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Abstract

The aim of this article is to offer a concise and unitary vision upon the algebraic connec-
tions between classical logic and its generalizations, such as fuzzy logic and quantum logic. The
mathematical concept which governs any kind of logic is that of lattice. Therefore, the lattices
are the basic tools in this presentation. The Hilbert spaces theory is important in the study of
quantum logic and it has also been used in the present paper.
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1 Aristotelian logic
What is logic? Logic is the science that studies thinking. As in the process of thinking there are

two factors, information and emotion, we can talk about a domain of human thought called rational
thinking, characterized by the fact that the obtained results are out of the factor called emotion.
Therefore we can say that logic is the science that studies rational thinking and we will name it
rational thinking logic. The first research about logic was made in the Ancient Greece. The results
were systematized by the Greek philosopher Aristotle, in a treatise of logic called Organon. For this
reason the rational thinking logic is called Aristotelian logic. In this logic a sentence is either true
or false and to one true sentence value 1 is associated while to a false sentence value 0 is associated.
Because of this classical logic is also called bivalent logic (having two truth values - true or false).

The principles that stay at the basis of this logic are:

1. Principle of Identity: each concept is identical to itself A = A.

2. Principle of Noncontradiction: one sentence cannot be both true and false at the same time.

3. Principle of the Excluded Middle: a sentence is either true or false. "There cannot be an
intermediate between contradictions, but of one subject we must either affirm or deny any one
predicate" (Aristotle’s Metaphysics).
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4. Principle of Double Negation: A double negation is an affirmative statement, ¯̄A = A. This
principle was stated as a law of propositional calculus by B. Russell and A.N. Whitehead in
Principia Mathematica.

5. Principle of Sufficient Reason: states that everything must have a reason or a cause. This
principle led, along the years, to many controversies and various interpretations. Starting from
this principle we get to modus ponens, the most important rule of inference, which can be
summarized as: if P implies Q and P is true, then Q must be also true. In this situation
proposition P is called "sufficient proposition" of proposition Q.

I have not yet used the term of mathematical logic. The mathematical logic is the result of a process
of mathematical modelling of the rational thinking logic elements, a process that started in the 17th
century, by the German mathematician and philosopher G. Leibniz and it was continued in the 19th
century by the English mathematicians George Boole and Augustus de Morgan and also by many others
along the time. In conclusion, Mathematics, through mathematical modelling of rational logic, brought
about an essential contribution to the development of logic. On the other hand, the mathematical
logic has become a fundamental instrument in the building of the mathematical universe.

2 The lattices of classical logic
In 1854, George Boole discovered a connection between the laws of logic and some laws of algebraic

calculus. Thus, he introduced the algebra that was named after him, the Boolean algebra. In this
section we briefly review the theory of lattices and we will present two important examples: the lattice
of all propositions about a universe of discourse and the lattice of all subsets of an universal set, which,
as we will see, can be identified. For other results and notions in the theory of general lattices we refer
to [3], [10], [14].

Definition 1. A lattice is a 4-tuple (L,≤,∧,∨) such that (L,≤) is a partial order set (shortly poset)
and for all x, y ∈ L there exists a greatest lower bound (meet or infimum) x ∧ y and a least upper
bound (join or supremum) x ∨ y.

Proposition 2. If (L,≤,∧,∨) is a lattice, then:

1. x ∨ y = y ∨ x ; x ∧ y = y ∧ x (commutativity);

2. x ∨ (y ∨ z) = (x ∨ y) ∨ z ; x ∧ (y ∧ z) = (x ∧ y) ∧ z (associativity);

3. x ∨ (x ∧ y) = x ; x ∧ (x ∨ y) = x (absorption);

4. x ∨ x = x ; x ∧ x = x (idem potency).

Definition 3. A bounded lattice is a lattice (L,≤,∧,∨) with two elements 0 ≤ 1, the least and the
greatest elements of L.

Proposition 4. Let (L,≤,∧,∨, 0, 1) be a bounded lattice. Then:

x ∨ 0 = x, x ∧ 0 = 0, x ∨ 1 = 1, x ∧ 1 = 1, (∀)x ∈ L.

Definition 5. A lattice (L,≤,∧,∨) is called distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), (∀)x, y, z ∈ L.

Remark 6. Condition from previous definition is equivalent to:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), (∀)x, y, z ∈ L.

Definition 7. Let (L,≤,∧,∨, 0, 1) be a bounded lattice.
Let x ∈ L. An element x′ ∈ L is called the complement of x if x ∨ x′ = 1 and x ∧ x′ = 0.
The lattice (L,≤,∧,∨, 0, 1) is called complemented if (∀)x ∈ L has a complement in L. The lattice

(L,≤,∧,∨, 0, 1) is called uniquely complemented if (∀)x ∈ L has a unique complement in L.
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Theorem 8. If (L,≤,∧,∨, 0, 1) is distributive and complemented then it is uniquely complemented.

Definition 9. A bounded lattice (L,≤,∧,∨, 0, 1) is called Boolean (Boolean algebra or Boolean lattice)
if it is distributive and complemented.

In the theory of Boolean algebra, the complement is usually denoted by ”′”, but we can also
meet the symbol ”¬”. In some papers the term negation is used for the complement, but there are
different types of negations which are studied in more general context of non-distributive lattices (see
[5]). Therefore, in order to exclude any possible confusion, when we use the term "complement" this
will have the meaning of Definition 7. As we will see, in the case of fuzzy logic, we do not have a
complement but we do have a negation.

Theorem 10. Let (L,≤,∧,∨, 0, 1) be a Boolean lattice. Then:

1. (x ∨ y)′ = x′ ∧ y′ ; (x ∧ y)′ = x′ ∨ y′ (De Morgan law);

2. (x′)′ = x (involution);

Example 11. Let F be the family of all proposition about an universe of discourse. If x, y ∈ F we
will denote "x implies y" by x ≤ y. It is natural to admit that:

1. x implies x;

2. if x implies y and y implies z, then x implies z;

3. if x implies y and y implies x, then x and y are logically equivalent.

Thus (F ,≤) is a poset. The conjunction of two propositions x, y is denoted by x∧ y and it is the true
sentence if x and y are both true and it is false otherwise. The disjunction of two propositions x, y is
denoted by x ∨ y and it is the true sentence if, at least one of the sentences x and y is true and false
otherwise. Thus (F ,≤,∧,∨) is a lattice.

We note that (F ,≤,∧,∨, 0, 1) is a bounded lattice, where 0 is a proposition that is always false
(called a contradiction) and 1 is a proposition that is always true (called a tautology).

The complement of the proposition x is the proposition x′ which is true if x is false and it is false
if x is true.

Example 12. Let X be a nonempty set. The power set P(X) (the family of all subsets of X) is a
lattice in which the order relation is inclusion and the operations on P(X) are union and intersection.
Moreover, (P(X),≤,∧,∨, 0, 1) is a bounded lattice, where the smallest element 0 is the empty set and
the largest element 1 is the set X itself. The complement of A is CX(A).

In the theory of the lattices the concept of logical implication is a very important one. This concept
is associated with an operation over two logical values. In the classical logic x→ y means that x ≤ y
which is logically equivalent to x′ ∨ y sau cu x = x∧ y. In the case of non-Boolean lattices we can also
have other ways of defining the logical implication.

3 Orthomodular lattices
In this section we will present some aspects of orthomodular lattices, because they represent the

basic structure in quantum logic. For other results and notions in the theory of general lattices we
refer to [3], [10], [14].

Definition 13. A lattice (L,≤,∧,∨) is called modular if:

x ≤ y ⇒ x ∨ (z ∧ y) = (x ∨ z) ∧ y, (∀)z ∈ L.

Theorem 14. Every distributive lattice is modular.

Definition 15. Let (L,≤,∧,∨, 0, 1) be a bounded lattice. A unary operation ⊥: L → L is called
orthocomplementation if (∀)x, y ∈ L we have:
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1. x⊥⊥ = x (involution);

2. x ≤ y ⇒ y⊥ ≤ x⊥ (antitone);

3. x ∧ x⊥ = 0 (non-contradiction).

The 7-tuple (L,≤,∧,∨, 0, 1,⊥) is called orthocomplemented lattice.

Theorem 16. If (L,≤,∧,∨, 0, 1,⊥) is an orthocomplemented lattice, then:

1. 0⊥ = 1 ; 1⊥ = 0 (boundary condition);

2. (x ∨ y)⊥ = x⊥ ∧ y⊥ ; (x ∧ y)⊥ = x⊥ ∨ y⊥ (De Morgan laws);

3. x ∨ x⊥ = 1 (excluded middle).

Corollary 17. If L is an orthocomplemented lattice, then L is complemented.

Corollary 18. If L is an orthocomplemented and distributive, then L is Boolean.

Definition 19. An orthomodular lattice is an orthocomplemented lattice such that it satisfies:
x ≤ y ⇒ x ∨ (x⊥ ∧ y) = y, (∀)x, y ∈ L (orthomodular law).

Theorem 20. If L is Boolean algebra, than L is modular, orthomodular and orthocomplemented.

In the theory of lattices the concepts of negation and implication on an orthomodular lattice have
an important role. We will restrain to presenting only some notions.

Definition 21. Let (L,≤,∧,∨, 0, 1) be a bounded lattice.

1. A function ¬ : L→ L is a negation on L if:

(a) x ≤ y ⇒ ¬y ≤ ¬x (antitone);
(b) x ≤ ¬¬x, (∀)x ∈ L (weak double negation).

2. A negation ¬ is called intuitionistic negation on L if x ∧ ¬x = 0 (non-contradiction).

3. A negation ¬ is called fuzzy negation on L if ¬1 = 0 (boundary condition).

4. A negation ¬ is called de Morgan negation on L if x = ¬¬x, (∀)x ∈ L (involutory).

5. A de Morgan negation ¬ is an ortho negation on L if x∧¬x = 0, (∀)x ∈ L (non-contradiction).

6. An ortho negation ¬ is an orthomodular negation on L if x ≤ y ⇒ x ∨ (¬x ∧ y) = y (ortho-
modular).

The concept of complement and the concept of negation are fundamentally different. Complemen-
tation is a characteristic of a lattice while negation is a function defined on a lattice. The necessity
of a notion of "implication" is obvious. We cannot talk of a "logic" without having such a notion. "I
would argue that a ’logic’ without an implication function susceptible of reasonable interpretation is
radically incomplete, and indeed, hardly qualifies as a theory of deduction" (see [28]). Any definition
we give to the concept of implication, it should satisfy the condition

x→ y = 1⇔ x ≤ y,

condition that we could consider natural also in orthomodular lattice not only in the case of Boolean
algebras. But, as we have seen in the previous section, in the classical logic we have the implication
x → y ⇔ ¬x ∨ y. In a orthomodular lattice an implication defined in such a way would not satisfy
anymore the condition x→ y = 1⇔ x ≤ y. In 1970 the following implication

x→ y ⇔ ¬x ∨ (x ∧ y)
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was seen to satisfy the above condition. It was called Sasaki hook or quantum implication. We
highlight that, in the case that the lattice is distributive, namely a Boolean lattice, the Sasaki hook
becomes equal to ¬x ∨ y. Using Sasaki hook, many authors reformulated the theory of orthomodular
lattices and called them "quantum logic". We also specify that, in 1974, G. Kalmbach showed that
along the Sasaki hook there are four more "quantum implications", which satisfy the above condition
and reduce themselves to ¬x ∨ y in the case of Boolean algebras. (see [19]). A much more general
definition for the concept of implication can be the following

Definition 22. [10] Let (L,≤,∧,∨, 0, 1) be a bounded lattice with negation. A function → on L is
called implication if:

1. {x ≤ y} ⇒ x→ y ≤ x ∨ y, (∀)x, y ∈ L;

2. x ∧ (x→ y) ≤ ¬x ∨ y, (∀)x, y ∈ L.

4 Fuzzy logic
As we have seen, the fundamental concept of the classical logic is that of the proposition. This is

an affirmation that we can decide, without any ambiguity, whether it is true or false. For example,
“10 is an even number” is a true sentence. Everything functions well, because the sentences are clearly
formulated. But, for many sentences from everyday language, like “John is tall” or “the room is clean”
there is no clear answer as true or false. Traditional mathematics avoided such situations, or, in order
to avoid ambiguity, we give a more precise definition like “tall is more than 1,72 m”. Such an approach
has the disadvantage that a man of 1,718 m is not considered tall whereas a man of 1,72 m is.

A more efficient way to treat such ambiguities is offered by fuzzy logic, introduced in 1965 by
L.A. Zadeh in his famous paper [26]. Fuzzy logic and fuzzy set theory have led to a new domain in
mathematics and has found applications in several other fields.

Thus, if X is an arbitrary set, by fuzzy set in X we understand an application µ : X → [0, 1]. This
representing a generalization of the classical subsets which can be identified with their characteristic
functions defined on X, but with values in {0, 1}. The value µ(x) is regarded as the degree of
membership of x to fuzzy set, or the value of truth with which x belongs to the fuzzy set.

The classical operations of union, intersection and complementarity were redefined by L.A. Zadeh
in the context of fuzzy sets. Thus, if µ, ν are fuzzy sets in X there union, noted µ∨ν, their intersection,
notated µ ∧ ν and µ’s complementarity notated Cµ, are fuzzy sets in X defined by

(µ ∨ ν)(x) = max{µ(x), ν(x)}, (∀)x ∈ X;

(µ ∧ ν)(x) = min{µ(x), ν(x)}, (∀)x ∈ X;
(Cµ)(x) = 1− µ(x), (∀)x ∈ X.

For µ, ν fuzzy sets in X, we will say that µ ≤ ν if µ(x) ≤ ν(x), (∀)x ∈ X. We will note by 0 si 1
the constant functions on X, defined by 0(x) = 0, (∀)x ∈ X and, respectively, by 1(x) = 1, (∀)x ∈ X.
We agree to further note by F(X) the family of all fuzzy sets in X.

We have that (F(X),≤ ∧,∨, 0, 1) is a distributive lattice and µ→ Cµ = 1− µ is a fuzzy negation,
but is not an ortho negation. The only laws that are not satisfied are the law of non-contradiction
and the excluded-middle law because µ ∧ Cµ 6= 0 and µ ∨ Cµ 6= 1.

After L.A. Zadeh introduced the concept of fuzzy set, many generalizations have rapidly appeared.
Recently, in the paper [4], 21 variants of fuzzy sets have been listed and the connections among them
have been presented. Later, in paper [12], it is shown that in the two-dimensional case, several of the
lattices of truth values considered here are pairwise isomorphic, and so are the corresponding families
of fuzzy sets. Further on, we will present only some of these generalizations.

J.A. Goguen [9] introduces in 1967 the notion of L-fuzzy sets, when the membership functions take
values in a partially ordered set L, most often a lattice.

L.A. Zadeh [27] introduces in 1975 the concept of interval-valued fuzzy set. This is characterized
by the membership function µ : X → D([0, 1]), where D([0, 1]) represents the family of all closed
subintervals of the unit interval [0, 1].
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K.T. Atanassov [1] introduces in 1986 the concept of intuitionistic fuzzy sets, where each element is
characterized by a membership function µ, as in the case of fuzzy sets, but also by a non-membership
function ν such that 0 ≤ µ(x) + ν(x) ≤ 1, (∀)x ∈ X. Later, in 1989, K.T. Atanassov and G.
Gargov [2] introduce interval valued intuitionistic fuzzy sets, which are characterized by two functions
µ, ν : X → D([0, 1]) such that 0 ≤ sup

x∈X
µ(x) + sup

x∈X
ν(x) ≤ 1.

As a generalization of the classic sets, fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy
sets, interval-valued intuiyionistic fuzzy sets, F. Smarandache [24] proposes in 1999 the concept of
neutrosophic set. A neutrosophic set in X is defined as

A = {< x, TA(x), IA(x), FA(x) >: x ∈ X}

where TA(x), IA(x), FA(x) are subsets of ]0−, 1+[ and represent the truth-membership function,
indeterminacy-membership function and falsity-membership function such that

0− ≤ sup
x∈X

TA(x) + sup
x∈X

IA(x) + sup
x∈X

FA(x) ≤ 3+,

where
a− = {a− ε : ε ∈ R∗, ε is infinitesimal}

b+ = {b+ ε : ε ∈ R∗, ε is infinitesimal}.

For applications we can consider that TA(x), IA(x), FA(x) are subsets of [0, 1].
Pythagorean fuzzy sets were proposed by R.R. Yager in 2013 (see [25]). A Pythagorean fuzzy set

is characterized by the functions µ, ν : X → [0, 1] which give us the degree of membership and degree
of non-membership, respectively and 0 ≤ (µ(x))2 +(ν(x))2 ≤ 1, (∀)x ∈ X. The function π : X → [0, 1]
defined by π(x) =

√
1− [(µ(x))2 + (ν(x))2] is called the degree of indeterminacy. In the following

table we explain the differences between Pytagorean fuzzy sets and intuitionistic fuzzy sets (see [7]):

Intuitionistic fuzzy sets Pythagorean fuzzy sets
0 ≤ µ+ ν ≤ 1 0 ≤ µ2 + ν2 ≤ 1
π = 1− (µ+ ν) π =

√
1− [µ2 + ν2]

µ+ ν + π = 1 µ2 + ν2 + π2 = 1

We cannot end this section without discussing some aspects regarding the triangular norms (briefly
t-norms). These were introduced by A K. Menger [18] and developed by B. Schweizer and A. Sklar
[23]. They have become interesting in the fuzzy logic because they maintain the main properties of
conjunction and they serve as generalization of it. Associated with t-norm is the triangular conorm
(t-conorm) which has the main properties of disjunction. Our basic reference for t-norms is [13].

Definition 23. [23]. A binary operation

∗ : [0, 1]× [0, 1]→ [0, 1]

is called triangular norm (t-norm) if it satisfies the following condition:

1. a ∗ b = b ∗ a, (∀)a, b ∈ [0, 1];

2. a ∗ 1 = a, (∀)a ∈ [0, 1];

3. (a ∗ b) ∗ c = a ∗ (b ∗ c), (∀)a, b, c ∈ [0, 1];

4. If a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1], then a ∗ b ≤ c ∗ d.

Definition 24. A triangular conorm S (t-conorm) is a binary operation

◦ : [0, 1]× [0, 1]→ [0, 1]

such that:
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1. a ◦ b = b ◦ a, (∀)a, b ∈ [0, 1];

2. a ◦ 0 = a, (∀)a ∈ [0, 1];

3. (a ◦ b) ◦ c = a ◦ (b ◦ c), (∀)a, b, c ∈ [0, 1];

4. If a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1], then a ∗ b ≤ c ∗ d.

Proposition 25. ◦ is a t-conorm if and only if there exists a t-norm ∗ such that

x ◦ y = 1− ((1− x) ∗ (1− y)), (∀)x, y ∈ [0, 1].

∗ is called the dual of t-conorm ◦ and ◦ is the dual of t-norm ∗.

The most important pairs of t-norm and corresponding t-conorms are:

1. the minimum t-norm a ∧ b = min{a, b} and the maximum t-conorm a ∨ b = max{a, b};

2. a · b the usual multiplication in [0, 1] and the probabilistic sum a ◦π b = a+ b− ab;

3. the Lukasiewicz t-norm a ∗L b = max{a + b − 1, 0} and the Lukasiewicz t-conorm a ◦L b =
min{a+ b, 1};

4. the drastic product

a ∗D b =


a if b = 1
b if a = 1
0 otherwise

and the drastic sum

a ◦D b =


a if b = 0
b if a = 0
0 otherwise

.

We note that
a ∗D b ≤ a ∗L b ≤ a · b ≤ a ∧ b, (∀)a, b ∈ [0, 1]

and for each t-norm ∗ we have that

a ∗D b ≤ a ∗ b ≤ a ∧ b, (∀)a, b ∈ [0, 1].

On the other hand,
a ∨ b ≤ a ◦π b ≤ a ◦L b ≤ a ◦D b, (∀)a, b ∈ [0, 1]

and for each t-conorm ◦ we have:

a ∨ b ≤ a ◦ b ≤ a ◦D b, (∀)a, b ∈ [0, 1].

Finally, if ∗ is a t-norm, ◦ is a t-conorm and µ, ν are fuzzy sets in X, then the intersection of µ and
ν is the fuzzy set µ ∩∗ ν defined by (µ ∩∗ ν)(x) = µ(x) ∗ ν(x). The union of µ and ν is the fuzzy set
µ ∪◦ ν defined by (µ ∪◦ ν)(x) = µ(x) ◦ ν(x).

5 From quantum mechanics to quantum logic
Although quantum mechanics was discovered since 1925 by W. Heisenberg, M. Born and P. Jordan

and formulated mathematically as "matrix mechanics", and later, in 1927, E. Schrödinger developed
another mathematic technique known as "wave mechanics", John von Neumann in two years (1927-
1929) developed the mathematical frame of the theory. He realized that the natural context is the
Hilbert space theory and the operators among them.

In quantum mechanics each physical system is associated a separable Hilbert space H and the
states of the physical system are described by unitary vectors x ∈ H. A physical quantity that can
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be measured is called observable. These will be represented by self-adjoint operators, not necessarily
bounded, on the Hilbert space H, which in general do not commute. From here a thorough investi-
gation of linear operators on Hilbert spaces has been conducted by John von Neumann, reaching its
highlight in 1929 with the spectral theorem for unbounded self-adjoint operators.

To the observable A, which is a self-adjoint operator, the spectral measure is associated PA :
Bor(R)→ A(H). If A is from B(H) (bounded operator) then

Ax =
(∫

R
tdPA(t)

)
x, (∀)x ∈ H.

If A is from C(H) (closed operator) then

Ax = lim
k→∞

(∫ k

−k
tdPA(t)

)
x, (∀)x ∈ D(A),

where
D(A) =

{
x ∈ H :

∫
R
t2d < PA(t)x, x ><∞

}
.

This spectral measure induces a probability measure

µx,A : Bor(R)→ [0, 1] defined as µx,A(S) =< PA(S)x, x >,

which John von Neumann regarded as the observable represented by A to take values in the set S
when the state of the system is represented by the vector x. In many situations, the physical quantity
which will be measured can have only particular values. This happens, for example, in the case of
energy. In this case, we will have σ(A) = {λk}∞k=1, where λk are eigenvalues of A. Let Pk = PA({λk}).
Then for S ∈ Bor(R) we have

µx,A(S) =< PA(S)x, x >=<
∑
λk∈S

PA({λk})x, x >=<
∑
λk∈S

Pkx, x >=
∑
λk∈S

< Pkx, x >=

=
∑
λk∈S

< P 2
kx, x >=

∑
λk∈S

< Pkx, P
∗
kx >=

∑
λk∈S

< Pkx, Pkx >=
∑
λk∈S

‖Pkx‖2 .

In particular, the probability of the observable A to take the value λk is µx,A({λk}) = ‖Pkx‖2.
If the observable A has an arbitrary spectrum, then we will not be able to talk about the probability

of a value. In this situation, we will talk about the probability of obtaining values in the interval [a, b],
probability that will be µx,A([a, b]).

In the axiomatization of quantum mechanics, the next definition is essential.

Definition 26. We suppose that the physical system is in state x and let A an observable having the
spectral measure PA. Then for any S ∈ Bor(R), after performing a measurement on the observable
A, which gave the value λ ∈ S, the state of the physical system will change and will be given by a new
state vector

y = PA(S)x
‖PA(S)x‖ .

Corollary 27. µy,A(L) = µx,A(S ∩ L)/µx,A(S), (∀)L ∈ Bor(R).

Let’s suppose now that the physical system is in state x and consider two observables A and B
with the spectral measures PA and PB. Suppose a measurement was performed on the observable
A, which gave the value λ ∈ S, S ∈ Bor(R). According to the previous definition, the state of the
physical system becomes

y = PA(S)x
‖PA(S)x‖ .

If we perform now a measurement on the observable B, which gives the value v ∈ L, L ∈ Bor(R), the
state of the physical system becomes

z = PB(L)y
‖PB(L)y‖ = PB(L)PA(S)x

‖PB(L)PA(S)x‖ .
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Definition 28. The observables A and B are called simultaneous or compatible if the state of the
system after performing a measurement on the observable A, followed by a measurement on the ob-
servable B, coincides with the state of the system obtained by first performing a measurement on the
observable B, followed by a measurement on the observable A.

Remark 29. The observables A and B are simultaneous if and only if

PB(L)PA(S)x
‖PB(L)PA(S)x‖ = PA(S)PB(L)x

‖PA(S)PB(L)x‖

for any state x and any S,L ∈ Bor(R).

Proposition 30. The observables A and B are simultaneous if and only if the self-adjoint operators
A and B commute.

We suppose now that the operators A and B don’t commute. We make the following notations:

m(A, x) =
∫
R
λd < PA(λ)x, x >=< Ax, x >

v(A, x) =
∫
R

(λ−m(A, x))2d < PA(λ)x, x >= ‖Ax‖2− < Ax, x >,

where x ∈ D(A).
For the arbitrary A and B we introduce their commutator [A,B] := AB − BA defined on

D([A,B]) = D(AB) ∩D(BA).

Theorem 31. (Heisenberg’s inequality). For any x ∈ D([A,B]) we have

v(A, x) · v(B, x) > | < [A,B]x, x > |2
4 .

The results obtained by John von Neumann were presented by him in an extent form in the book
"Mathematical Foundation of Quantum Mechanics", published in 1932 and which rapidly became the
book that has been, since then, considered the basis in mathematical foundation of the quantum
mechanics. In the third chapter of this book John von Neumann proposes for the first time the
quantum logic: "the relation between the properties of physical system on the one hand, and the
projections on the other hand, makes possible a sort of logical calculus with these". In fact, the
closed linear subspaces of a Hilbert space H are in one-to-one correspondence with the projection
over them. John von Neumann, preoccupied by the logic and the algebraic structure of the quantum
mechanics, starts cooperation with G. Birkhoff with whom, in 1936, publishes "The Logic of Quantum
Mechanics", paper that can be considered the official birth of quantum logic. The family of all closed
linear subspaces of a Hilbert space H, denoted Lat(H) and called Hilbert lattice associated to H, was
G. Birkhoff’s and J. von Neumann’s proposal for the algebraic structures that organizes the sentences.
This is a different structure from that of classic logic where the sentences were organized in the power
set P(X) which form, as we have seen, a Boolean algebra which satisfies the distributive law. Lat(H)
is a lattice in which the inclusion relation is the usual inclusion between subspaces, the operation ∧
corresponds to the intersection of subspaces, but the operation ∨ is the smallest closed subspace that
contains the union of the two subspaces. Lat(H) is a bounded lattice, where 1 := H and 0 = ∅. We
remind the fact that two elements x, y ∈ H are called orthogonal and we note x ⊥ y if < x, y >= 0.
For M ∈ Lat(H) we will define M⊥ = {x ∈ H : x ⊥ y, (∀)y ∈ M}. It is easy to check that the
application M 7→ M⊥ is an othocomplementation on the lattice Lat(H). Moreover, K. Husini [11]
was the first to show, in 1937, that Lat(H) satisfies the orthomodular law:

S ⊂M ⇒ S ∨ (S⊥ ∧M) = M, (∀)S,M ∈ Lat(H).

Thus Lat(H) is an orhomodular lattice.

Definition 32. If L is an orthomodular lattice, we say that a, b ∈ L are orhogonal and we denote
a ⊥ b if a ⊂ b⊥.
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Definition 33. An orhomodular lattice L is called σ-complete if the join of every countable pairwise
orthogonal sequence exists in L, namely if ai ≤ a⊥j for i 6= j, then the join

∨
i
ai exists in L.

Definition 34. An othomodular lattice which is σ-complete is called quantum logic.

Proposition 35. Lat(H) is a quantum logic.

Definition 36. A probability measure on a quantum logic is a mapping s : L→ [0, 1] such that:

1. s(1) = 1;

2. s
(∨
i
ai

)
= ∑

i
s(ai), for any sequence of pairwise orthogonal elements of L.

From another point of view, as we have already mentioned, the family of all closed linear subspaces
of a Hilbert space H is in one-to-one correspondence with the family of all projections over them. More
precisely, the projectors can be considered as the quantum analogue of the characteristic functions.
Given a projection Pk : H → K, we can ask ourselves if the system is in K. This question can have
several answers, not just "yes" or "no". If the answer is "yes" then we will have < Pkx, x >= 1, because
‖x‖ = 1. If the answer is "no" then we will have x ∈ K⊥, so < Pkx, x >= 0. But it is possible that x
is of form x = x1 + x2, where x1 ∈ K⊥ and x2 ∈ K. Then

< Pkx, x >=< x2, x >=< x2, x2 >= ‖x2‖2 ∈ [0, 1] .

In conclusion, the number < Pkx, x > is the probability of the state x to be in K.

6 Some connections between fuzzy logic and quantum logic

6.1 Quantum logic view as an example of fuzzy logic

In paper [17] the author views quantum logic as an example of fuzzy logic. In order to justify
this affirmation we consider a Hilbert space H. The family of all fuzzy sets in H, denoted F(H) is a
lattice. Each closed linear subspace in H corresponds, as we have seen, to an elementary sentence in
quantum logic. On the other hand, to each closed linear subspaceM of H it corresponds an orthogonal
projection PM onto M . The set of the orthogonal projections is a lattice equipped with the relation
or partial order P ≤ R if < Px, x >≤< Rx, x >, (∀)x ∈ H. Operations P ∧R, P ∨R, P⊥ = 1−P are
conjunction, disjunction and negation in quantum logic. To each closed linear subspace M ⊆ H we
can associate a fuzzy set µM : H → [0, 1], µM (x) =< PMx, x >. The fuzzy sets {µM ,M ⊆ H} form a
fuzzy logic.

6.2 Ma̧czyński’s representation theorem for quantum logic

Although at a first glance, the quantum structure, which is an abstract algebraic structure, seems
to have nothing in common with fuzzy logic, M. Ma̧czyński [15], [16] proved a theorem of representation
of any quantum logic as a family of [0, 1]-valued functions, which can be regarded as the membership
functions of some fuzzy sets (see also [22]).
Theorem 37. [16] If S is a non-empty set and L a family of applications from S into [0, 1] such that:

1. 0 ∈ L (0 is the null function),

2. a ∈ L⇒ 1− a ∈ L,

3. (∀){ai}i∈I ⊂ L (I finite or countable): ai + aj ≤ 1, for i 6= j ⇒
∑
i∈I

ai ∈ L,

then L is a quantum logic with respect to the natural partial order of real function, with orthocom-
plementation a⊥ = 1 − a. Each point u ∈ S induces a probability measure mu on (L,≤,⊥), where
mu(a) = a(u), (∀)a ∈ L and the family of measures {mu : u ∈ S} is ordering.

Conversely, if (L,≤,⊥) in a quantum logic and S is an ordering set of probability measures, then
any a ∈ L induces a function ã : S → [0, 1], ã(m) = m(a), (∀)m ∈ S. The set of such functions has
properties (1)-(3) and (L̃,≤,⊥) is isomorphic with (L,≤,⊥).
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We also note that condition (1) means that ∅ ∈ L, while (2) shows that, if a fuzzy set is in L then
its standard fuzzy complement also belongs to L. Only condition (3) cannot be expressed in terms of
fuzzy sets. Nevertheless, a solution was found in the paper [22].

6.3 Fuzzy sets models of quantum logics

Starting with late ’80s of the previous century, the noticed similarities between the operations
with fuzzy sets and the operations of quantum logic have led to the desire of creating fuzzy models
for quantum logic (see [20]). It was clear from the very beginning that the othocomplementation
must be modelled through standard fuzzy set complementation. The problems appear to relations
µ ∧ µ⊥ = ∅, µ ∨ µ⊥ = X, which are not satisfied by fuzzy sets but which take place in Birkhoff-von
Neumann quantum logic. What if we replace operations ∨ and ∧ introduced by Zadeh with those
of Lukasiewics? On the other hand, the fact that the operations ∨ and ∧ introduced by Zadeh are
distributive means that they cannot be used in the construction of fuzzy models for quantum logic.
The problem was solved by J. Pykacz in paper[21].

Theorem 38. [21] Any quantum logic L with an ordering set of probability measures S can be iso-
morphically represented in the form L(S) of fuzzy subsets of S satisfying the following conditions:

1. L(S) contains the empty set ∅;

2. L(S) is closed with respect to standard fuzzy set complementation;

3. L(S) is closed with respect to countable Lukasiewicz unions of pairwise weakly disjoint sets, i.e.
if Ai uAj = ∅ for i 6= j, then

⊔
i
Ai ∈ L(S);

4. (∀)A ∈ L(S) : A uA = ∅ ⇒ A = ∅.

Conversely, any family L(U) of fuzzy subsets of an arbitrary universe U satisfying conditions
(1)-(4) is a quantum logic partially ordered by the inclusion of fuzzy sets, with the fuzzy set comple-
mentation µ′ = 1−µ as orthocomplementation, the orthogonality of the elements coinciding with their
weak disjointness, and an ordering set of probability measures generated by points of the universe U
according to the formula Sx(A) = µA(x), (∀)x ∈ U .
L(U) will be called fuzzy quantum logic.

6.4 Effect algebras and fuzzy sets

More recently, in 1994, in the study of the algebraic foundations of the quantum logic, some more
general algebraic structures called effect algebras have been introduced by D. Foulis and M. Bennet
[8].

Definition 39. [8] An effect algebra is a system (E,⊕, 0, 1) consisting on a set E which contains two
distinct elements 0, 1 called zero and unit and a binary operation partially defined ⊕ such that the
following axioms are satisfied:

1. If a⊕ b is defined, then b⊕ a is defined and a⊕ b = b⊕ a;

2. If b⊕ c is defined and a⊕ (b⊕ c) is defined, then a⊕ b and (a⊕ b)⊕ c are defined and

a⊕ (b⊕ c) = (a⊕ b)⊕ c;

3. (∀)x ∈ E, (∃)!x′ ∈ E such that x⊕ x′ is defined and x⊕ x′ = 1;

4. If 1⊕ a is defined, then a = 0.
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Remark 40. The way of defining the concept of effect algebra allows us to easily notice that effect
algebras are generalizations of other algebraic structures. Thus, if condition (4) is replaced by a more
powerful condition

(4′)If a⊕ a is defined, then a = 0

we obtain an ortho-algebra. If to conditions (1)-(4) we add the condition

(5) If a⊕ b, b⊕ c, a⊕ c are defined, then (a⊕ b)⊕ c is defined

we obtain an orthomodular poset. If, we further add

(6)(∀)x, y ∈ E, (∃)a, b, c ∈ E such that b⊕ c, a⊕ c are defined and x = a⊕ c, y = b⊕ c

then E becomes an Boolean algebra.
We also specify that the operation ⊕ allows us to introduce a relation of partial order:

a ≤ b iff (∃)c ∈ E : a⊕ c is defined and a⊕ c = b .

In 1996, A. Dvurečenskij [6] showed that a system of fuzzy sets L ⊂ [0, 1]X satisfying the following
conditions:

D1 X ∈ L,

D2 A ∈ L⇒ 1X −A ∈ L,

D3 If A+B ≤ 1X , then A+B ∈ L,

can be organized into an effect algebra (L,⊕, ∅, X) if we assume that A⊕B is defined if A⊕B ≤ 1X
and we will set A⊕B = A+B.

Furthermore, A. Dvurečenskij showed that if we add the condition:

D4 A+A ≤ 1X ⇒ A = ∅

then L becomes an orthoalgebra.
We also note that in order that L becomes an orthomodular poset it must satisfy (D1), (D2) and

D5 If A+B ≤ 1X , B + C ≤ 1X , A+ C ≤ 1X ⇒ A+B + C ∈ L .

The results obtained by A. Dvurečenskij were generalized by J. Pykacz [22].

7 Conclusions
In this paper, our aim is to briefly present an evolution of logics from ancient times until present

days and to highlight the main connections among classical logic, fuzzy logic and quantum logic. Of
course, such a review is limited and it couldn’t be otherwise. Many other research directions have
been, unfortunately, left aside.

What we intend is for this approach to be continued and to highlight several other connections
between fuzzy logic and quantum logic.

Conflict of interest

The author declares no conflict of interest.



https://doi.org/10.15837/ijccc.2021.1.4125 13

References
[1] Atanassov, K.T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96, 1986.

[2] Atanassov, K.T.; Gargov, G. (1989). Interval valued intuitionistic fuzzy sets, Fuzzy Sets and
Systems, 31(3), 343–349, 1989.

[3] Birkhoff, G. (1973) Lattice Theory, American Mathematical Society: Providence, RI, USA, 1973.

[4] Bustince, H.; Barrenechea, E.; Pagola, M.; Fernandez, J.; Xu, Z., Bedregal, B.; Montero, J.;
Hagras, H., Herrera, F.; De Baets, B. (2016). A historical account of types of fuzzy sets and their
relationships, IEEE Trans. Fuzzy Syst., 24, 179—194, 2016.

[5] Dann, J.M. (1996). Generalized Ortho-Negation. In book: Negation: A Concept in Focus, 3–26,
1996.

[6] Dvurečenskij, A. (1996). Fuzzy set representations of some quantum structures, Preprint Series
of the Mathematical Institute of Slovak Academy of Sciences, 2, 1996.

[7] Ejegwa, P.A. (2019). Pythagorean fuzzy set and its application in career placements based
on academic performance using max–min–max composition, Complex & Intelligent Systems, 5,
165—175, 2019.

[8] Foulis, D.J.; Bennet, M.K. (1994). Effect algebras and unsharp quantum logics, Foundations on
Physics, 24, 1331–1352, 1994.

[9] Goguen, J.A. (1967). L-fuzzy sets, J. Math. Anal. Appl., 18, 145–174, 1967.

[10] Greenhoe, D.J. (2015). Boolean and ortho fuzzy subset logic, arXiv: 1409.4222, 2015.

[11] Husimi, K. (1937). Studies on the foundations of quantum mechanics I, Proc. Physico-
Mathematical Soc. Japan, 9, 766–789, 1937.

[12] Klement, E.P.; Mesiar, R. (2018). L-Fuzzy Sets and Isomorphic Lattices: Are All the “New”
Results Really New?, Mathematics, 6, 146, 2018.

[13] Klement, E.P.; Mesiar, R.; Pap, E. (2000). Triangular norms, Kluwer Academic Publisher, 2000.

[14] Mac Lane, S.; Birkhoff, G. (1999). Algebra, 3rd Edition, Chelsea Publishing, Providence, 1999.

[15] Ma̧czyńscki, M.J. (1973). On some numerical characterization of Boolean algebras, Colloquium
Mathematicum, 27, 207–210, 1973.

[16] Ma̧czyńscki, M.J. (1974). Functional properties of quantum logics, International Journal of
Theoretical Physics, 11, 149–156, 1974.

[17] Melnichenko, G. (2010). Energy discriminant analysis, quantum logic and fuzzy sets, Journal of
Multivariate Analysis, 101, 68–76, 2010.

[18] Menger, K. (1942). Statistical metrics, Proc. Nat. Acad. of Sci., U.S.A. 28, 535–537, 1942.

[19] Pavičić, M.; Megill, N.D. (2009). Is quantum logic a logic?, Handbook of quantum logic and
quantum structures: quantum logic, Eds. K. Engesser, D.M. Gabbay, D. Lehmann, Elsevier,
2009.

[20] Pykacz, J. (1987). Quantum logics as families of fuzzy subsets of the set of physical states,
Preprints of the Second International Fuzzy Systems Association Congress, Tokyo, July 20-25,
Vol. 2, 437–440, 1987.

[21] Pykacz, J. (1994). Fuzzy quantum logics and infinite-valued Lukasiewicz logic, International
Journal of Theoretical Physics, 33, 1403–1416, 1994.



https://doi.org/10.15837/ijccc.2021.1.4125 14

[22] Pykacz, J. (2007). Quantum structures and fuzzy set theory, Handbook of Quantum Logic
and Quantum Structures: Quantum Structures, Edited by K. Engesser, D.M. Gabbay and D.
Lehmann, Elsevier, 55–74, 2007.

[23] Schweizer, B., Sklar, A. (1960). Statistical metric spaces, Pacific Journal of Mathematics, 10,
314–334, 1960.

[24] Smarandache, F. (1999). A unifying field in logics. Neutrosophy: neutrosophic probability, set
and logic, American Research Press Rehoboth, 1999.

[25] Yager, R.R. (2013). Pythagorean fuzzy subsets, Joint IFSA World Congress and NAFIPS Annual
Meeting (IFSA/NAFIPS), Edmonton, AB, 57–61, 2013.

[26] Zadeh, L.A. (1965). Fuzzy sets, Information and Control, 8(3), 338–353, 1965.

[27] Zadeh, L.A. (1975). The concept of a linguistic variable and its applications to approximate
reasoning, Part I, Inform. Sci., 8, 199—251, 1975.

[28] Zeman, J.J. (1978). Generalized normal logic, Journal of Philosophical Logic, 7(1), 225–243,
1978.

Copyright ©2021 by the authors. Licensee Agora University, Oradea, Romania.
This is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonCommercial 4.0 International License.
Journal’s webpage: http://univagora.ro/jour/index.php/ijccc/

This journal is a member of, and subscribes to the principles of,
the Committee on Publication Ethics (COPE).

https://publicationethics.org/members/international-journal-computers-communications-and-control

Cite this paper as:
Nădăban, S. (2021). From classical logic to fuzzy logic and quantum logic: a general view, International
Journal of Computers Communications & Control, 16(1), 4125, 2021.

https://doi.org/10.15837/ijccc.2021.1.4125


	Aristotelian logic
	The lattices of classical logic
	Orthomodular lattices
	Fuzzy logic
	From quantum mechanics to quantum logic
	Some connections between fuzzy logic and quantum logic
	Quantum logic view as an example of fuzzy logic
	Maczynski's representation theorem for quantum logic
	Fuzzy sets models of quantum logics
	Effect algebras and fuzzy sets

	Conclusions

