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Abstract

The aim of this paper is to present a comprehensive survey of cubic Fibonacci identities, trying
to uncover as many as possible. From the outset, our rationale for a very careful search on an
apparently obscure problem was not only a matter of mathematical curiosity, but also motivated
by a quest for 3D Fibonacci spirals.

As we were not able to find any survey on the particular topic of cubic Fibonacci identities we
decided to try to fill this void. We started by surveying many Fibonacci identities and recording
cubic ones. Obviously, tracing all Fibonacci identities (for identifying a handful) is a daunting
task. Checking several hundred we have realized that it is not always clear who the author is.
The reason is that in many cases an identity was stated in one article (sometimes without a proof,
e.g., as an open problem, or a conjecture) while later being proven in another article, or effectively
rediscovered independently by other authors. However, we have done our best to present the
identities chronologically. We have supplied our own proof for one identity, having tried, but failed,
to find a published proof. For all the other identities, we either proved them on a computer, or else
verified by hand their original published proofs. Somehow unexpectedly, our investigations have
revealed only a rather small number of cubic Fibonacci identities, representing a tiny fraction of all
published Fibonacci identities (most of which are linear or quadratic). Finally, out of these, only a
handful of cubic Fibonacci identities are homogeneous.

Keywords: Fibonacci number, Fibonacci identity, cubic identity.

1 Introduction
Many scientists have been fascinated by numbers. They have relied on number theory for estab-

lishing properties and relations amongst digits, numbers and/or sequences of digits/numbers. Early
on, such quests were mostly curiosity driven, while nowadays the interest is motivated by different
computing problems, some of which are very practical.
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One of the most famous sequences of numbers is the Fibonacci one. The fascination with this
sequence started in the late 1800s, when Édouard Lucas was calling it Lamé’s sequence. Since then,
many have analyzed this sequence, discovering plenty of properties and identities, relating it to other
sequences (e.g., Pell, Lucas, etc.), formulating quite a few generalizations, as well as finding various
applications in sciences and engineering. Among all of these, a slightly less investigated aspect is
represented by the relations between Fibonacci numbers and geometry. By far the most well-known
result here is the 2D Fibonacci spiral, while relations to 3D seem to have been introduced for the first
time by Johannes Kepler in 1611 [46]. Therefore, a 3D version of the famous Fibonacci spiral was
something to be expected. To our surprise, a search we have done [61] has revealed that a 3D Fibonacci
spiral is lacking, as none of the so-called 3D spirals are backed by a Fibonacci identity describing a
recurrent tiling of 3D space. In fact, [61] has shown that for distinguishing different tilings of the 3D
space, a thorough understanding of cubic Fibonacci identities is needed.

As we were not able to find any reviews of cubic Fibonacci identities we decided to start working
on our own. That is why, in our journey through identities associated with the Fibonacci sequence, we
have been looking for cubic ones. We have decided, whenever possible, to keep the original notations
in the text. However, for uniformity in the summary tables towards the end of the paper, we have
used a standard notation.

The structure of the paper is as follows. In Section 2 we will introduce the Fibonacci numbers
and present some of the early identities involving them. This will be followed in Section 3 by a very
thorough survey of cubic Fibonacci identities. The cubic identities will be introduced chronologically
and afterwards classified into: homogeneous, non-homogeneous, and generic, which we detail in three
different tables. For the identities reported in these tables, we first checked that generating their first
few terms on a computer did not falsify them. We then verified them, either by a computer algebra
system or else by checking the published proof by hand, and in one case, providing our own proof.
The paper ends with conclusions and further directions of research.

2 Fibonacci Numbers and Identities
One of the most studied sequences of numbers was introduced by Leonardo of Pisa in his book

Liber Abaci [72]. Leonardo of Pisa, or Leonardo Pisano, is better known today as Fibonacci [27]. This
is short for filius Bonacci which means son of Bonacci. He is regarded as one of the greatest and most
creative minds of the Middle Age [28].

The Book of Calculation is called Liber Abaci [72] and should be seen as “liberating” calculations,
by showing how to use the Hindu/Arabic numerals and the place-valued decimal system. It is an
extensive work based on the theoretical foundations of Euclidean mathematics, including arithmetic
(number theory), algebra, and applied mathematics. Liber Abaci was first published in 1202 (a second
revised version appeared in 1228). A very thorough and long awaited English translation was done by
Laurence E. Sigler and was published posthumously in 2002 [76], i.e., 800 years after [72].

Liber Abaci starts by explaining the principle of the place-valued decimal system and demonstrating
its use in arithmetic operations. Afterwards, the book refers to, and proposes mathematical solutions
to, a plethora of practical problems pertaining to business and finance (e.g., profit margin, barter,
money changing, conversion of weights and measures, partnerships, and interest), but also arts. By
far the most well-known problem is the so-called Rabbit Problem, proposed in Chapter Twelve (see
page 404 in [76]). The problem is to calculate how many pairs of rabbits (one male and one female)
there will be at the end of one year, if starting with one pair of rabbits. In one month each pair bears
another pair, and the newborn pair bears a pair starting from the second month. The answer is that
after twelve months there will be 377 pairs of rabbits. The monthly evolution is described by the
following sequence of numbers:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377. (1)

This hypothetical breeding of rabbits introduces a sequence. This sequence of numbers (or their ratios)
appears in nature (see, e.g. [59]): in pine cones, pineapples, artichokes, branching of trees, petals of
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flowers, arrangements of leaves, patterns of florets, and in the geometry of certain shells. It was the
French mathematician Édouard Lucas [53] who first associated Fibonacci’s name with this sequence.

It should be mentioned that these numbers seem to have been known for quite some time. In
fact, historians of Indian mathematics have discovered many ideas that went unnoticed [78]. The
main reasons were that they were: (i) written in Sanskrit; and (ii) not included in Western-style
mathematical treatises, but embedded in sūtras in treatises on Sanskrit prosody (chandas). This is
the science of poetic meters and verse (arrangements of syllables) essential to the Vedas.

The oldest such treatise which has been preserved is Piṅgala’s Chandah. śāstra [78], [71], which has
8 chapters containing 310 sūtras. It is a collection of aphorisms presenting a formal theory of poetic
meters. The six topics of interest were:

(i) listing all possible forms of a meter;

(ii) recovering the form of a meter from its serial number;

(iii) determining the serial number from a given form;

(iv) calculating the number of forms having a given number of syllables;

(v) calculating the total number of forms of a meter;

(vi) determining the space needed to write all the forms of a meter.

For solving these problems Piṅgala made use of a binary notation system, recursion, geometric series,
sequences, partial sums, and binomial coefficients. These support claims that some sūtras from [71]
suggest Pascal’s triangle (known as meru prastāra), while others link to Fibonacci numbers (called
mātrā meru). It follows that, most probably, such numbers were known to Piṅgala (see [79] and [75]),
but the rules forming them are hard to grasp from [71]. Such ideas were analyzed not only in relation
to poetry, but also to music [34], [88].

The number of patterns that are m short syllables long (variations of mātrā-meters) is the (m+1)-
th Fibonacci number. It is now accepted that the first algorithmic description appeared in the work
of Virahāṅka (between 600 and 800 AD) [75], [85]. Unfortunately, the original work was lost, being
accessible only through the comments of Gopāla on a palm leaf manuscript (c. 1133-1135) [79], [75],
[85]. This presents a recursion for the computation of the number of forms of mātrā-meters. A
translation (with comments) of the algorithm reads: “The count (of all possible forms of a mātrā-
meter) is obtained by adding (the counts of) permutations of the two previous (mātrā-meters). This
is the way to the count (of total permutations) of succeeding mātrās (mātrā-meters)” [75]. Obviously,
this gives the well-known recursion for what is now known as the Fibonacci sequence:

Fn+1 = Fn + Fn−1 (2)

with the initial conditions F0 = 0 and F1 = 1 (see [64]).
A first historical perspective written by Brooke [13] on Fibonacci numbers covered till 1900. It

mentioned that Johann Kepler rediscovered the recurrence in 1611 [46], and that Jacques Binet derived
a closed analytical form in 1843 [11]. In fact, the analytical form was proven by Abraham de Moivre
one century earlier [26] (see Chp. 2: De natura Serierum recurrentium, pp. 26–42). The sequence (1)
is also mentioned by Simon Stevin in 1634 ([80] on page 170), and by Robert Simson in 1753 ([77] on
page 368), who refers to Albert Girard’s commentary on Stevin’s work [80].

The growing fascination with these numbers started properly only in the late 1800’s, after Édouard
Lucas published [53]. Since then many scientists have focused on this sequence and an impressive num-
ber of properties and identities have been discovered. The sequence was studied also in relation with
other known sequences of numbers (e.g., Pell [67] and Lucas numbers [65]), and various generalizations
have been defined.

Before going further, we shall enumerate only a few Fibonacci identities. The earliest ones are
from 1680 and are due to Cassini [18] (presented as text, without notation)

Fn−1Fn+1 − F 2
n = (−1)n (3)
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Fn+2Fn−1 − FnFn+1 = (−1)n (4)

Fn−2Fn+2 − F 2
n = (−1)n+1. (5)

These were generalized by Catalan [20] in 1879 (and mentioned in [29] on page 402):

U2
n − Un−pUn+p = (−1)n+1−pU2

p−1, (6)

by d’Ocagne [63] in 1885:
upui − up+1ui−1 = (−1)i+1up−i+1 (7)

and by Tagiuri [84] in 1901:

usun − us+kun−k = (−1)n−kukus−n+k. (8)

Lucas added a few of his own in 1876 [52] and 1877 [53] (see also [29]):

U2
n−1 + U2

n = U2n (9)

F2n+1 = F 2
n+1 + F 2

n (10)

F2n = F 2
n+1 − F 2

n−1 (11)

F 2
n+3 = 2F 2

n+2 + 2F 2
n+1 − F 2

n (12)
n∑

k=0
Fk = Fn+2 − 1 (13)

n∑
k=0

F 2
k = FnFn+1 (14)

and a few more already known and appreciated. As an example, (14) supports the construction of the
well-known two dimensional Fibonacci spiral.

Several authors identified classes of identities and proposed general formulas for them. Such
identities are given by Lucas [53] as symbolic formulas where, after expansion, exponents are replaced
by subscripts:

Un+2p = Un(U + 1)p (15)

Un−p = Un(U − 1)p. (16)

For different values of p, we obtain valid linear identities; in particular, setting p = 1 in (15) or (16)
yields (2).

Another formula, published in 1965 by Halton [35]:

F k
mFn = (−1)kr

k∑
h=0

(
k

h

)
(−1)hF h

r F k−h
r+mFn+kr+hm (17)

is general as it establishes a class of identities, being valid for any (k, r, m, n) quadruplet of non-negative
integers, where

(k
h

)
is the number of h-combinations from a set of k elements. In fact, equation (17)

was reported earlier in a different form in [86]. As an example, for (2, 1, 1, n) we obtain:

Fn = Fn+2 − 2Fn+3 + Fn+4. (18)
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3 Cubic Fibonacci Identities
Chronologically, the first cubic Fibonacci identity we have been able to find is the one men-

tioned in 1919 by Dickson in his History of the Theory of Numbers [29]. In Chapter XVII “Recurring
Series: Lucas’ un, vn” (volume I) the following identity appears on page 395:

U3
n + U3

n+1 − U3
n−1 = U3n+2. (19)

The notation Un used by Dickson starts with U1 = 1, U2 = 2 as initial conditions, leading to
1, 2, 3, 5, 8, . . .. Dickson mentioned that (19) was stated without proof by Lucas in [52]. In fact,
in [53] on page 11, Lucas shows that u3

n + u3
n+1 − u3

n−1 = u3n, with un+2 = un+1 + un and initial
conditions u0 = 0, u1 = 1, which gives 0, 1, 1, 2, 3, 5, 8, . . .. We were not expecting that this would be
the one and only cubic Fibonacci identity [68] mentioned in [29].

Over time, this cubic Fibonacci identity has resurfaced more than once being mentioned by, e.g.,
Vorob’ev [87] (using Lucas’ notation) and Subba Rao [82] (using Dickson’s notation). Later, it was
mentioned briefly in [17], which pointed to a note signed just G. that “quoted the cubic relation given
by Dickson.” Brousseau states in [17] that G. is “evidently J. Ginsburg himself ” (the Editor of Scripta
Mathematica [32]). Still, in [17] Brousseau uses the notation:

F 3
n+1 + F 3

n − F 3
n−1 = F3n (20)

which is the one we shall retain in this paper (also being used by OEIS, see [64] and [68]).
More recently, the book of Benjamin & Quinn [10] includes this cubic Fibonacci identity as one of

the 246 identities covered in their book. It appears as Identity 232 in Chapter 9 “Advanced Fibonacci
& Lucas Identities” being written as f3

n−1 + f3
n− f3

n−2 = f3n−1 (where fn = Fn+1) and proven on page
126.

Lucas also presented a second cubic Fibonacci identity in [53] on pages 16–17:

5U3
n = U3n − 3(−1)nUn. (21)

This identity is mentioned by Halton [35] as a special case deduced from (17) and, later, it is used
by Melham [57] while stating several conjectures on the sums of powers of Fibonacci numbers.

A third cubic Fibonacci identity appeared in a book published in 1951 in Russian by Vorob’ev
[87]. It is the first cubic Fibonacci identity involving a “sum of Fibonacci cubes” (i.e., ∑F 3

i ) and was
written using Lucas’s notation:

u3
1 + u3

2 + · · ·+ u3
n = 1

10
[
u3n+2 + (−1)n+16un−1 + 5

]
. (22)

The book was translated to English ten years later. The same identity was proved by Clary &
Hemenway [24] (using the Fn notation), while later being stated (without proof) by Benjamin &
Quinn [10] (on page 14).

The fourth cubic Fibonacci identity seems to be the one introduced by Block in a short
note [12]. It is the first cubic Fibonacci identity which involves a “sum of Fibonacci cuboids” (e.g.,∑

FiFjFk and/or ∑F 2
i Fj) while also being the first homogeneous one:

n∑
k=1

F 2
k Fk+1 = 1

2FnFn+1Fn+2. (23)

Zeitlin wrote it using fn and proved it by mathematical induction in [90] (as identity XIX). Harris
proved it once again, using the method of summation by parts [36], while Pond proved a generalized
version in [73]. Afterwards, it was mentioned by Clary & Hemenway [24] and Melham [55].

An identity similar to (20) was introduced in December 1953 [32]:

F 3
n+2 − 3F 3

n + F 3
n−2 = 3F3n (24)

being proved by Halton [35] as a special case of (17), and later stated by Brousseau in [17].
Simultaneously, Subba Rao (using Dickson’s notation [29]) published a gold mine of cubic Fibonacci

identities [82]. Besides mentioning one of the early Lucas identities, he adds ten new cubic Fibonacci
identities. These can be classified into:



https://doi.org/10.15837/ijccc.2022.2.4616 6

• two classical identities
UmUm+1Um+2 = U3

m+1 + (−1)m+1Um+1 (25)

U3
m+1 = U3

m + U3
m−1 + 3Um−1UmUm+1; (26)

• three including sums of cubes
n∑

k=0
U3

2k = 1
4
(
U3

2n+1 + 3U2n+1
)

(27)

n∑
k=1

U3
2k−1 = 1

4
(
U3

2n − 3U2n + 2
)

(28)

n∑
k=1

U3
k = 1

4[U3
n+1 + U3

n + (−1)n3Un−1 − 2]; (29)

• five including sums of cuboids
n∑

k=1
U2k−1U2kU2k+1 = 1

4(U3
2n+1 − U2n+1) (30)

n∑
k=1

U2k−2U2k−1U2k = 1
4(U3

2n + U2n − 2) (31)

n∑
k=1

U2k−2U2kU2k+2 = 1
4(U3

2n+1 + 7U2n+1 − 8) (32)

n∑
k=1

U2k−1U2k+1U2k+3 = 1
4(U3

2n+2 − 7U2n+2 + 6) (33)

n∑
k=1

Uk−1Uk+1Uk+3 = 1
10[U3n+7 + (−1)n+116Un − 5]. (34)

Later, in his search for the properties of certain generalized functions, Horadam [43] gave an
algebraic proof of (29). In [48] Koshy mentioned (26), attributing it to Carlitz (but the reference
seems to be missing). Clary & Hemenway [24] mentioned (28), and used it as an intermediary step
for proving an identity involving both Fibonacci and Lucas numbers.

The first two alternating sums seem to be the ones introduced by Zeitlin in 1963 [90], both
for cuboids (identity XX) and for cubes (identity XXI):

2
n∑

k=0
(−1)kfkf2

k+1 = (−1)nfnfn+1fn+2 (35)

2
n∑

k=0
(−1)kf3

k+1 = (−1)n[f2
n+1fn+4 − fnfn+2fn+3]− 1 = fn+4 + (−1)nfnf2

n+2 − 1. (36)

Hogatt [38], [39] recorded a general non-homogeneous identity:

Fr+1Fs+1Ft+1 + FrFsFt + Fr−1Fs−1Ft−1 = Fr+s+t (37)

(H-4 proposed by I. D. Ruggles), as well as a homogeneous one:

F 3
n+1 = 3F 3

n + 6F 3
n−1 − 3F 3

n−2 − F 3
n−3 (38)

(H-14 proposed by Zeitlin). Only a few months later Brown [40] proved (37), while later Johnson,
using a matrix representation, presented an alternate proof [44]. A proof of (38) appeared in [41],
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while it was also presented by Brousseau [14] along with a few other cubic identities. Recently (38)
links to [47], being a special case of classes of Fibonacci identities (see later).

Another general identity was proposed by Halton [35] (see (17)), and was supplemented by Gould
[33]:

Fn+aFn+bFn+c − FnFn+aFn+b+c + FnFn+bFn+c+a − FnFn+cFn+a+b

= (−1)n(FaFbFn+c − FcFaFn+b + FbFcFn+a) (39)

(see also [31]). This can be used to generate many cubic homogeneous Fibonacci identities.
To this growing list, having Subba Rao [82] and Zeitlin [90] as major contributors, Harris [36]

added two more cubic Fibonacci identities, one including sums of cuboids:
n∑

k=0
f2

k fk+2 = 1
2[fn+3fn+1fn − (−1)nfn−1 + 1], (40)

and another one including sums of cubes:
n∑

k=0
f3

k = 1
2[f2

n+1fn + (−1)nfn−1 + 1]. (41)

This one was later mentioned by Brousseau in [15].
As if not to be outdone, Pond detailed and proved quite a few cubic identities for Hn [73]. Hn is

a generalized Fibonacci sequence Hn = Hn−1 + Hn−2 having arbitrary initial conditions. For H0 = 0
and H1 = 1 one gets the classical Fibonacci sequence, and (23) resulted as a byproduct of the cubic
identities proved in [73]. We also mention here a homogeneous cubic Fibonacci identity from [73]:

n∑
k=1

Hk−1HkHk+1 +
n∑

k=0
H3

k = HnH2
n+1 (42)

but there are several variations in [73] at intermediate steps of the proofs. For both (41) and (42)
combinatorial proofs were given by Benjamin, Carnes & Cloitre [8]. Identity (42) appeared also in
[50], along with a few other cubic Fibonacci identities we shall mention later.

Taking a straightforward approach, Brousseau introduced several identities by cubing well-known
linear ones [14]:

F 3
n+1 = F 3

n + 3F 2
nFn−1 + 3FnF 2

n−1 + F 3
n−1 (43)

F 3
n−2 = F 3

n − 3F 2
nFn−1 + 3FnF 2

n−1 − F 3
n−1 (44)

F 3
n−3 = −F 3

n + 6F 2
nFn−1 − 12FnF 2

n−1 + 8F 3
n−1 (45)

and the list continues by rediscovering (38) and several others. Obviously, as cubes of linear identities,
all these cubic Fibonacci identities are homogeneous.

Our quest for cubic identities led us to several more:

F3n = F 3
n+2 − F 3

n−1 − 3FnFn+1Fn+2 (46)

FnF 2
n+3 − F 3

n+2 = (−1)n+1Fn+1 (47)

Fn+3F 2
n − F 3

n+1 = (−1)n+1Fn+2. (48)

Equation (46) was proposed by Padilla being mentioned in [37] along with (26), while (47) and (48)
were introduced by Hogatt & Bergum [42].

New Fibonacci identities were stated and/or proved by Clary & Hemenway [24], including two
cubic ones:

n∑
k=1

F 3
k = 1

10[F3n+2 − (−1)n6Fn−1 + 5] (49)

n∑
k=1

F 3
2k = 1

4(F2n+1 − 1)2(F2n+1 + 2). (50)
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After 2000, the first significant contribution is [48], where Koshy presents a collection of Fibonacci
and Lucas sequences, the real “twin shining stars” of integer sequences. Besides proving many proper-
ties and showing applications in various fields such as art, biology, chemistry, geometry, etc., the book
lists a large number of both proved and to-be-proved Fibonacci identities. Among these identities,
one can easily recognize (25)-(34) and (38).

Two years later, Melham [56] dedicates a whole paper to stating and proving the following cubic
identity:

Fn+1Fn+2Fn+6 − F 3
n+3 = (−1)nFn, (51)

while in 2004, Benjamin, Carnes & Cloitre published [8], that mentions or proves many Fibonacci,
Lucas and related generalized identities, including (38) and (49).

Fairgrieve & Gould [31] ran extensive computer searches and discovered a companion formula to
(51):

FnFn+4Fn+5 − F 3
n+3 = (−1)n+1Fn+6, (52)

along with another pair of dual formulas, for which they also give combinatorial proofs:

Fn−2F 2
n+1 − F 3

n = (−1)n−1Fn−1 (53)

Fn+2F 2
n−1 − F 3

n = (−1)nFn+1. (54)

As an interesting alternative to traditional algebraic or combinatorial proofs, Ollerton [69] uses a
3D graphical approach which has clear educational advantages (for 2D examples the reader should see
[16]). Ollerton explains his method and uses it to prove (38) and proposes:

Fl+1Fm+1Fn+1 = 3FlFmFn + 6Fl−1Fm−1Fn−1 − 3Fl−2Fm−2Fn−2 − Fl−3Fm−3Fn−3. (55)

In 2008, Benjamin, Eustis & Plott [9] provide combinatorial proofs for a dozen identities stated
without proof in [10], while adding a general formula of their own:

n∑
k=0

(
n

k

)
fqk−1+p(fq−3)n−k = (fq−1)nf2n−1+p. (56)

Taking p = 0 and n = 3 we get another cubic identity:

8F 3
n = 3FnF 2

n−2 + 3F2nFn−2 + F3n. (57)

Chen & Chen’s approach in [22] and [23] relies on proving that for any positive integers k and
n one can find a homogeneous identity consisting of a linear combination of powers of the Fibonacci
numbers:

F k
n+k+1 =

k∑
i=0

ai(k)F k
n+k−i (58)

where ai(k) are integers. They also show how to determine ai(k). For k = 3 one gets (38).
More than a century after it was introduced by Lucas [53], and several decades after it was published

by Subba Rao [82], (21) was used by Melham [57] as a starting point for a set of conjectures involving
both Lucas and Fibonacci numbers. Proving those conjectures led Melham to also rediscover (38).
Later, Sun, Xie and Yang [83] mentioned (21), and also proved one of Melham’s conjectures.

In spite of such long standing efforts, in the last decade further scrutiny of the Fibonacci se-
quence went unabated. Thus, Melham [58] introduced several generic identities and, among others,
established:

Fn−3F 2
n+1 − F 2

n−2Fn+2 = 4(−1)nFn (59)

along with its companion formula.
Azarian [4], [5] proved the following two cubic identities by using binomial sums:

Fn+1[5F 2
n+1 − 3(−1)n] = F 3

n+3 − F 3
n − 3Fn+1Fn+2Fn+3 = F 3

n+1 + F 3
n+2 − F 3

n (60)
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F3n + 4F3n+3 = 1
3(F 3

n+4 + F 3
n − 3F 3

n+2). (61)

Almost simultaneously, Yazlik, Yilmaz & Taskara [89] proved a new identity involving powers of
generalized Fibonacci numbers Fk,n:

F 3
k,n+4 = (k3 + 2k)F 3

k,n+3 + (k4 + 3k2 + 2)F 3
k,n+2 − (k3 + 2k)F 3

k,n+1 − F 3
k,n, (62)

where the Fk,n are defined by Fk,n+2 = kFk,n+1 + Fk,n with initial conditions Fk,0 = 0 and Fk,1 = 1.
For k = 1 this reduces to (38).

Lang [50], while using partial summation (as an intermediate step) of cubes of Fibonacci numbers,
mentions (42) while also proving two other homogeneous cubic identities:

n∑
k=0

Fk+2Fk+1Fk = −
n∑

k=0
F 3

k + Fn+3Fn+1Fn (63)

n∑
k=0

Fk+1F 2
k =

n∑
k=0

F 3
k +

n−1∑
k=0

F 2
k+1Fk. (64)

One year later Lang & Lang [49] gave alternate proofs for several known identities (including (6),
(7) and (51)), and used recurrence relations to obtain:

F3n+3 = FnF 2
n+3 + Fn−1F 2

n+2 − Fn−2F 2
n+1. (65)

Recently, Khomovsky [47] presented a general method for obtaining recurrent identities. The
Fibonacci sequence is used as an example. Besides obtaining (6), a general identity is:

F2l(F 2
k+m − F 2

k−m) = F2m(F 2
k+l − F 2

k−l). (66)

For l = k and m = k + 1 this gives:

FnF 2
n+1 − F 2

nFn+2 = (−1)nFn. (67)

Khomovsky also proves a sequence of identities involving Fibonacci and Lucas numbers, out of which
classes of cubic Fibonacci identities can be obtained. Special cases are:

F 3
n+2 + F 3

n−2 = 3(F 3
n+1 − F 3

n−1) + 6F 3
n (68)

F 3
n+3 − F 3

n−3 = 16(F 3
n+1 − F 3

n−1) + 12F 3
n (69)

16F3n = F 3
n+3 + 4F 3

n − F 3
n−3 (70)

63F3n = F 3
n+4 − 7F 3

n + F 3
n−4. (71)

Lately, the focus has been on generalization of (known) identities and methods for computing
terms of generalized Fibonacci formulas, as well as on sums of powers of Fibonacci numbers. Three
non-homogenous cubic identities have been just introduced in [2] for any non-negative integer n and
any integer s:

n∑
k=0

(
n

k

)
F 3

k+s = 1
5(2nF2n+3s + 3Fn−s) (72)

n∑
k=0

(
n

k

)
(−1)kF 3

k+s = 1
5((−1)n2nFn+3s − (−1)s3F2n+s) (73)

2n∑
k=0

(
2n

k

)
2kF 3

k+s = 5n−1(F6n+3s − (−1)s3Fs) (74)

These were complemented by a generalized identity valid for n a non-negative integer and integers r,
s, j, and p:

n∑
k=0

(−1)k

(
n

k

)
F n−k

p+jrF k
p Fj(rk+s) = (−1)js+1F n

jrFpn−js (75)
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which, by taking n = 2, gives us a homogeneous cubic identity:

F 2
p+jrFjs − 2Fp+jrFpFj(r+s) + F 2

p Fj(2r+s) = (−1)js+1F 2
jrF2p−js (76)

One month later these results were supplemented in [3] by five non-homogenous cubic identities for
any non-negative integer n and any integer s:

2n∑
k=0

(−1)k

(
2n

k

)
22n−kF 3

k+s = 5n−1((−1)s−13F2n+s + F3s), (77)

2n∑
k=0

(−1)k

(
2n

k

)
3kF 3

k+s = 5n−1(4nF4n+3s − (−1)s3F4n+s), (78)

2n∑
k=0

(
2n

k

)
32n−kF 3

k+s = 5n−1(4nF2n+3s + 3F2n−s), (79)

10
bn/2c∑
k=0

(
n

2k

)
F 3

2k+s = 2n(F2n+3s + (−1)nFn+3s)− 3(−1)s(F2n+s − (−1)sFn−s) (80)

10
dn/2e∑
k=1

(
n

2k − 1

)
F 3

2k+s = 2n(F2n+3s+3 − (−1)nFn+3s+3)− (−1)s3(F2n+s+1 − (−1)sFn−s−1) (81)

as well as two homogeneous ones:

10
2n+1∑
k=0

(
4n + 1

2k

)
F 3

2k = (2 · 16n − 3)5F4n+1F2nF2n+1, (82)

10
2n∑

k=1

(
4n− 1
2k − 1

)
F 3

2k−1 =
(1

2 · 16n + 3
)

5F4n−1F2n−1F2n, (83)

Other cubic identities can be found in online resources such as Wikipedia [1] and Wolfram [21].
Chandra and Weisstein [21] can be credited with quite a selection of these, including:

F3n = 2F 3
n + 3Fn−1FnFn+1 (84)

F3n+1 = F 3
n+1 + 3Fn+1F 2

n − F 3
n (85)

F3n+2 = F 3
n+1 + 3FnF 2

n+1 + F 3
n , (86)

as well as a general one:

Fkn+m =
k∑

i=0

(
k

i

)
Fm−iF

i
nF k−i

n+1, (87)

which they attribute to Mihailovs (personal communication). Taking k = 3 and m = 3 this gives:

F3n+3 = 2F 3
n+1 + 3FnF 2

n+1 + 3F 2
nFn+1. (88)

At this stage, all the cubic identities we have identified were rewritten according to the OEIS
notation. Afterwards, we used Excel to ensure that each identity could not be falsified by checking its
first several terms. All the identities having passed this test, we then used either Mathematica (which
in some cases took over three hours), or else checked the published proofs to verify each identity in
general. We also proved (87) in [25], as we were not able to find a published version. Finally, all the
cubic identities were divided into three tables:

• a first table with homogeneous cubic identities;

• a second table with non-homogeneous cubic identities;

• a third table listing general formulas that, in particular cases, can lead to cubic Fibonacci
identities.
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Table 1: Homogeneous Cubic Fibonacci Identities (In Chronological Order)

Year Identity Condition Author(s)

1953

2∑n
k=0 F 2

k Fk+1 = FnFn+1Fn+2 n ≥ 0

Block
1963 Zeitlin
1965 Harris
1968 Pond
1993 Clary & Hemenway
1999 Melham

F 3
n+1 = F 3

n + F 3
n−1 + 3Fn−1FnFn+1 n ≥ 1

Subba Rao
1967 Carlitz
1970 Hillman (Padilla)

1963

2∑n
k=0(−1)kFkF 2

k+1 = (−1)nFnFn+1Fn+2
n ≥ 0 Zeitlin

2∑n
k=0(−1)kF 3

k+1 = (−1)n[F 2
n+1Fn+4 − FnFn+2Fn+3]− 1

F 3
n+4 + 3F 3

n+1 + F 3
n = 3F 3

n+3 + 6F 3
n+2 n ≥ 0

Zeitlin & Parker
1968 Brousseau
2001 Koshy
2003 Benjamin & Quinn
2006 Ollerton
2008 Chen & Chen
2010 Chen
2012 Yazlik, Yilmaz & Taskara
2018 Khomovsky

1968

∑n
k=0 F 3

k +∑n
k=1 Fk−1FkFk+1 = FnF 2

n+1 n ≥ 1
Pond

2004 Benjamin, Carnes & Cloitre
2012 Lang

F 3
n+1 = F 3

n + 3F 2
nFn−1 + 3FnF 2

n−1 + F 3
n−1 n ≥ 1

BrousseauF 3
n−2 = F 3

n − 3F 2
nFn−1 + 3FnF 2

n−1 − F 3
n−1 n ≥ 2

F 3
n−3 = −F 3

n + 6F 2
nFn−1 − 12FnF 2

n−1 + 8F 3
n−1 n ≥ 3

2004 Fn+1F 2
n+2 = F 3

n+1 +∑n
k=0(F 3

k + FkFk+1Fk+2) n ≥ 0 Benjamin, Carnes & Cloitre

2012
∑n

k=0 Fk+2Fk+1Fk +∑n
k=0 F 3

k = Fn+3Fn+1Fn n ≥ 0
Lang∑n

k=0 Fk+1F 2
k = ∑n

k=0 F 3
k +∑n−1

k=0 F 2
k+1Fk n ≥ 1

2018 F 3
n+3 − F 3

n−3 = 16(F 3
n+1 − F 3

n−1) + 12F 3
n n ≥ 3 Khomovsky

2021
F 2

p+jrFjs − 2Fp+jrFpFj(r+s) + F 2
p Fj(2r+s) = (−1)js+1F 2

jrF2p−js p, j, r, s ∈ Z
Adegoke10∑2n+1

k=0
(4n+1

2k

)
F 3

2k = (2 · 16n − 3)5F4n+1F2nF2n+1
n ≥ 0

10∑2n
k=1

(4n−1
2k−1

)
F 3

2k−1 =
(1

2 · 16n + 3
)

5F4n−1F2n−1F2n
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Table 2: Non-Homogeneous Cubic Fibonacci Identities (In Chronological Order)

Year Identity Condition Author(s)

1876 F 3
n+1 + F 3

n − F 3
n−1 = F3n n ≥ 1

Lucas
1919 Dickson
1951 Vorob’ev
1953 Ginsburg
1953 Subba Rao
1972 Brousseau
2003 Benjamin & Quinn

1877 5F 3
n = F3n − 3(−1)nFn n ≥ 0

Lucas
1965 Halton
2008 Melham

1951 10∑n
k=0 F 3

k = F3n+2 + (−1)n−16Fn−1 + 5 n ≥ 1
Vorob’ev

1993 Clary & Hemenway
2003 Benjamin & Quinn

1953

F 3
n+2 − 3F 3

n + F 3
n−2 = 3F3n n ≥ 2

Ginsburg
1965 Halton
1972 Brousseau

F 3
n+1 = FnFn+1Fn+2 + (−1)nFn+1 n ≥ 0

Subba Rao

4∑n
k=1 F2k−1F2k+1F2k+3 = F 3

2n+2 + 7F2n+2 − 8

n ≥ 1

4∑n
k=1 F2k−2F2kF2k+2 = F 3

2n+1 − 7F2n+1 + 6
4∑n

k=1 F2k−1F2kF2k+1 = F 3
2n+1 + F2n+1 − 2

4∑n
k=1 F2kF2k+1F2k+2 = F 3

2n+2 − F2n+2

4∑n
k=1 F 3

2k = F 3
2n+1 − 3F2n+1 + 2

10∑n
k=1 FkFk+2Fk+4 = F3n+8 + (−1)n+116Fn+1 − 5

4∑n
k=1 F 3

k+1 = F 3
n+2 + F 3

n+1 + (−1)n3Fn − 2 n ≥ 1
Subba Rao

1965 Horadam

4∑n
k=0 F 3

2k+1 = F 3
2n+2 + 3F2n+2 n ≥ 0

Subba Rao
1993 Clary & Hemenway

1963 2∑n
k=0(−1)kF 3

k+1 = Fn+4 + (−1)nFnF 2
n+2 − 1 n ≥ 0 Zeitlin

1965 2∑n
k=0 F 3

k+1 = Fn+1F 2
n+2 + (−1)nFn + 1 n ≥ 0

Harris
1968 Pond
1972 Brousseau
2004 Benjamin, Carnes & Cloitre

1970 F 3
n+2 − F 3

n−1 − 3FnFn+1Fn+2 = F3n n ≥ 1 Hillman (Padilla)

1977
FnF 2

n+3 − F 3
n+2 = (−1)n+1Fn+1

n ≥ 0 Hoggatt & Bergum
Fn+3F 2

n − F 3
n+1 = (−1)n+1Fn+2

1993
10∑n

k=1 F 3
k = F3n+2 − (−1)n6Fn−1 + 5 n ≥ 1

Clary & Hemenway
4∑n

k=1 F 3
2k = (F2n+1 − 1)2(F2n+1 + 2) n ≥ 1

2003 Fn+1Fn+2Fn+6 − F 3
n+3 = (−1)nFn n ≥ 0 Melham

2005
FnFn+4Fn+5 − F 3

n+3 = (−1)n+1Fn+6 n ≥ 0
Fairgrieve & GouldFn−2F 2

n+1 − F 3
n = (−1)n−1Fn−1 n ≥ 2

Fn+2F 2
n−1 − F 3

n = (−1)nFn+1 n ≥ 1
2008 8F 3

n = 3FnF 2
n−2 + 3F2nFn−2 + F3n n ≥ 3 Benjamin, Eustis & Plott

2011 Fn−3F 2
n+1 − F 2

n−2Fn+3 = 4(−1)nFn n ≥ 3 Melham

2012
5F 3

n+1 − (−1)n3Fn+1 = F 3
n+3 − F 3

n − 3Fn+1Fn+2Fn+3 = F 3
n+1 + F 3

n+2 − F 3
n n ≥ 0 Azarian

3(F3n + 4F3n+3) = F 3
n+4 + F 3

n − 3F 3
n+2

2013 F3n+3 = FnF 2
n+3 + Fn−1F 2

n+2 − Fn−2F 2
n+1 n ≥ 2 Lang & Lang

2018
FnF 2

n+1 − F 2
nFn+2 = (−1)nFn n ≥ 0

Khomovsky16F3n = F 3
n+3 + 4F 3

n − F 3
n−3 n ≥ 3

63F3n = F 3
n+4 − 7F 3

n + F 3
n−4 n ≥ 4

2021

∑n
k=0

(n
k

)
F 3

k+s = 1
5(2nF2n+3s + 3Fn−s)

n ≥ 0, s ∈ Z
Adegoke

∑n
k=0

(n
k

)
(−1)kF 3

k+s = 1
5((−1)n2nFn+3s − (−1)s3F2n+s)∑2n

k=0
(2n

k

)
2kF 3

k+s = 5n−1(F6n+3s − (−1)s3Fs)∑2n
k=0(−1)k

(2n
k

)
22n−kF 3

k+s = 5n−1((−1)s−13F2n+s + F3s)∑2n
k=0(−1)k

(2n
k

)
3kF 3

k+s = 5n−1(4nF4n+3s − (−1)s3F4n+s)∑2n
k=0

(2n
k

)
32n−kF 3

k+s = 5n−1(4nF2n+3s + 3F2n−s)
10∑bn/2c

k=0
( n

2k

)
F 3

2k+s = 2n(F2n+3s + (−1)nFn+3s)− 3(−1)s(F2n+s − (−1)sFn−s)
10∑dn/2e

k=1
( n

2k−1
)
F 3

2k+s = 2n(F2n+3s+3 − (−1)nFn+3s+3)− (−1)s3(F2n+s+1 − (−1)sFn−s−1) n ≥ 2, s ∈ Z
F3n = 2F 3

n + 3Fn−1FnFn+1 n ≥ 1
F3n+1 = F 3

n+1 + 3Fn+1F 2
n − F 3

n n ≥ 0 http://en.wikipedia.org

F3n+2 = F 3
n+1 + 3FnF 2

n+1 + F 3
n n ≥ 0 http://mathworld.wolfram.com

F3n+3 = 2F 3
n+1 + 3FnF 2

n+1 + 3F 2
nFn+1 n ≥ 0

http://en.wikipedia.org/wiki/Fibonacci_number#Other_identities
http://mathworld.wolfram.com/FibonacciNumber.html
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4 Conclusions
While Fibonacci numbers appear in nature [59], [51], they have also been shown to optimize

certain man-made systems. As an example we have designed ourselves [6], a class of adder circuits
implemented using threshold logic gates was shown to be VLSI-optimal as the minimal weights (of the
threshold logic gates) are the Fibonacci numbers, which minimizes area while also maximizing speed.

This survey was triggered by a search for cubic Fibonacci identities, as these are the ones that might
tile 3D space with cubes/cuboids having sides equal to Fibonacci numbers. Somewhat unexpectedly,
our investigations have revealed only a rather small number of cubic Fibonacci identities, representing
a small fraction of all published Fibonacci identities (most of which are linear or quadratic). Finally,
out of these, only a handful of cubic Fibonacci identities are homogeneous. These results have revealed
that cubic Fibonacci identities are not so common, not very well-known either, and that discovering
new ones has not been a priority.

Our short term plans are to construct 3D Fibonacci spirals relying on the homogeneous cubic
Fibonacci identities from Table 1. These homogeneous cubic identities suggest the existence of a
large variety of different tilings of 3D space using Fibonacci cuboids – especially when distinct such
identities are used in combination. It also means that many 3D Fibonacci spirals are possible. A first
3D Fibonacci spiral based on eq. (26) from [82] (see also [14]) was presented in [61], and can be seen in
Fig. 1(a). This is a 3D Fibonacci spiral analogous to the 3D Padovan one (see [66], [70]), but having a
growth factor of ϕ/

√
2 ≈ 1.144228, where ϕ is the golden ratio (1+

√
5)/2. Unfortunately, exactly like

the 3D Padovan spiral, which is in fact in 2D [81], this 3D Fibonacci spiral is also in 2D (on a diagonal
plane). Still, “proper” 3D Fibonacci spirals can be constructed based on eq. (42) as suggested by the
3D packing shown in Figs. 1(b) and 1(c), and by the one shown in Figs. 1(d) and 1(e) (for details see
[62]). Projecting this last spiral orthogonally, one recovers exactly the 2D Fibonacci spiral, i.e. with
growth factor ϕ. The different arrangements of Fibonacci cubes in Fig. 1 are quasi self-similar fractals
defined by a sequence of affine maps Cn+1 = M

(i)
n Cn + b

(i)
n , n ≥ 1, starting with C1 = [0, 1]3 (the unit

cube) as the smallest Fibonacci cube. Precisely, for all n ≥ 1,

M (1)
n = Fn+1

Fn


(−1)n+1 0 0

0 (−1)n+1 0
0 0 (−1)n

 , b(1)
n =

 (0, 0, 0)T , n odd,(
1 + Fn+1

Fn
, 1 + Fn+1

Fn
, 1− Fn+1

Fn

)T
, n even,

M (2)
n = Fn+1

Fn


0 −1 0
0 0 1
−1 0 0

 , b(2)
n = Fn+1

Fn


1
−1
1

 ,

M (3)
n = Fn+1

Fn


1 0 0
0 (−1)n+1 0
0 0 (−1)n

 , b(3)
n =

 (0, 0, 0)T , n odd,(
1− Fn+1

Fn
, 1 + Fn+1

Fn
, 1− Fn+1

Fn

)T
, n even.

Our long term plans are to use such identities for 3D packing (a direction of research started by
[46]). We expect that these could be useful for explaining particular behaviors of (complex) ionic
solutions in confined spaces [60], as atomic radii are related to Fibonacci numbers through the 3D
packing of protons and neutrons [46], with covalent radii following suit. Additionally, such cubic
identities also lead to fractal structures [54] (and fractional calculus), while combining them with
physical/chemical constraints might help explain certain protein structures [19], [30], [45] and the
fractality of cortical actin meshwork [74], as well as help estimating the reliability of particular two
terminal networks [7]. That is why we believe that, at least the homogenous cubic Fibonacci identities
reported in Table 1 as well as the homogenous ones from Table 3, could prove useful for future research
related to several different fields.
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Table 3: Selection of General Fibonacci Identities (In Chronological Order)

Year Identity Condition Author(s)

1963 Fr+1Fs+1Ft+1 + FrFsFt − Fr−1Fs−1Ft−1 = Fr+s+t r, s, t ≥ 1 Hoggatt

1964
Fn+aFn+bFn+c − FnFn+aFn+b+c + FnFn+bFn+c+a − FnFn+cFn+a+b

n, a, b, c ≥ 0 Gould
= (−1)n(FaFbFn+c − FcFaFn+b + FbFcFn+a)

1965 F k
mFn = (−1)kr ∑k

h=0
(k

h

)
(−1)hF h

r F k−h
r+mFn+kr+hm] k, m, n, r ≥ 0 Halton

2006 Fl+1Fm+1Fn+1 = 3FlFmFn + 6Fl−1Fm−1Fn−1 − 3Fl−2Fm−2Fn−2 − Fl−3Fm−3Fn−3 l, m, n ≥ 3 Ollerton

2008 ∑n
k=0

(n
k

)
Fqk+pF n−k

q−2 = F n
q F2n+p

n ≥ 1
Benjamin, Eustis & Plottp ≥ 0

q ≥ 3
2012 F 3

k,n+4 = (k3 + 2k)F 3
k,n+3 + (k4 + 3k2 + 2)F 3

k,n+2 − (k3 + 2k)F 3
k,n+1 − F 3

k,n n ≥ 0 Yazlik, Yilmaz & Taskara

2018 F2l(F 2
n+m − F 2

n−m) = F2m(F 2
n+l − F 2

n−l)
l, m ≥ 1

Khomovsky
n ≥ max(l, m)

2021 ∑n
k=0(−1)k

(n
k

)
F n−k

p+jrF k
p Fj(rk+s) = (−1)js+1F n

jrFpn−js
n ≥ 0

Adegoke
r, s, j, p ∈ Z

Fkn+m = ∑k
i=0

(k
i

)
Fm−iF

i
nF k−i

n+1

k ≥ 0 http://mathworld.wolfram.com

n ≥ 1 2003 Mihailov
m ≥ k + 1 2018 Nagy, Cowell & Beiu

(a) (b) (c) (d) (e)

Figure 1: (a) 3D Fibonacci spiral from [61] (reproduced with permission) based on (M (1)
n , b

(1)
n ); (b)-(c)

Two views of a spiral based on (M (2)
n , b

(2)
n ); (d)-(e) Two views of a spiral based on (M (3)

n , b
(3)
n ).
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