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Abstract

The information bottleneck principle was recently proposed as a theory meant to explain some
of the training dynamics of deep neural architectures. Via information plane analysis, patterns
start to emerge in this framework, where two phases can be distinguished: fitting and compression.
We take a step further and study the behaviour of the spatial entropy characterizing the layers of
convolutional neural networks (CNNs), in relation to the information bottleneck theory. We ob-
serve pattern formations which resemble the information bottleneck fitting and compression phases.
From the perspective of semiotics, also known as the study of signs and sign-using behavior, the
saliency maps of CNN’s layers exhibit aggregations: signs are aggregated into supersigns and this
process is called semiotic superization. Superization can be characterized by a decrease of entropy
and interpreted as information concentration. We discuss the information bottleneck principle from
the perspective of semiotic superization and discover very interesting analogies related to the in-
formational adaptation of the model. In a practical application, we introduce a modification of
the CNN training process: we progressively freeze the layers with small entropy variation of their
saliency map representation. Such layers can be stopped earlier from training without a significant
impact on the performance (the accuracy) of the network, connecting the entropy evolution through
time with the training dynamics of a network.
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1 Introduction
Modern deep neural networks (DNNs) are computational machines capable of representing very

complex functions which can solve a suite of extremely difficult tasks ranging from computer vision
[37], [36] to natural language processing [30], [35] and robotics [38], [39]. Although possessing a high
expressive power, model interpretability has always been a limiting factor for use cases requiring
explanations of the features involved in modelling. The field of interpretability/explainability in deep
learning has witnessed an explosion of published papers in recent years. Even if there is no fundamental
theory that can elucidate all underlying mechanisms present in those networks, multiple works tried
to deal with this issue by coming up with partial solutions, either by visual explanations [22], [18]
or theoretical insights [14], [9], [19]. Therefore, we can say that the black box interpretation of deep
learning is not true anymore, and what we need are better techniques to interpret these models. In
the following, we will refer to three methods used for the interpretation of deep learning.

Saliency Maps. Saliency maps are arguably the oldest and most frequently used explanation
method for interpreting the predictions of DNNs. These maps are a class of computer vision techniques
used to investigate hidden layers of neural networks by generating heat maps to depict the most
important or salient areas. The popularity of saliency maps comes from the fact that heatmaps can be
easily visualized and visualization plays an essential role in humans’ cognitive process [43]. Practically,
a saliency map can be built using gradients of the output over the input, and this highlights the areas
of the images which were relevant for the specific task (e.g., classification). The concept goes back to
the work of Kadir and Brady [21]. Some of the early studies on saliency maps applied to DNNs was
the work of Zeiler and Fergus [22], who used an auxiliary network (called deconvnet) to revert the
activations of an intermediate layer from a DNN back to the input pixels and visualize the patches that
excite most the top 9 neurons with largest activation values. Since then, other methods were proposed
to better understand the inner workings of neural networks [18, 23, 24, 25]. In our study, we use the
popular Grad-CAM method [18] to generate saliency maps of neural layers in CNN architectures.

Semiotic Superization. We proposed recently [19] an interdisciplinary method for deep learning
interpretations. It is an information-theoretical approach combining concepts from semiotics. From the
perspective of semiotics, also known as the study of signs and sign-using behavior, the saliency maps
of CNN’s layers exhibit aggregations: signs are aggregated into supersigns and this process is called
semiotic superization. Superization can be characterized by a decrease of entropy and interpreted as
information concentration. To measure the information concentration in CNNs, we used the spatial
aura matrix entropy [20] of saliency maps of neural layers. A saliency map aggregates information from
the previous layer and this information is measured by the spatial entropy of the map. Generally, the
entropy decreases when progressing through the depth of the network, but this is not always happening.

Information Bottleneck. Another recent information-theoretical tool used for deep learning
interpretations is the information bottleneck (IB) principle, introduced by Tishby, Pereira, and Bialek
[13]. In the context of DNNs, the core assumption of this principle is that a good internal representation
produced by a neural model should maximally compress the input data, while preserving sufficient
information about the output. Based on the IB theory, the authors of [9] popularized the analysis of
the information plane (IP), in which estimates of the two mutual information quantities I(X;T ) and
I(Y ;T ) are the coordinate axes. Two distinct phases, fitting and compression, characterize the mutual
information of: a) the input X and the internal representation T ; and b) the internal representation
T and the output Y [9]. Several recent works attempted to understand DNNs using the IB principle
[33, 34].

The main motivation for our work is to test the IB hypothesis on a variety of new situations,
considering that there are contradictory opinions and results about the IB theory (see, for instance, [8]).
Our thesis it that there is a significant similarity between the IB principle and semiotic superization.
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To the extend of our knowledge, this synergetic aspect was never discussed before.
We investigate the IB theory in the context of semiotic superization processes in CNN learning. In

practical terms, we study the evolution of spatial entropy of CNN saliency maps to validate/invalidate
the IB principle. In our experiments, we noticed a pattern similar to the fitting and compression
phases appearing in the evolution of spatial entropy. We use these experimental results to train a
network by freezing the redundant layers with low spatial entropy variability. This enables us to
discover interesting analogies between the IB theory and semiotic superization.

Our contributions are twofold: we establish a link between the IB hypothesis of fitting and com-
pression, and semiotic superization via the evolution of spatial entropy applied to saliency maps. As
a practical application, we design a heuristic training strategy for layer-wise early stopping based on
spatial entropy variability through time, which may be used to prevent overfitting during learning.

The rest of the paper is structured as follows. Section 2 reviews previous results related to appli-
cations of the IB principle in deep learning. Section 3 introduces the mathematical framework used
to compute the spatial entropy and mutual information in CNNs. We also review here the fundamen-
tal concepts of semiotic superization. Section 4 presents our thesis about the relationships between
semiotic information adaptation and the IB principle. Section 5 analyses experimentally the patterns
present in the evolution of spatial entropy for saliency maps through time. It shows that there is a
surprising connection between the IB theory of fitting-compression and the evolution of spatial en-
tropy applied to the saliency maps of neural layers. As an application, we introduce a layer-wise early
stopping criterion based on the spatial entropy and also discuss the relevance of our experiments for a
semiotic interpretation of the IB principle. Finally, Section 6 presents conclusions and future research
directions.

2 Related Work: The Information Bottleneck Principle for Neural
Networks

Our paper focuses on the application of the IB principle to neural networks. This section reviews
published results which may be connected to our work. An overview of IB with applications in machine
learning can be found, for instance, in [4].

The original formulation of the IB concept was elaborated in [13] as an information theoretical
technique whose purpose is to find the best tradeoff between prediction accuracy of a variable Y and
compression of the input random variable X in the code T . This is realized by the minimization of
the following Lagrangian [13]:

min
PT |X

I(X;T )− βI(Y ;T ) (1)

where I(·, ·) is the mutual information of two random variables and β is a trade-off parameter.
Recently, the IB principle was applied to deep learning and presented by Tishby and Zaslavsky

[14], as a theoretical concept meant to offer a possible explanation for the underlying mechanisms that
govern modern deep learning architectures. The mechanism behind is similar with the one from the
original formulation, optimizing for a latent representation T that represents a minimum sufficient
statistic for an input X, by compressing any redundant information about it, while preserving the
needed information to predict label Y . This is done in the same way as in Equation 1. Their work
also proposes theoretical bounds on the generalization capability of a neural network. It is argued
that good generalization is caused by good compression of the input X in the latent variable T . The
IB principle suggests that deeper layers correspond to smaller mutual information values, providing
increasingly compressed statistics [4]. It is important to notice that the authors do not provide any
training experiments in which they use the IB formulation.

One of the first practical successes of the IB applied to a real problem was by Alemi et al. [1] who
used a variational approximation technique, termed as Variational Information Bottleneck (VIB), to
estimate equation 1. It is known that this equation is intractable, unless X, Y and T are all discrete
or jointly Gaussian. However, these assumptions are unrealistic in practice. By using this variational
approximation, Alemi et al. trained an MLP with two hidden layers on the MNIST dataset [6] using
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VIB as a form of regularization. They demonstrated that VIB acts as a better regularizer than other
popular methods like Dropout [10] or Label Smoothing [7]. They also tackled upon the notion of
adversarial robustness and how the VIB framework fits into this. Adversarial robustness is considered
as the resilience of a DNN in front of adversarial attacks [5, 12] - small and imperceptible to human
eye modifications on input pixels that can easily fool a neural network. They showed that a network
trained with the VIB regularizer and large enough β can resist much better than ordinary trained
networks to such adversarial attacks.

Shwartz-Ziv and Tishby [9] viewed the layers of a DNN as a Markov chain of successive internal
representations of the input X. Any latent representation T is defined through the use of an encoder
P (T |X) and a decoder P (Ŷ |T ), where Ŷ is the neural prediction. They defined the notion of infor-
mation plane (IP) as the coordinate plane of the mutual information quantities IX = I(X;T ) and
IY = I(T ;Y ) during many training epochs. For a multi-layer perceptron (MLP) with a few layers,
trained on a synthetic data problem, they noticed two important phases during training: a fitting
phase, where I(X;T ) and I(T ;Y ) both increase, and a compression phase, where the mutual infor-
mation I(X;T ) starts decreasing, while I(T ;Y ) stays mostly constant. They associated the decrease
of I(X;T ) with compression of input X in the latent T , which avoids overfitting, thus explaining the
good generalization achieved by overparametrized DNNs.

Saxe et al. [8] criticized the IP hypothesis of Shwartz-Ziv and Tishby, arguing that it is not
applicable to general DNNs. They argued that the two phases observed in [9] are caused by the
double-sided saturating nature of the tanh activation function used in their MLP, and binning of
continuous activations to discrete values. The two-phase behaviour, as they empirically proved, is
not present in networks which use non-saturating activation functions (like ReLU), employed by most
modern DNNs. They also tested the supposed link between compression and generalization using
the network from [9], but trained it on a smaller percentage of the data, showing that even if the
compression phase is noticeable in the IP, the train vs test accuracy suffers from severe overfitting.

Rana Ali Amjad et al. [2] also noticed issues with the mutual information quantity I(X;T ) in
the Lagrangian optimization equation: for any continuous variable X ∈ RN , the term will always be
infinite. This case will be true for most deterministic DNNs. Shwartz-Ziv and Tishby [9] solved this
issue by quantizing the output activations, but this procedure failed to capture the true mutual infor-
mation value as it encoded nontrivial information about the feature maps. Another proposed solution
was to use a stochastic system by injecting Gaussian noise ε into the intermediate representations T ,
and minimizing the following surrogate optimization criterion [2]:

min
PT |X

Ĩ(X;T )− βĨ(Y ;T ) (2)

where Ĩ(X;T ) = I(X;T + ε) and Ĩ(Y ;T ) = I(Y ;T + ε).
Indeed, [34] uses this idea to inject intrinsic noise to the network during training. When ε is

relatively small (≈ 10−2), they showed that the network performs similarly to deterministic ones
and that the representations learned are closely related. Furthermore, the binning strategy can now
accurately estimate the term Ĩ(X;T ), when the standard deviation σ of the injected noise is of the
order of the quantization cell length. They measured the mutual information of Ĩ(X;T ) using a
rate-optimal estimator based on Monte Carlo integration, and proved for the synthetic experiment
from [14] that a small noisy DNN undergoes a long-term compression phase. The experiments also
uncovered that compression in noisy DNNs can be attributed to clustering of internal representations,
with clusters comprising mostly samples from the same class.

Wickstrøm et al. [15] conducted the first large scale experiment using the IB principle, studying
the VGG16 architecture [28] trained on CIFAR-10 [16]. They proposed a matrix-based Rényi’s entropy
coupled with tensor kernels over convolutional layers to estimate the intractable mutual information,
in order to analyze the IP. Using this method, there is no need anymore for binning operations. One
of their observation was that compression appears mostly on the training data, and is less visible in
the test dataset. Going forward, they used an early stopping criterion based on a patience parameter.
The training stops if the validation accuracy does not change after a predefined number of epochs.
They noticed that training can be sometimes stopped even before the compression phase starts. The
assumption here is that compression is linked to overfitting.
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Another practical application of the IB principle was studied by Elad et al. [3]. They used the
IB objective as a training criterion by maximizing the value of the Lagrangian, layer by layer. They
trained one layer at a time, while freezing the previously learned layers, and added a linear classification
layer at the end. While this kind of training strategy is prohibitive in terms of computational time
for a modern DNN, they managed to reach on par results with the end-to-end counterpart trained
with the cross entropy loss on the MNIST and CIFAR-10 datasets, using a three layered MLP. This
is the first experimental illustration of the IB principle used as a training criterion instead of the
well-established cross-entropy.

Other comprehensive reviews on the applications of the IB theory can be found in [4, 17]. Some of
the conclusions drawn from these reviews are that IB needs further exploration. The compression seen
in IPs does not necessarily represent learning a minimum sufficient statistic, nor that it produces good
generalization. Yet, it can provide a good geometrical explanation for some of the inherent behaviour
underlying DNNs, and might even open the doors for deeper theoretical understandings.

From a practical point of view, the most similar work to ours is [15]. The authors used an early
stopping criterion based on a patient parameter applied to the validation accuracy and noticed that
training is stopped before the compression phase begins, concluding that compression is not necessarily
useful for preventing overfitting, as suggested in [9]. Different from [15], we embed in our training phase
a layer-wise heuristic technique to progressively stop layers from training by observing the variability
of the spatial entropy of the saliency maps. We employ the value of the entropy to stop the training
on a local level, while in [15] the training is stopped at a global level based on a more traditional
criterion.

3 Background: Spatial Entropy and Superization in CNNs
Our approach is based on the spatial aura matrix entropy of saliency maps calculated for different

neural layers. We measure the information concentration in CNNs using the spatial entropy of saliency
maps, and relate the decrease of entropy to semiotic superization. To make the paper self-contained,
this section summarizes the basic techniques used to compute the spatial entropy and reviews the
superization effect in CNN standard operations (pooling and convolution).

3.1 Spatial entropy in saliency maps

Our work analyzes the entropy variations of 2D saliency maps. The entropy is generated by the
gradient method in Grad-CAM. We describe in the following how we calculate the entropy. The
formulas used are from [19].

Let us define the joint probability of pixels at spatial locations (i, j) and (i+ k, j + l) to take the
value g, respectively g′ as:

pgg′(k, l) = P (Xi, j = g,Xi+k, j+l = g′) (3)

where g and g′ are pixel intensity values (0− 255). If we assume that pgg′ is independent of (i, j) (the
homogeneity assumption [40]), we define for each pair (k, l) the entropy

H(k, l) = −
∑

g

∑
g′

pgg′(k, l) log pgg′(k, l) (4)

where the summations are over the number of outcome values (256 in our case). A standardized
relative measure of bivariate entropy is [40]:

HR(k, l) = H(k, l)−H(0)
H(0) ∈ [0, 1] (5)

The maximum entropy HR(k, l) = 1 corresponds to the case of two independent variables. H(0)
is the univariate entropy, which assumes all pixels as being independent, and we have H(k, l) ≥ H(0).

Based on the relative entropy for (k, l), the Spatial Disorder Entropy (SDE) for an m× n image
X was defined in [40] as:
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HSDE(X) ≈ 1
mn

m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

HR(i− k, j − l) (6)

Since the complexity of SDE computation is high, we decided to use a simplified version - the
Aura Matrix Entropy (AME, see [20]), which only considers the second order neighbors from the SDE
computation:

HAME(X) ≈ 1
4

(
HR(−1, 0) +HR(0, −1) +HR(1, 0) +HR(0, 1)

)
(7)

Putting it all together, starting from a map obtained by the Grad-CAM method, we compute the
probabilities pgg′ in equation (3), and finally the AME in equation (7), which results in the spatial
entropy quantity of a saliency map.

The mutual information between two saliency mapsM1 andM2 can be described by the following
formula:

I(M1,M2) = H(M1) +H(M2)−H(M1,M2) (8)

where H(·) is the (spatial) entropy of a variable, and H(·, ·) is the joint (spatial) entropy between two
variables. We modify the simplified aura matrix entropy to be applicable for joint entropy calculation
by changing Equation 3 to:

pgg′g′′ g′′′ (k, l) = P (M1i, j = g,M1i+k, j+l = g′,M2i, j = g
′′
,M2i+k, j+l = g

′′′) (9)

where g, g′, g′′ , g′′′ are pixel intensity values. The upcoming equations from the spatial entropy
computation will use pgg′g′′ g′′′ instead of pgg′ . The final modification will be to equation (7), where we
take into consideration four spatial positions instead of two, the first two from M1 and the last two
from M2:

HAME(X) ≈ 1
4

(
HR(−1, 0,−1, 0) +HR(0, −1, 0, −1) +HR(1, 0, 1, 0) +HR(0, 1, 0, 1)

)
(10)

We apply equation (10) to compute the joint spatial entropy between two saliency maps. We have
now all the members from equation (8) computed and can calculate the mutual information.

3.2 Semiotic superization in CNNs

Semiotics is the study of signs, symbols, and signification. The fundamental semiotic building
block is the triad Sign-Object-Interpretant [44]. Together, the object and interpretant make up the
sign, which is the smallest unit of meaning.

In a communication process, signs are agglomerated into more abstract signs called supersigns.
Iterating the process, we obtain from k-th level supersigns (k+ 1)-th level supersigns, and this process
is known as superization [11, 45, 46, 47, 48]. Frank [47] identified two types of superization: Type I -
Building equivalence classes and thus reducing the number of signs; and Type II - Building compound
supersigns from simpler component supersigns.

If we consider the entropy values Hk and Hk+1 computed at two successive levels of supersigns,
the extracted information by the interpretant can be measured by the difference Hk−Hk+1. We have
the following property, proved in [47]: Superization tends to concentrate information by decreasing
entropy between successive levels: Hk −Hk+1 is non-negative. This property holds for both types of
superization.

However, this is a mathematical result which omits other interesting aspects. In communication
processes, the entropy is not necessarily monotonically decreasing. From an informational psychology
perspective, the entropy increases until it reaches its peak value. This phase may be associated to
the informational adaptation of the perceiver [11, 45]. The subsequent entropy decrease is related to
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the processing of structural information and the rate of decrease depends largely upon the amount
of structural information. The entropy falls quickly when little structural information is available,
whereas when major structural information is present, the entropy will remain high over most of its
range [11, 45]. We will discuss informational adaptation later, in Section 4.

It is known [22] that in a CNN complex objects are composed of simpler object parts as the
receptive field of the network grows and combines multiple neurons from previous layers. Therefore
it is interesting to observe if any form of superization is present in the training process of a CNN.
In [19] we applied the above theorem to the neural layers of CNNs. We computed superization with
respect to the spatial entropy variations of the saliency maps. Type I superization appears when we
reduce the spatial resolution of a layer k+ 1 by subsampling layer k. This is similar to class formation
because we reduce the variation of the input values (i.e., we reduce the number of signs). In CNNs,
this is typically performed by a pooling (down-sampling) operator. Type II superization is produced
when applying a convolutional operator to a neural layer k; as an effect, layer k+ 1 will focus on more
complex objects, composed of objects already detected by layer k.

A multi-layered classification can be interpreted as a semiotic process [19]. At the end of a successful
recognition process, the entropy of the output layer becomes 0 and no further information needs to
be extracted. The last layer (the fully connected layer in a CNN network) is connected to the outer
world, the world of objects.

For CNN layers, it may happen that both types of superization operate concurrently. In this case,
it becomes difficult to separate their effects. According to our results [19], the first type of superization
is more effective for decreasing the entropy, whereas the second superization type is more responsible
for building supersigns with semantic roles.

4 Superization and the IB principle
This section presents our thesis on the analogy between information adaptation via superization

and the IB principle.
Beside superization, it is also interesting to study another semiotic aspect in a CNN model -

informational adaptation. This aspect was never discussed before. In our preliminary experiments,
we observed that during training the entropy of each neural layer increases until it reaches its peak
value. This phase may be associated with informational adaptation of the model. The subsequent
decrease of the entropy is related to the processing of the structural information. The rate of decrease
is largely dependent upon the amount of structural information in the input layer. When there is little
structural information, the entropy falls quickly, whereas when there are major structural elements,
the entropy of the neural layers stays high over most of its range. The manner in which the entropy
changes indicate the type of information in the input layer [11]. In our opinion, this information
adaptation can be related to the two distinct phases of the IB principle - fitting and compression.

In order to explore the presence of the IB hypothesis in saliency maps, we investigate:

• The evolution of the mutual information during training, between input and intermediate saliency
maps, and between intermediate and output saliency maps.

• The evolution of spatial entropy for saliency maps during training.

The IB plane analysis as described in [9] tracked the two mutual information quantities I(X;T )
and I(Y ;T ) and noticed the fitting and compression patterns emerging. As such, we analyze the
information planes between I(X;T ) and I(Y ;T ) by computing the mutual information from equation
8 between the first and an intermediate saliency map, and between the last and the same intermediate
saliency map. The proposed experiment is meant to uncover any resemblance to the original results
from [9], but applied to a different concept like saliency maps.

Going a bit further, we test a possible link between the fitting and compression patterns present
in IB theory with the spatial entropy of saliency maps. In [19] the spatial entropy was studied at a
single point in time (after training), going along the depth of the network. We now intend to capture
the dynamics of the entropy during the whole training to see if it is governed by the same patterns.
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As we will see, while we can not draw any conclusions from the first scenario, in the second case there
is a visible trend, similar to the fitting-compression phases studied in IPs.

Regarding saliency maps, while the superization process acts in the depth of the network, the IB
principle acts on a single layer. In order to connect those two concepts, we verify the dynamics of the
spatial entropy of saliency maps through the whole training process in conjuction with its layer-wise
behaviour. We uncover some form of continuity pattern, presented in the next section.

5 Experiments
We experimentally discover in this section a connection between the IB theory of fitting-compression

and the evolution of spatial entropy applied to saliency maps based on similar forming patterns. We
also verify the practical applicability of the spatial entropy patterns and a possible connection with
the superization process. For training, we use the deep learning programming framework PyTorch
[26] (version 1.6.0) and the public implementation of Grad-CAM, modified to our needs.

5.1 Evolution of mutual information

We start analyzing the information planes between I(X;T ) and I(Y ;T ) by computing the mutual
information from equation 8 between the first and an intermediate saliency map, and between the last
and the same intermediate saliency map. We plot the resulted values after each training epoch and
we look for any visible patterns, similar to the ones observed in [9].

Since the saliency maps obtained by Grad-CAM are discretized 8-bit arrays consisting of integer
values in the range [0, 255], it is straightforward to compute the mutual information between two
such maps using the equations from the previous section, unlike the quantities in [9] which are almost
always continuous and require a binning operation.

We train a standard VGG16 architecture on the CIFAR-10 dataset and then apply the Grad-
CAM method to obtain layer-wise saliency maps. We study the behaviour of the mutual information
obtained from those saliency maps after each epoch. To obtain a more accurate estimate of the
mutual information, we average the mutual information quantities obtained from 50 samples chosen
randomly from the training set. In Table 1, there are representative plots for the computed quantities
at selected layers. We select only four layers for visualization (VGG16 is comprised of ≈ 30 layers,
including ReLUs and MaxPooling). The other layers have a similar behaviour.

It can be observed that for the first few epochs, the plots resemble the ones in [9], with an increase
in I(X;T ) and I(Y ;T ). Afterwards, the mutual information does not obey any logical pattern which
would indicate any form of compression. Thus, we empirically conclude that the IB concept is not
present in the mutual information of saliency maps.

5.2 Evolution of entropy

We derive a bit from the study of mutual information and analyze the evolution of spatial entropy
for saliency maps through time for the same VGG16 architecture. Whereas in [19] the spatial entropy
was studied at a single point in time (after training), going along the depth of the network, we intend
to capture now the dynamics of the entropy during the whole training, looking for any patterns.

The spatial entropy was computed using the formulas from Section 3 and averaged over 50 random
samples from the training dataset. In Table 2, there are plots for the computed spatial entropy through
time for selected layers. We visualize again, only four layers.

A pattern is now visible, where the spatial entropy increases during the initial phase of the training
and at some point flattens out. Very interesting, we noticed the same patterns on other well-known
network architectures: ResNet [31], DenseNet [42] and GoogleNet [29].

We notice that early layers exhibit a more abrupt increase of the entropy values during the first
few epochs. This phenomenon could be attributed to the fact that the first layers of a CNN learn to
detect easy concepts like edges, and the network learns to perform this task faster than latter layers
which are responsible for detecting more complex concepts, like whole object parts [22].
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Table 1: Information planes for the mutual information of saliency maps

MI for 4th layer MI for 8th layer

MI for 12th layer MI for 16th layer

In [27] it is stated that early layers are faster to learn by employing a self-supervised pretraining
scheme on a single heavily augmented image. The authors prove that a single image is sufficient to
learn good representations for the first few layers. In conjunction with [27], we also hypothesize that
the abrupt entropy increase, observed for the first layers, is due to easier concepts being learned faster.

There are however some exceptions to the patterns in Table 2, present only for a few layers, like in
Figure 1. While we were not able yet to find a good explanation for those different patterns, we make
the following supposition. As in [19], where an entire layer was pruned if a drop in spatial entropy
would not happen, we assume that we could prune a layer if the spatial entropy does not follow the
patterns presented in Table 2 because that layer contains redundant information.

Figure 1: Entropy for the 28th layer

5.3 Freezing layers during training

From the patterns observed in Table 2, we test the hypothesis that there are links between the
dynamics of the spatial entropy and the evolution of the training process. As such, we train the same
VGG16 on the CIFAR-10 dataset and freeze the layers in which the spatial entropy of the saliency
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Table 2: Spatial entropy through time for saliency maps

Entropy for 4th layer Entropy for 12th layer

Entropy for 18th layer Entropy for 27th layer

map averaged over the last five epochs enters a compression phase with little variation and is below
some threshold ε, and observe if it achieves the same accuracy as a fully trained network in the same
or less number of epochs.

For a large ε, the layers are frozen early in the training and learning becomes prohibitive. For a
small ε, layers are generally not frozen and the network is trained as usual. In practice, we found an
ε value of 5e− 05 to work best. In Table 3, there are empirical results for a fully trained VGG16 vs a
VGG16 with some layers frozen during training. The max accuracy column indicates the maximum
accuracy achieved on the CIFAR-10 test set by the two versions until the specified epoch in the first
column.

Table 3: VGG16 performance - normal vs frozen layers. Experiments performed on a Tesla K80 GPU
on Google Colaboratory [41]

Epoch Max accuracy Layers frozen Running time (minutes)
Frozen Normal Frozen Normal

30 85.67% 85.42% 0, 17, 28 66 36
40 86.59% 86.13% 0, 7, 17, 26, 28 88 48
50 86.89% 86.81% 0, 7, 14, 17, 26, 28 110 60
60 87.45% 87.45% 0, 7, 14, 17, 26, 28 133 72

As can be seen, the network is trained with some layers frozen, but still performs as good or better
than the version with all the layers trained continuously. This training scheme can be considered as
a form of early stopping applied at layer level, usually used to prevent a network from overfitting.
Hence, we make a connection between the patterns observed in the spatial entropy of saliency maps
and the training dynamics of a DNN. We observe that layer 0, which is the first convolutional layer,
is among the first ones to be frozen, which empirically proves our assumption from Subsection 5.2
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that early layers are the fastest to be learned. The downside of this method is an overhead to the
computational running time, but it was not the target of our experiment.

The most similar experiment with ours is in [15], where the authors used the validation accuracy
as a proxy to apply the early stopping procedure and notice that the training can be stopped before
the compression phase starts. Unlike their work, we use quantities observed directly in the training
dynamics of the network, and apply early stopping to prove that it has effect on the validation accuracy
as well.

5.4 Discussion: A semiotic interpretation of the IB principle

In Table 4, we noticed an interesting property of the spatial entropy for saliency maps. After the
superization process takes place (i.e., after a drop of the entropy value), the magnitude resulted after
the compression phase is approximately the same with the magnitude of where the entropy starts
before superization. We observed a tendency of continuation among layers, directed by evolution of
entropy and the superization process. This might represent another inherent property of a DNN’s
training dynamics: the need to increase the spatial entropy up to an upper bound determined by
previous layers through superization.

Driven by these empirical observations, we noticed an interesting connection between IB and super-
ization. From [19] we know that a superization process takes place inside a DNN, which concentrates
information, resulting in a decrease of spatial entropy. In order to reach the starting entropy from
previous layers, an increase in entropy value is required for latter layers. This increase can be of any
form: linear, polynomial, exponential, but as it turns out it follows very closely the same trend of
fitting and compression observed in the information bottleneck theory, described in Subsection 5.2.
The phenomenon visible in those plots is possible only if there is a mutual dependency between the
IB theory (fitting-compression) and superization. This empirical observation might explain some of
the training dynamics governing modern DNNs, from an information-theoretical perspective.

There are cases, when superization is not present in the form of spatial entropy decrease (see [19]),
but we noticed that the fitting and compression phases are still present. While there are situations
when this mutual dependency does not exist, most modern CNNs include some form of subsampling
through the max-pooling or strided convolution [28, 29, 31, 32], and the superization process is present
nevertheless. Generally, superization and fitting-compression coexist during the training process.

The above semiotic superization process is in principle similar to the IB theory: fitting (entropy
increase) followed by compression (entropy decrease). In our model, the spatial entropy of saliency
maps measures the information content of neural layers. In our visual experiments, however, the
two phases of entropy increase and decrease are separated. The spatial entropy of the neural layers
increases during the fitting phase, but we did not notice any entropy decrease after the compression
phase starts. The decrease in spatial entropy can be observed only after the superization process takes
place, in the form of subsampling, for the subsequent layers.
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Table 4: Continuation of spatial entropy for saliency maps after superization

Entropy for 3rd layer Entropy for 5th layer

Entropy for 8th layer Entropy for 10th layer

Entropy for 15th layer Entropy for 17th layer

Entropy for 22th layer Entropy for 24th layer

6 Conclusions
According to our experiments, there is a connection between the evolution of spatial entropy of

saliency maps through time and the IB theory of fitting-compression. We noticed a mutual dependency
relation between the IB theory and superization, present in DNNs where there is a drop in spatial
entropy magnitude and latter layers reach the same spatial entropy from which former layers start.
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We analyzed if the patterns present in the spatial entropy affect the training dynamics of DNNs.
We noticed that some layers can be stopped earlier from training, based on the variability of the
spatial entropy during the compression phase, and still achieve on par accuracies with fully trained
counterparts. This can be regarded as a form of early stopping, applied layer-wise.

To the extent of our knowledge, this is the first application of the IB concept to saliency maps and
semiotic superization. Additional experiments are due in order to draw stronger conclusions from the
observations described in this work: different DNN architectures, more practical applications of the
spatial entropy variability through time, a more robust theoretical understanding of the phenomena
described in this work.
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