xue et al. [24] successfully
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combined the gated recurrent units (GRU), an improved version of long short-term memory (LSTM),
and convolutional neural network (CNN) into a DL network. Nevertheless, DL networks should not
be directly adopted to predict output power of wind farms, because the output power is affected by
multiple constantly-changing factors. Otherwise, the DL networks will have poor prediction accuracy
and generalization ability, and even fail to converge.

Drawing on the merits of the above prediction methods, this paper aims to develop an output
power prediction strategy for wind farms, which can overcome the existing problems in the prediction
task with its strong generalization ability and high forecast accuracy. For this purpose, the authors
put forward a DL prediction model for output power prediction of wind farm, based on the LSTM
and time sliding window (TSW). The proposed model is denoted as TSW-LSTM. Firstly, the data
from multiple sources (e.g. meteorology and historical power) were fused and cleaned. Then, the
TSW was introduced to set up an input dataset of wind power time series, and extract the cyclic
features of output power. After that, a DL network model was constructed based on the LSTM for
ultra-short-term prediction of output power in wind farm. The proposed model was verified through
comparative experiments on the actual dataset of a wind farm. The results show that our model
achieved the accuracy of 92.7%, as measured by d_MAE.

This research makes two major contributions:
(1) The novel concept of TSW was introduced to construct the dataset. With the aid of the TSW,

the original small dataset was expanded in size, such that data features could be extracted as much
as possible. Thanks to the robustness of the extracted features, the proposed TSW-LSTM prediction
model boasts strong generalization ability and high prediction accuracy.

(2) There is no unified, intuitive criterion for regression-based output power predictions of wind
farms. To solve the problem, two new performance metrics were designed for statistical regression,
namely, statistical distribution of maximum relative error (s_MRE), and the mean distribution differ-
ence of mean absolute value (d_MAE). The two metrics are suitable for communication in the wind
power industry.

The remainder of this paper is organized as follows: Section 2 fully explains our research method
from the perspectives of overall framework, data preprocessing, dataset construction, TSW-LSTM
model building, and evaluation of model performance; Section 3 verifies the performance of our model
in output power prediction of wind farms, details the sources and features of experimental data, and
introduces the experimental process, including constructing dataset, setting up evaluation criteria,
designing experiments, and comparative analysis of experimental results; Section 4 wraps up the
research by explaining the causes of good prediction effects of our TSW-LSTM model.

2 Methodology

2.1 Overall framework

The output power prediction of wind farms is essentially mapping a set of input series to a set of
output series. The key issue lies in the generation of a series of predicted output powers. As shown in
Figure 1, this paper designs a six-step prediction approach:

Step 1. Fusion and cleaning of multi-source data. The data on meteorology, turbine state and
power were sampled from a wind farm. The sampling intervals were unified and the data sampled at the
same time were stitched together. Then, the missing values were imputed by multiple linear regression
(MLR), and the outliers were corrected through piecewise linear interpolation (PLI), creating the initial
dataset.

Step 2. Dimension reduction and standardization. The main factors affecting the output power
were identified through principal component analysis (PCA), aiming to reduce the dimensionality of
the data, while retaining most of the effective features. Next, the data were standardized through
discretization, normalization and one-hot coding, producing a discrete dataset of zeros and ones that
facilitates machine learning.

Step 3. Dataset construction based on the TSW. The time cycles of historical data (i.e. meteo-
rological data, turbine state data and power data) were identified and extracted. On this basis, the
TSW was introduced to set up a training set and a test set.
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Step 4. Construction of the DL model. Based on the LSTM, a DL model was constructed to
predict the ultra-short-term output power of the wind farm. Since it is capable of processing the
dataset generated by the TSW, the proposed model is denoted as the TSW-LSTM. The model adopts
a multilayered neural network, including LSTM layers, fully-connected layers, etc.

Step 5. Model training and optimization. The DL model was trained by the training set. The
series of influencing factors (e.g. meteorology and turbine state) were mapped into the series of output
powers. Next, the prediction effect of the trained model was evaluated and optimized based on the
test set.

Step 6. Prediction of output power series. The optimized model was applied to predict the output
power series of a wind farm in a specified period in future. The prediction results were compared with
the actual output power, and contrasted with the results of other prediction methods.

Figure 1: The workflow of output power prediction of wind farms

2.2 Data fusion and cleaning

During the operation, a wind farm generates a huge amount of data. The generated data fall
in different categories, and differ in format and sampling frequency. There are often anomalies like
missing values and outliers. The data entries are interconnected, involving key factors that affect
turbine operations [25]. Therefore, it is necessary to fuse and clean the original data before using
them in output power prediction. In this paper, the meteorological data, turbine state data and
power data collected from a wind farm are fused and cleaned to create a complete initial dataset.

2.2.1 Data fusion

The output power prediction of wind farm involves three types of data: meteorological data (e.g.
wind speed, wind direction, humidity, temperature, atmospheric pressure and air density), turbine
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state data (e.g. engine room temperature and generator torque), and power data (e.g. rated output
power, planned output power, corrected output power and actual output power).

According to the provisions of China’s National Energy Administration, the sampling intervals
of all types of data were unified as 15min. Then, the data sampled at the same time were stitched
together, such that all three types of data are presented in the form of a unified 2D table at unified
time points, forming the initial 2D dataset.

2.2.2 Data cleaning

Part of the collected data may be missing or distorted under turbine failure, transmission inter-
ruption and signal interference. The missing values and outliers affect the statistical and distribution
features of the collected data. In this case, the confidence interval of the collected data will widen, and
the confidence coefficient will be reduced. If the data are analyzed by DL models, the ensuing errors
will suppress the prediction accuracy. Hence, the missing values must be imputed, and the outliers be
corrected.

(1) Missing value imputation
Each missing value is usually directly removed, or simply padded with zeros, the previous value,

the subsequent value or the mean value. In the data collected from the wind farm, the missing values
are the time series of output powers. These values are distributed continuously or randomly in the
collected data. The direct removal of these values will damage the time continuity and correlation of
the time series. The simple padding will lower the variance of variables, and bring large covariance
and correlation deviation, undermining the original data structure.

The time series of output powers are the only missing values in the collected data, while all the
other data features are complete. In other words, the data missing problem has only one variable.
Thus, the MLR was employed to fit and complete the missing values in the collected data. Here, the
output powers are regarded as a continuous time series. It is assumed that the output power at time
ti is missing. Let t1, t2, t3, . . ., tm be the m moments adjacent to time ti, at which the output powers
are known. Then, the missing output power at time ti can be imputed by the MLR:

yti = β0 + β1yt1 + β2yt2 + L+ βmytm (1)

where, yti is the explained variable, i.e. the output power at time ti; ytk(k = 1, 2, . . .,m) are m
explanatory variables, i.e. the output powers at time tk; βj(j = 1, 2, . . .,m) is the partial correlation
coefficient relative to ytk, i.e. the influence of ytk over yti; µi is a random error obeying a Gaussian
distribution with a mean of 0 and a variance of σ2. Then, the partial correlation coefficient βj was
estimated by maximum likelihood, yielding β̂j . Substituting the estimate to formula (1), the missing
value ŷti can be estimated by:

ŷti = β0 + β̂1yt1 + β̂2yt2 + · · ·+ β̂mytm (2)

The missing values were imputed iteratively as above, producing a complete dataset without any
missing value.

(2) Outlier detection and correction
Firstly, the outliers were found out through t-test. The non-suspicious values were regarded as a

normally distributed population. The mean value x̄ and standard deviation s of the population were
computed. Meanwhile, the suspicious values were considered as a special population with a sample
size of 1. If the suspicious and non-suspicious values belong to the same population, there should be
no significant difference between them. The t-statistic can be defined as:

k = |xd − x̄| (3)

Suppose the σ can be replaced with the standard deviation s. Then, the t-statistic can be rewritten
as k = |xd−x̄|

s . If the t-statistic is greater than the threshold under the corresponding confidence, then
xd must be an outlier.

After that, the outliers were corrected through the PLI: each two adjacent nodes were connected
by a straight line, forming a polyline, i.e. the PLI function In(x) satisfying In(x) = y. In each small
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interval xi, xi+1, In(x)(i = 1, 2, . . ., n) is a linear function. In(x) and li(x) can be respectively expressed
as:

In(x) =
∑n

i=0
yili(x) (4)

li(x) =


x−xi−1
xi−xi−1

, x ∈ [xi−1, xi]
x−xi−1
xi−xi+1

, x ∈ [xi+1, xi]
0, otherwise

 (5)

The interpolation of point x was computed by In(x), using the two nodes on the left and right of
x. The computing load is independent of the number n of nodes. However, the greater the n value,
the more the segments, and the smaller the interpolation error.

The outliers were iteratively processed as above, until all of them had been corrected.

2.3 Dimension reduction and standardization

Data fusion and cleaning produced the initial dataset with unified sampling frequency, complete
attributes, and rational data distribution. But the dataset cannot be directly imported to the DL
model. To solve the problem, the dataset was transformed into a 3D sparse matrix of zeros and ones,
through PCA, discretization, normalization and one-hot coding.

2.3.1 Dimension reduction

The initial dataset reflects the historical states of the wind farm more accurately than the collected
data. The dataset contains various features, most of which have little impact on the output power. If
all these features are imported, the DL model will face a heavy computing load and might not converge
during the training. Thus, the PCA was carried out to select the key features that affect the output
power, and reduce the dimensionality of the dataset, without sacrificing the effective information [21].

The PCA mainly maps n-dimensional features to a k-dimensional space, that is, reconstruct k-
dimensional features based on the original n-dimensional features. During the PCA, a set of mutually
orthogonal coordinate axes were found sequentially from the original space. The first axis points to
the largest variance in the original data, the second axis points to the largest variance in the plane
orthogonal to the first axis, and the third axis points to the largest variance in the plane orthogonal
to the first two axes. The rest can be deduced by analogy. Most variances of the original data are
contained in the first k axes, while the variances of the latter axes are almost zero. To reduce the
dimensionality, the first k axes that contain most variances were preserved, and the other axes that
contain near-zero variances were ignored.

The PCA was implemented through eigenvalue decomposition of the covariance matrix. To begin

with, the initial dataset was rewritten as a matrix A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

, where n is the number

of features and m is the number of samples. Then, the dimensionality of matrix A, which contains m
samples with n features, was reduced to k in the following steps:

Step 1. Decentralization: subtract the mean value of each column from the features in that column,
creating a new matrix A.

Step 2. Calculate an n × n covariance matrix Cov(A) by Cov(A) = 1/m·AT·A. The covariance
matrix of three features can be expressed as:

Cov(x, y, z =)

Cov(x, x) Cov(x, y) Cov(x, z)
Cov(y, x) Cov(y, y) Cov(y, z)
Cov(z, x) Cov(z, y) Cov(z, z)

 (6)

where, the diagonal element cii is the variance of the i-th feature; any other element cij is the covariance
between the i-th and j-th elements. The covariance matrix is symmetric.
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Step 3. Solve the eigenvalues and eigenvectors of the covariance matrix through eigenvalue decom-
position. In other words, decompose matrix A into:

Cov(A) = Q
∑

Q−1 (7)

where, Q is the matrix of eigenvectors of matrix Cov(A); Σ is a diagonal matrix of eigenvalues.
Step 4. Sort the eigenvalues in descending order and select the top k eigenvalues. Then, take the

k eigenvectors corresponding to the top k eigenvalues as row vectors, forming an eigenvector matrix
P .

Step 5. Map matrix A to the new space of the k eigenvectors by Y = PA, marking the end of
dimension reduction.

2.3.2 Data standardization

Despite dimension reduction, the features of our data still have obvious dimensional difference. If
these features are directly inputted to the prediction model, the network learning will focus on the
variables with a large dimensional range. To unify the dimension, the variables were normalized by
min-max scaling:

X ′ = (X −Xmin)/(Xmax −Xmin) (8)

where, X is the value of a feature at the current moment; Xmin and Xmax are the minimum and
maximum of the feature, respectively; X ′ is the normalized value of the feature.

After normalization, the change trend and distribution law of each feature were observed carefully,
and used to perform discretization and one-hot coding. Take the wind direction for example. The
wind direction data of the wind farm obey a continuous distribution from 0◦ to 360◦. The values of
many angles are nothing but noises to DNNs. In fact, the rotation plane of the blade is adjusted
automatically by the yaw system of the turbine, according to the wind direction. The output power is
not greatly affected by small changes in wind direction. Therefore, the wind directions were discretized
in segments to [0, 7], depending on their distribution law. The discretized values were then converted
into a sparse matrix of zeros and ones through one-hot coding, which promotes the training effect of
the prediction model. The other features were processed in a similar manner.

2.4 TSW-based dataset construction

The processed data are insufficient to mine all the features of the wind farm. To expand the
input data, the TSW algorithm was adopted to construct the dataset to be inputted to the prediction
model, laying a good basis for accurate prediction. The actual output powers form a time series with
a specific cycle. Extracting the cyclic features help to improve the prediction accuracy. Hence, the
input dataset should cover the actual output powers.

First, the cyclic features of the actual output powers were analyzed to determine the lookback
of the sliding window, such that the output power curve has basically the same phase during the
sliding window. Next, the window was moved downward sequentially to segment the processed data:
the first to the lookback-th entries were taken as the first sample, the second to the lookback+1-th
entries as the second sample, and the rest can be deduced by analogy. In this way, the elements of
the dataset and label set were obtained, creating the training set and test set. If there are L entries in
the processed data, then the data were expanded by lookback times to (L− lookback+ 1)× lookback
entries.

Algorithm 1 shows the TSW algorithm used to construct the input dataset. The standardized
2D sparse matrix was inputted to the algorithm. The first column to the penultimate column are
meteorological, turbine state and power features, while the last column are output power features.
The total number of rows equals the number of entries in the collected data. The first row of the
algorithm defines the width of the sliding window, i.e. lookback; the second row defines and saves the
empty lists dataX and dataY for the dataset and label set; the sixth to tenth rows define an iteration
of the algorithm. In each iteration i, a 2D matrix of lookback rows and one-fewer columns was taken
from the input dataset and added to the dataX list, and the element on the lookback + 1 - th row in
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the last column of the input dataset was added to the dataY list. At the end of the iterative process,
the two lists contain the dataset and label set required for the DL prediction model.

Algorithm 1 The TSW algorithm used to construct the input dataset
1: Input: The processed input dataset
2: Outputs: dataX (list of data imported to the DL model) and dataY (list of labels imported to the

DL model).
3: Start:
4: Define the lookback of the TSW=3*96;
5: Define empty lists dataX and dataY;
6: for all i = 1, 2. . ., n, [len(dataset) − lookback] do
7: Form element a based on row i to row (i + lookback);
8: Add a to dataX;
9: Add the last column of row (i + lookback) to dataY;

10: end for
11: End.

2.5 LSTM modelling

2.5.1 The LSTM network

Both the processed input dataset and the predicted output powers are time series. To handle
end-to-end series, a DL model can be established based on the recurrent neural network (RNN).
The cyclic feedback structure of the RNN correlates the output state at time t with the historical
signals before time t, thereby enhancing the network memory and reduces parameters. In theory, the
RNN can handle time series of any length. However, if the input time series or the time series to be
predicted is too long, the historical information will be replaced with the more recent information,
causing vanishing or exploding gradient during model training. In our experiment, the input time
series has more than 13,000 entries. The RNN cannot achieve a good prediction effect on such a long
input time series.

The vanishing or exploding gradient can be effectively solved by the LSTM, an extension of the
RNN. The LSTM maintains the excellent structure of the RNN, and adds four new structures, namely,
an input gate, a forget gate, an output gate and a memory cell. The additional structures can memorize
and forget the entries in the input data series in a reasonable manner, allowing the long time series
to propagate freely in the network being trained. The cyclic features of the input and predicted
time series could be memorized well by the LSTM, laying a solid basis for accurate prediction [19].
The typical structure of a memory module in the LSTM network is explained in Figure 2, where
t(t = 1, 2, . . ., n) is time step; xt, Nt, and ht are the input signal, state, and output signal of the
memory module, respectively; ft, it and ot are the state signals of the forget gate, input gate and
output gate, respectively.

Figure 2: The structure of a memory module in the LSTM network

Let W and b be the weight and bias of each layer, respectively. The operation of the memory
module can be described as follows:

The forget gate determines which input information should be discarded. This gate receives the
input signal xt of the current module and the output signal of the previous module ht−1, and generates
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a signal of zero or one by sigmoid (activation function):

ft = σ (Wf · [Ht−1, xt] + bf ) (9)

The generated signal undergoes point multiplication with the state signals Nt−1 of the previous
module. The resulting signal ft∗Nt−1 determines whether the state signal Nt−1 of the previous module
should be forwarded.

The input gate controls the states of xt and xt flowing into the current module. Based on the two
signals, a signal it and a candidate signal Nt are generated by sigmoid (activation function) and tanh
(activation function), respectively:

it = σ(wi.[Ht−1, xi] + bi) (10)

Ñt = tanh(it (WC · [ht−1, xt] + bC) (11)

The update gate derives the state Nt of the current module from the dot product Nt of the above
two signals.

It can be seen that the state signal ft of the forget gate determines whether the state of the input
time series in the previous module should be memorized. If not, the state signal of the current module
Nt only depends on xt and xt:

Nt = ft ·Nt−1 + it · Ñt (12)

Based on xt and xt, the output gate computes a signal ot by sigmoid (activation function):

Ot = σ (WO · [Ht−1, xt] + bO) (13)

Meanwhile, a signal tanh(Nt) is derived fromNt by the tanh (activation function). The dot product
between ot and tanh(Nt) is the output signal of the current module ht:

ht = Ot · tanh (Nt) (14)

The above description shows that the cyclic features of the input time series can be memorized
for a long time in the modules of the LSTM network. The useless information can be discarded by
the forget gate. Through multiple trainings, the LSTM network can theoretically fit the nonlinear
relationship between the input time series and the output powers.

2.5.2 Model construction

The LSTM network was integrated with the TSW-based dataset to create a prediction model for
output power of wind farm. As shown in Figure 3, the established TSW-LSTM model consists of an
input layer, two fully-connected layers, three LSTM layers, a regularization layer, and a dropout layer.
The structure of the model is detailed as follows:

(1) The TSW-based dataset was inputted to the fully-connected layer. The dataset exists in the
form of a 3D matrix X, where the first dimension is the number of elements; each element is a 2D
matrix, whose row number is the size of time window and column number is the number of input
features. The number of elements on the fully-connected layer equals the number of features. All the
input features were transferred to the next layer.

(2) The second layer of our model is the first LSTM layer, which contains 32 memory modules.
On this layer, the input dataset was automatically learned and encoded. The correlation between
meteorological data and power data was extracted, so were the cyclic features of the two types of
data. All the extracted information was transferred to the next layer.

(3) The dropout layer falls between the first and second LSTM layers. This layer randomly cuts
off the connections between the two LSTM layers, aiming to prevent overfitting.

(4) The second LSTM layer has 64 memory modules. On this layer, the input dataset was further
learned and encoded to enhance the accuracy of nonlinear fitting.

(5) The regularization layer, falling between the second and third LSTM layers, helps to prevent
overfitting.
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(6) The third LSTM layer involves 96 memory modules. On this layer, the signals from the previous
layers were learned for the last time, making nonlinear fitting even more accurate.

(7) The last layer of our model is a fully-connected layer, which outputs the series of predicted
output powers.

Figure 3: The structure of the TSW-LSTM model

2.6 Performance evaluation

Error metrics are often adopted to evaluate the performance of regression analysis [22, 27], such
as mean squared error (MSE), root mean square error (RMSE), mean absolute error (MAE) and R-
squared (R2) score. However, the prediction accuracy of output power of wind farm should be assessed
by statistical metrics of accuracy. This paper designs two intuitive evaluation metrics, according to
the statistical distributions of predicted values and true values. The two metrics are named as the
statistical distribution of maximum relative error (s_MRE), and the mean distribution difference of
mean absolute value (d_MAE).

The s_MRE value can be computed by:

λi = |yi − ŷi|
yi

, n =
n∑

i=1
λi ≤ θ,A =


n∑

i=1

[
|yi−ŷi|

yi

]
≤ θ

N

% =
(
n

N

)
% (15)

where, N is the number of elements in the test set; is the ratio of the absolute difference between the
i-th predicted value and the actual value to the actual value; θ is the value that can be accepted by
the wind farm; n is the number of predicted values that satisfy < θ; (n/N)% is the statistical accuracy
A of the prediction model. After consulting with the wind farm, the θ value was set to 0.2.

The d_MAE refers to the difference between the mean distribution of the MAE and 1: the greater
the d_MAE, the higher the prediction accuracy. The d_MAE value can be computed by:

d_MAE = 1−
1
n

∑n
i=1 |yi − ŷi|
ŷi

= 1− MAE

y
(16)

3 Experimental verification
The tf.keras, a high-level application programming interface (API) of TensorFlow, was adopted

as the DL framework of our modelling process. The data processing and visualization modules were
called to process and display the collected data; the optimizers and regularizers modules were called to
optimize our model; the callbacks module was called to dynamically adjust the learning rate; the LSTM
module was called to construct an LSTM DL model based on the TSW-based dataset. The programs
were compiled in python, and the experiments were conducted in a DL environment accelerated by
graphics processing unit (GPU) [13, 16, 29].
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3.1 Experimental dataset

Our model was trained and tested by the data from a wind farm in Inner Mongolia, China. The
experimental data encompass two parts: the NWP data (historical meteorological data) and the
power data of the wind farm. The NWP data were collected from January 1st to May 22nd, 2019 at a
frequency of 15min by the anemometer tower on the wind farm, and corrected against the historical
weather forecasts. There are 13,632 entries in the NWP data. Each entry includes 9 fields: date and
time occupy 2 fields, and meteorological features (e.g. wind speed, wind direction, air density and
atmospheric pressure) occupy the other 7 fields. The power data were captured from January 1st to
May 21st, 2019 at a frequency of 15min by the supervisory control and data acquisition (SCADA) of
the wind farm. There are 13,536 entries in the power data.

Initial observations show that the NWP data have a high quality, without any missing values or
outliers. This is because the data were collected from more than one source and cross-checked. The
most important column in the power data provides the actual output powers. In this column, empty
elements were found at 111 time points, which might be results from SCADA faults or transmission
failures. Further analysis reveals that the 42 of the 111 missing values are at the end of the data, and
could be removed directly. The remaining 69 values are inside the data. The removal of the latter
values would undermine the data integrity.

Through the above analysis, the NWP data were stitched with the power data. After stitching,
the fields of time and date were turned into an index, which is not used for machine learning. The
other features were subjected to the PCA. The features (e.g. floor height and humidity) that do not
greatly affect the output power were removed, leaving 6 features (e.g. wind speed, wind direction,
atmospheric pressure and air density) in 13,494 effective and continuous entries. Among them, the
actual output power was empty in 69 entries. These empty items were completed through the MLR
and the outliers were corrected. In the end, 1,3494 effectively stitched entries were obtained, and
organized as the initial dataset.

From an intuitive point of view, when other conditions remain the same, the output power of the
wind farm should have an approximately linear relationship with the wind speed. Here, the correlation
between the output power and wind speed is investigated by preparing a scatterplot based on 1,920
entries collected over 20 days. As shown in Figure 4, there is no linear relationship between wind speed
and output power. This means the output power is influenced by various factors, making it difficult to
create a physical model. The complex nonlinear relationship should be learned automatically through
the DL.
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Figure 4: The scatterplot between wind speed and output power

3.1.1 Cyclic analysis

The actual output powers in the initial dataset were subjected to cyclic analysis. The samples in
three consecutive days were visualized. On each day, there are 96 entries from 00: 00 to 24: 00. As
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shown in Figure 5, the actual output powers on the three consecutive days had basically the same
cyclic features. As a result, the cyclic features should be extracted from the actual output powers, in
order to accurately predict the output power of the wind farm.
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Figure 5: The cyclic features of actual output powers

3.1.2 TSW-based dataset construction

To extract the cyclic feature of output power, the power data and NWP data were fused into the
input feature, and the initial dataset was divided into a dataset and a label set. The dataset is a 2D
matrix of 13,494 rows and 7 columns, while the label set is a 1D matrix of 13,494 elements.

Referring to the cyclic distribution of data, the time step of the LSTM was set to 3 days, covering
96 sampling points; the lookback of the TSW was set to 288. Firstly, the first 288 entries of the dataset
were selected by the sliding window to be the first element of the input dataset, and the 289-th element
in the label set was taken as the corresponding label.

After that, the window was slid to the next entry in the dataset and the next element in the label
set, and similar operations were performed. In the end, a 3D matrix was obtained as the input dataset.
The number of elements in the input dataset equals the total number of entries in the original dataset
plus one. Each element is a 2D matrix defined by a sliding window.

In our experiments, the final dataset and label set were (13,206, 288, 7) and (13,206, 1), respectively.
Figure 6 explains the procedure of the TSW-based dataset construction. For simplicity, the lookback
in the figure was set to 4.

Figure 6: The procedure of the TSW-based dataset construction
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3.2 Error metrics

3.2.1 MSE and RMSE

The MSE refers to the mean of the squared errors between the values predicted on the test set and
the actual values. For the same dataset, the MSE is negatively correlated with the prediction effect.
The MSE can be computed by:

MSE = 1
n

∑n

i=1
(yi − ŷi)2 (17)

where, n is the number of samples; yi and ŷi are the actual values of and the values predicted on the
samples, respectively; i is the serial number of samples.

The RMSE is the square root of the MSE. The two metrics have the same meaning. The RMSE
is more suitable for computation and comparison, because the error dimension is reduced through
the extraction of root. Both the MSE and RMSE increase with the number of samples. Hence, the
magnitude of the two metrics is meaningless if the datasets are different. The same dataset was applied
in all our experiments, so that the RMSE could be adopted to evaluate and compare the errors of
different prediction models.

3.2.2 MAE

The MAE refers to the mean absolute error between the values predicted on the test set and
the actual values. The MAE is negatively correlated with the prediction effect. This metric can
accurately reflect the actual prediction error. Therefore, it was selected to evaluate the errors of
different prediction models. The MAE can be computed by:

MAE = 1
n
|yi − ȳi| (18)

3.2.3 R2 score

Despite their excellence under the same dataset, RMSE and MAE cannot measure the prediction
effect if there are different dimensions. The impact of dimensional difference can be eliminated by R2

score:
R2 = 1−

∑n
i=1 (yi − ŷi)2∑n
i=1 (yi − ȳi)2 (19)

If R2 score < 0, the prediction error is greater than the error of using the mean value; i.e. the
model is meaningless. If R2 score = 0, the numerator is equal to the denominator, and each predicted
value equals the mean value, i.e. the model is still meaningless; If R2 score =1, the predicted values
are equal to the actual values, i.e. the model makes error-free predictions. Thus, the closer the R2

score is to 1, the better the prediction model.

3.3 Experimental design

Table 1: The settings of hyper parameters
Number of nodes Activation function L1 L2 Dropout Optimizer

Fully-connected layer 7 Rectified linear units (ReLU) - - - -
LSTM1 32 Sigmod 0.001 0.002 Nadam

Dropout layer 0.3
LSTM2 64 Sigmod 0.001 0.001 Nadam

Regularization layer 0.001 0.001 0.5
LSTM3 96 Sigmod 0.001 0.002 0.6 Nadam

Fully-connected layer 1 Rectified linear units (ReLU) - - - -
Nadam lr = 0.002, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08

reduce_lr patience = 5, factor = 0.8, mode = “auto”, verbose = 1, min_delta = 0.0001,
cooldown = 0, min_lr = 0.0000001
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The tf.keras DL platform was deployed on the GPU. Then, a DL network was constructed according
to the abovementioned procedure. The established network encompasses an input layer (a fully-
connected layer), a hidden layer (two convolutional layers, a max-pooling layer, three LSTM layers
and three dropout layers), and an output layer. There are five types of hyper parameters in the
network, namely, the number of nodes in the input layer, the number of nodes in each LSTM layer,
the regularization parameters L1 and L2, the dropout value, as well as the initial parameters and
learning rate decay of Nesterov Adam (Nadam), a stochastic gradient descent optimizer. The hyper
parameters are configured as shown in Table 1.

3.4 Experimental results

3.4.1 Experiments on our model

The TSW-LSTM model was trained for 50 iterations on the training set. The MAE loss curve
(Figure 7) shows that the training and validation losses, relatively large at the start, exhibited a
rapid decline. After 5 rounds of training, both losses started to gradually decrease. The decrease
of training loss was relatively smooth, while that of validation loss fluctuated. Thus, the overfitting
occurred in model training. Then, the model made automatic adjustments according to the preset
hyper parameters, such as dropout, L1, L2 and learning rate (lr). After 30 rounds of training, the MAE
losses of training and validation both slowly decreased. The two loss curves were basically horizontal
after 50 rounds, indicating that the model has completely converged, the losses were minimized and
the prediction accuracy was maximized.

The trained model was applied to predict the output power based on the test set. The predicted
values were compared with the actual values of the test set. The predicted values and the actual
values in 3 h are contrasted in Figure 8, where the x-axis is the sampling intervals of 15 min, and
the y-axis is the output power (unit: MW). It can be seen that the predicted output power (4 MW)
was 0.3 MW smaller than the actual output power (4.3 MW) at the 0−th sampling point. In the 3 h
ultra-short prediction period, the output power curve predicted by the TSW-LSTM agrees well with
the actual output power curve at the wind farm, an evidence of the good effect of our model.
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Figure 7: The training and validation losses of
our model
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Figure 8: The comparison between the output
power predicted by TSW-LSTM and the actual
output power

3.4.2 Contrastive experiments

To fully demonstrate its engineering value, our model was further compared with the physical
model and several DL models: decision tree (DT), random forest (RF) and SVM. The four models
were separately applied to the same dataset to predict the output power in the coming 24 h. The
performance metrics of the models are compared in Table 2 and Figure 7. As shown in Table 2, the
three machine learning models, namely, the DT, RF and SVM had similar MSEs, RMSEs and MAEs.
The MAEs were all close to 20, a sign of the large gap between predicted and actual values. On
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regression accuracy, the d_MAE values of the three machine learning models were about 60% and the
s_MRE values were below 40%. The results show that the three models cannot realize satisfactory
predictions.

Table 2: The comparison between the performance metrics of the models
MSE RMSE MAE R2 score d-MAE s-MRE

Physical model 220.1 149 8.53 - 65.7% 56.3%
DT 1678.1 40.9 22.96 0.17 61.5% 37.4%
RF 1162.2 34.0 19.12 0.41 61.4% 38.6%
SVM 1218.7 35 20.86 0.38 62.9% 39.8%

TSW-LSTM 11.7 3.4 1.39 0.93 92.7% 77.9%
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(a) Physical model prediction vs. actual output
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(b) DT prediction vs. actual output
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(c) RF prediction vs. actual output
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(d) SVM prediction vs. actual output
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(e) TSW-LSTM prediction vs. actual output

Figure 9: The comparison between prediction effects

The physical model of the wind farm had an MAE of 8, much lower than that of any machine
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learning model. Hence, the physical model predicted the output power more accurately than the three
machine learning models. The proposed TSW-LSTM model achieved an MAE of 1.39, a d_MAE of
93% and an s_MRE of 78%. This means our model far outperformed the other four models in MAE
and d_MAE, and achieved satisfactory predictions.

Figure 9 compares the predicted output power (solid line) of each model and actual output power
(dotted line). It can be seen that the predicted curves of physical model, DT, RF and SVM for 24 h
deviated far from the actual curve, i.e. none of the four models could fit the actual output power curve.
By contrast, the predicted curve of the TSW-LSTM agrees well with the actual curve, reflecting the
high prediction accuracy of our model.

4 Conclusions
This paper presents a time series prediction model based on the LSTM network: the TSW-LSTM

model. The wind power data from multiple sources were fused, and processed in multiple steps into
an input dataset. Under the input dataset, the output power of wind farm was predicted accurately
by the proposed DL model. The main conclusions are as follows:

(1) The proposed TSW-LSTM model can effectively fit the output power curve of the wind farm,
and clearly outperform the physical model of the wind farm and three machine learning models.

(2) The wind farm data come from multiple sources, and contain many missing values and outliers.
This paper fuses the multi-source data, and cleans the data through MLR and PLI. The fusion and
cleaning can effectively mine the data features, suppress noises, and improve prediction accuracy.

(3) The TSW-LSTM prediction model was trained by historical data and optimized repeated to
overcome the exploding and vanishing gradients in training. The optimized model provides a desirable
prediction tool.

(4) Considering the cyclic features of the power data of the wind farm, the historical power data
were fused into the input dataset, and the TSW was introduced to construct the input dataset. In
this way, the cyclic features were effectively extracted from the actual output power, pushing up the
prediction accuracy.
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