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Abstract

Most concrete structures suffer from degradation, where cracks are the most obvious visual sign.
Concrete structures must be continuously monitored and assessed to avoid further deterioration,
which may lead to a partial or total collapse. This is particularly important when constructing
large structures such as towers, bridges, tunnels, and dams. This work aims to demonstrate and
evaluate several deep learning approaches that can be used for monitoring and assessing the level
of concrete degradation based on the cracks’ visual signs, which can then be embedded in Health
Monitoring Systems (SHM). The experimental work in this study involves creating three models:
Two were built using ResNet-50 and Xception transfer learning networks. In contrast, the third
was built using a customized Sequential Convolutional Neural Network (SCNN) architecture. The
dataset comprises 2,000 image samples sampled from a larger dataset that contains 56,000 images
and which belong to four severity classes: minor, moderate, and severe, in addition to a normal
class for no crack signs. The SCNN model achieved an accuracy of 90.2%, while the Xception and
ResNet-50 models scored an accuracy of 86.3% and 70%, respectively.

Keywords: Machine Learning, Deep Learning, Structural Health monitoring (SHM), Concrete
Structure, Civil Engineering
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1 Introduction
Concrete is the dominant material in civil engineering and is used to construct houses, buildings,

towers, bridges, tunnels, dams, and other structures. However, concrete structures may deteriorate
during or after the plastic construction phase. Visual signs such as cracks are among the most signif-
icant indications of degradation, which may lead to the partial or total failure of the structure if not
assessed and maintained carefully. Cracks may appear due to external and internal causes. Internal
causes happen during the plastic phase and hardening, while external causes are associated with the
environmental conditions after hardening [31]. Ignoring cracks may lead to a high repair cost or expose
the structure to partial or complete collapse that may endanger lives and incur huge financial losses
[22, 26].

Deep learning is a back-propagation neural network with multiple hidden layers [20]. Deep learning
has achieved great success in several scientific and engineering applications, reported in several recent
studies [1, 5, 6, 7, 8, 9]. Convolutional Neural Networks (CNN) is one of the most popular deep learning
networks, particularly in image classification and object recognition. CNN is based on a feed-forward
approach that extracts filtered features as the image is passed through the network convolutions [17].

This work investigates and evaluates the use of three deep learning architectures for assessing the
severity of concrete structure degradation based on a dataset of 2,000 images sampled from a larger
dataset containing 56,000 images [14]. The constructed deep learning models can be embedded in a
structural health monitoring (SHM), which could provide an automated solution to real-time detection
of cracks and assess the severity level of their severity [16, 25].

The proposed approach involves constructing three deep learning models: the first two were built
using a pre-trained version of the ResNet-50 [18], and Xception [12] neural network architectures. In
contrast, the third was built using customized sequential convolutional neural network(CNN) archi-
tecture. All the created models are trained and tested using two separate datasets: 1,400 images are
used for training, while another 600 images are used for testing. The accuracy [19, 21] and loss of both
the training and validation phases are used for model comparison and evaluation. The performance
of the champion model is then examined in comparison with other models reported in the literature.
The paper is organised in a standard fashion. Section two reviews seven related works, while section
three presents the dataset and its relevant processing. The fourth section provides an overview of the
proposed research methodology and evaluation mechanisms, while section five presents the results.
The seventh section discusses the deep learning results. In contrast, the final section concludes the
paper with a summary of its findings. It discusses the prospect of its utilization and comments on the
limitations and future work of the research.

Research Hypothesis: Deep learning can predict the levels of concrete structure degradation.

Research Question: Can deep learning assess the severity of concrete structure damage based
on crack images?

Research Aim: Creating and evaluating a deep learning model which is used for detecting,
assessing and monitoring the progression of concrete structure degradation.

2 Related Work
This section reviews the recent and popular work published in the field of automatic assessment of

concrete structures and provides a critical analysis of the datasets used; techniques applied; number
of labels; and performance achieved in each study. Table 1 provides a summary for review.

Yamaguchi et al. proposed an approach for identifying cracks in concrete images that depends on
a percolation model, a scalable local processing method. The proposed method depends on extracting
the texture of images by measuring the brightness and shape of cracks in images. The authors reported
a precision of 70

Dung and Anh reported using a fully convolutional network to classify cracks using a dataset that
consisted of 40,000 images that had a dimension of (227 X 227) pixels. The authors reported using
Inception V3, VGG16, and ResNet algorithms, achieving an average precision of 90% [15].
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Author Dataset Techniques Applied Performance Classes
Yamaguchi et. al.
(2008)

N/A Percolation Model 70% Precision, 90% Re-
call%

Binary

Dung and Anh
(2019)

40,000 VGG16, ResNet 90% Precision Binary

da Silva and de Lu-
cena (2018)

3,500 VGG16 92.27% CA Binary

Cha et. al. (2017) 332 CNN 98% CA Binary
Arbaoui et. al.
(2021)

2,000 AlexNet,ResNet-50 90% CA Binary

Yamane et. al.
(2020)

100 Semantic Segmen-
tation and Deep
Learning

79% Precision, 99%CA Binary

Billah et. al. (2019) 33 Encoder-Decoder 15% Precision, 56% Re-
call, 98.5% CA

Binary

Table 1: A comparison of the related work that is based on the number of predicted classes, size of
the dataset, techniques applied and results obtained

Da Silva and Lucena reported applying the VGG16 architecture [24] to a set of 3,500 images divided
into cracked and non-cracked classes. The authors reported a classification accuracy of 92.27% when
the dataset was split into two subsets. The first contained 80% of the dataset and was used for model
training, while the other contained 20% of the samples and was used for model testing [23].

Cha et al. reported using a convolutional neural network to detect cracks in 332 images, which
have a dimension of (256 X 256) pixels. The authors reported a 98% accuracy rate in recognising
cracks in the concrete images. The authors reported success in distinguishing crack from non-crack
classes [11].

Arbaui et al. reported using AlexNet and ResNet-50 for classifying cracked and non-cracked
concrete images. The authors used a dataset that consisted of 1000 images. The authors reported a
classification accuracy of 88.5% using AlexNet and 91% using ResNet-50, and a precision of 89.2%
using AlexNet and 91.8% and using ResNet-50 [2].

Yamane et al. reported a study originally published in Japanese and later translated into English.
The authors proposed a method that depends on semantic segmentation through deep learning. The
researchers reported a sensitivity of 78.8% and classification accuracy of 99% using a dataset of 100
images. The study classified the images into two classes: cracked and non-cracked samples [30].

Billah et al. reported using an encoder-decoder deep learning-based algorithm for classifying
cracked and non-cracked concrete samples. The researcher reported an accuracy of 98.5%, a precision
of 15.3%, and a recall of 56.1%. The dataset consisted of 33 large images with a resolution of (3304
x 3456) pixels, which were used for generating a dataset of 6000 images with a resolution of (512 x
512) pixels. The validation in this study was conducted using 200 images with a size of (1024 X 1024)
pixels [10].

The reported performance of the models in these studies varies, as do the applied evaluation
metrics. The classification accuracy of five of the seven reviewed studies was quite impressive, as it
exceeded a classification accuracy of 98%. However, most of the models reported in these studies need
more robustness, which is quite apparent in the gap between precision and classification accuracy
reported in these studies, such as [10, 29, 30]. However, most other models lack robustness, which is
quite apparent in the gap between precision and classification accuracy results [10, 29, 30].

Most of the reported techniques in the reviewed studies depended on using known deep learning
architectures such as CNN [11], VGG16[15, 23], ResNet-15 [2, 15], AlexNet [2]. In contrast, others
applied other techniques such as percolation model[30], semantic segmentation [30], and encoder-
decoder [10] algorithm.

In addition, although some researchers tried to rely on a large dataset consisting of tens of thou-
sands of images, most of the reported studies use samples that vary between tens, hundreds, and a
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few thousand images. On the other hand, a few researchers, such as [10] tried to use another approach
where the large dataset of images was generated from a few tens of high-resolution images.

The analysis of the related works investigated shows that most of these studies aim to classify
samples into cracked and non-cracked classes. This is a modest aim given what deep learning achieves
using its current cutting-edge technology. This identified gap is intended to be addressed in this study
by considering four severity classes. The study also aims to improve the performance and robustness
of the constructed model by using a considerable number of images (2,000 images) distributed equally
in each class.

3 Materials
The dataset used in this study consists of 56,000 images that represent various types of concrete

structures, such as buildings, walls, tunnels, dams, and bridges [14]. A sample of 2,000 images was then
selected to represent three classes of concrete degradation severity and a normal class. The domain
expert labelled the images in each class according to the crack’s width, depth, shape, orientation, and
count in each sample. The dataset was split into two parts: the first part consists of 1,400 images,
which are used for model training, while the second part consists of 600 images, which are used for
model testing. Figure 1 demonstrates a sample of crack images for each class. Images augmentation
was applied to the dataset images using Keras to increase the performance of the model and also to
avoid over-fitting. Figure 2 demonstrates a variety of image orientations of an image in the sample
dataset.

Figure 1: Sample of image for each class

Figure 2: A sample crack image at different orientation
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4 Methods
The proposed method involves constructing three deep learning models based on convolutional

neural network architectures: the first two are constructed using ResNet-50 and Xception pre-trained
models. At the same time, the third is built using a customized sequential convolutional neural network
architecture (SCNN). The work of these three network architectures is similar to filtering, where each
convolution in the network layers filters some of the image features and then passes it for filtering by
the next layer.

ResNet-50

ResNet is a deep residual neural network architecture that was first introduced in [18]. It uses a
residual function to reference its layers’ inputs. The architecture was designed particularly for image
recognition and classification. ResNet consists of a very deep hidden layer that can reach eight-fold
the depth of typical convolutional neural networks such as VGG16 [24]. ResNet-50 is a popular version
of the architecture, which consists of 50 layers. The size of its inputs is 224-by-224. ResNet-50 can be
used as a pre-trained model which uses its assigned weights based on ImageNet [13]. Fig. 3 illustrates
the architecture of the ResNet-50 network.

Figure 3: An illustration of the Residual Neural Network architecture (ResNet-50)

Xception

Xception is a modified deep neural network architecture based on Inception V3 [27, 28]. The
architecture organizes the network into a number of depth-wise separable convolutions where the
standard inception modules are placed as an intermediate step in the middle [12]. Xception achieved
slightly better performance than its predecessor architecture (Inception V3), particularly using the
ImageNet database, and outperformed the Inception V3 architecture significantly when applied to a
larger database consisting of 350 million images and more labels which reached a total number of
17,000 classes. Fig. 4 illustrates the architecture of the Xception network.

Figure 4: An illustration of the Xception network architecture
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Sequential convolutional neural networks (SCNN)

A customised version of sequential convolutional neural networks (SCNN) [3] is used in this study.
The network was built in Python using Keras and TensorFlow [4], which were directly applied to
extract image features and classify them using several predefined epochs [4] implementations in Python.
SCNN involves extracting the image features and classifying them directly into four predefined classes.
Each corresponds to a level of concrete crack severity. Fig. 5 illustrates the architecture of a typical
sequential convolutional neural network (SCNN), while Fig. 6 shows the constructed SCNN sequential
model architecture and configuration.

Figure 5: Sequential convolutional neural network (SCNN) architecture

Figure 6: SCNN sequential model Architecture
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Performance Evaluation Method

Classification Accuracy (CA) [19, 21] is used as the study’s major performance evaluation metric.
The equation of the classification accuracy metric is shown in Equation 1. The model training and
validation performance is scored [3] and then plotted to show the progress of model training and
validation for each epoch. All the constructed models are trained using 75% of the images, while 25%
are used for model testing.

CA = (TruePositive + TrueNegative)/(ActualPositive + ActualNegative) (1)

5 Results
All three constructed models successfully classified the crack images into their correct severity

levels with an excellent classification performance. Figure 7 illustrates the results of image filtering as
it passes through the convolutional neural network layers. The performance results of each model are
reported and explained in their respective subsections.

Figure 7: an example image as passing through the CNN convolutions

ResNet-50 Model

The performance of the ResNet-50 model was evaluated using both training and validation classi-
fication accuracy based on 50 epochs and 44 batch sizes.

The model scored 85.2% in training and 70.0% in validation classification accuracy. The results
were produced using Keras and TensorFlow implementations in Python.

The model was built and trained using a separate random training dataset, which makes 75% of
the total number of images, and then tested using an independent testing sample that makes 25%
of the images in the dataset. The training samples were placed in a separate folder and then loaded
using their appropriate generator in the Keras preprocessor at a learning rate of 0.001.

Table 2 shows the training and validation accuracy for each epoch. In contrast, the curve in Fig. 8
shows the progression of classification accuracy and loss rate for each epoch.

Xception Model

Xception model performance was assessed using training and validation datasets based on the
model classification performance. The epoch size in each iteration was set to 50, while the size of each
batch was set to 88.

Like ResNet-50, the Python Keras and TensorFlow implementations were used to build, train,
and test the model using the typical parameter settings reported in similar applications in the deep
learning literature.
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Epoch. Training CA Validation CA Epoch Training CA Validation CA
1 25.5% 40.0% 26 78.6% 71.5%
2 52.7% 62.3% 27 83.5% 73.0%
3 65.4% 63.8% 28 82.3% 65.7%
4 64.3% 66.2% 29 82.7% 71.7%
5 68.0% 73.8% 30 86.7% 73.8%
6 68.0% 67.0% 31 85.8% 68.5%
7 73.7% 69.8% 32 77.8% 71.0%
8 71.5% 56.8% 33 85.3% 62.2%
9 69.0% 68.0% 34 81.0% 74.5%

10 74.0% 62.0% 35 87.0% 73.2%
11 69.2% 58.8% 36 84.3% 68.7%
12 73.6% 60.3% 37 85.7% 71.8%
13 70.0% 73.3% 38 81.8% 73.5%
14 73.8% 70.2% 39 87.7% 65.5%
15 77.4% 70.2% 40 78.5% 66.8%
16 77.4% 69.2% 41 78.5% 67.7%
17 79.4% 70.3% 42 82.4% 69.3%
18 78.5% 61.7% 43 79.9% 66.0%
19 76.4% 68.3% 44 83.3% 72.2%
20 83.6% 70.8% 45 84.5% 69.9%
21 78.6% 68.2% 46 84.5% 68.7%
22 83.5% 70.2% 47 78.4% 72.5%
23 82.3% 75.2% 48 78.1% 72.0%
24 82.7% 71.2% 49 82.1% 75.7%
25 86.7% 67.5% 50 85.2% 70.0%

Table 2: The ResNet-50 model performance over training and validation accuracy based on 50 epochs

Figure 8: The ResNet-50 model performance: a) Training and validation classification accuracy curve
b) Training and validation loss curve

Likewise, the ResNet-50, the Xception model, was also built and trained using a separate and
random training dataset, which makes 75% of the total number of images, and then tested using an
independent testing sample that makes 25% of the images in the dataset.

The model scored 97.7% in training and 86.3% in validation classification accuracy. The training
samples were placed in separate folders and then loaded using their appropriate generator in the Keras
preprocessor at a learning rate of 0.001.

Table 3 shows the training and validation accuracy for each epoch, while the curve in Fig. 9 shows
the progression of classification accuracy and loss rate for each epoch.
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Epoch. Training CA Validation CA Epoch Training CA Validation CA
1 80.5% 75.3% 26 96.8% 80.7%
2 87.8% 85.1% 27 95.9% 82.8%
3 89.9% 84.8% 28 96.6% 82.5%
4 93.2% 81.0% 29 96.6% 82.3%
5 91.4% 81.3% 30 96.9% 84.2%
6 92.8% 82.0% 31 96.9% 80.7%
7 94.2% 82.1% 32 96.9% 83.5%
8 94.6% 83.0% 33 97.9% 84.2%
9 94.6% 81.7% 34 96.8% 83.0%

10 95.8% 83.7% 35 97.5% 81.5%
11 95.2% 84.0% 36 96.9% 83.3%
12 95.2% 83.3% 37 98.1% 86.3%
13 96.2% 83.0% 38 97.5% 82.8%
14 95.2% 83.1% 39 98.1% 82.7%
15 96.2% 78.8% 40 98.0% 82.2%
16 95.5% 84.3% 41 97.6% 83.8%
17 95.4% 83.5% 42 97.7% 85.2%
18 97.8% 84.2% 43 97.3% 83.5%
19 96.7% 84.0% 44 97.9% 81.8%
20 97.1% 85.2% 45 97.4% 84.8%
21 96.3% 83.3% 46 97.3% 83.8%
22 95.7% 84.2% 47 97.6% 81.7%
23 96.5% 81.8% 48 97.3% 83.8%
24 97.3% 84.8% 49 97.6% 86.0%
25 97.4% 87.0% 50 97.7% 86.33%

Table 3: The Xception model performance over training and validation accuracy based on 50 epochs

Figure 9: The Xception model performance: a) Training and validation classification accuracy curve
b) Training and validation loss curve

SCNN Model

The SCNN model was constructed using three activation functions: ReLU, Sigmoid, and Tanh.
However, the results obtained using the ReLU function were far better than the other two; therefore,
their results have been discarded. The activation functions were applied using a configuration of (16,
3), (32, 3), and (64, 3) 2D convolutions.

The flat dropout penalty was assigned to 0.2. The results of applying the Sequential Convolutional
Neural Networks (SCNN) -implemented in Keras and TensorFlow- were quite acceptable, with 90.2%
validation accuracy when the model was trained and evaluated using 20 epochs.
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Table 4 shows the progression of the model training and validation performance for each epoch,
while Table 5 shows the model confusion matrix. Fig. 10 shows the model accuracy and loss progression
through the 20 epochs.

Epoch Training CA Validation CA
1 26.5% 29.8%
2 51.3% 62.2%
3 73.2% 81.4%
4 77.0% 79.4%
5 80.6% 81.4%
6 81.7% 84.4%
7 84.0% 84.2%
8 84.6% 86.0%
9 86.4% 86.8%

10 86.5% 84.2%
11 82.5% 80.6%
12 80.9% 87.6%
13 87.3% 88.2%
14 88.7% 87.0%
15 87.0% 88.2%
16 88.8% 86.6%
17 90.4% 91.0%
18 90.8% 89.8%
19 90.3% 86.6%
20 90.0% 90.2%

Table 4: The SCNN model performance over training and validation accuracy based on 20 epochs

Figure 10: SCNN model training and validation performance: a) accuracy curve b) loss curve
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Table 5: The Confusion matrix for the CNN model

Normal Minor Moderate Severe
Normal 99 1 0 0
Minor 0 89 1 10
Moderate 0 0 94 6
Severe 0 1 22 77

6 Discussion
This work successfully applied, evaluated, and compared three deep learning models. All the

constructed models successfully assessed the severity of the degradation of concrete structures. The
first two were built using the pre-trained Xception and ResNet-50 architectures, while the third was
built as a customized version of the sequential convolutional neural network (SCNN).

The results confirmed the validity of the study’s hypothesis. They provided a positive answer to
the research question, as all three models successfully predicted and assessed the severity of damage in
concrete structures. The constructed models achieved the study’s aims as they can all be deployed and
embedded in an SHM system to help detect, assess, and monitor the progression of concrete structure
degradation.

The SCNN model achieved the best classification accuracy performance of 90.25%, followed by
the Xception model, which scored 86.3%, and the ResNet-50 model, which scored 70%. These results
are quite acceptable compared to those reported in the literature, particularly when considering the
dataset’s size and the consistency of the model’s performance. Moreover, this study classifies samples
into four severity classes, while all the other surveyed studies only classified the samples into two
binary classes.

The SCNN model was selected as the champion model as it scored higher than the other two models
and has also shown a stable progression across all epochs. The confusion matrix of the CNN model
shows a robust performance across all classes. The model successfully predicted the correct classes
for 99% of the samples in the normal class, 94% of the samples in the moderate class, and 89% of the
minor class. However, the model’s classification accuracy dropped to 77% as it missed classifying 22
samples as being in the moderate class while they belonged to the severe class. Nevertheless, after
carefully examining the misclassified images, it was noticed that the images were on the borderline
between moderate and severe classes, and it was difficult for the human expert to draw a sharp line
between them.

On the other hand, the Xception model performed significantly better than the ResNet-50 as it
scored a validation accuracy of 86.3% compared to 70%. After analysing the validation and loss
curves of the ResNet-50 model, it was noticed that its validation performance is quite fluctuating, and
it fails to improve as it moves over the 50 epochs. However, the loss curve shows a tendency towards
increasing instead of declining. In addition, the gap between the validation and training accuracy is
quite large, affecting the model’s robustness when deployed to classify unseen instances. On the other
hand, and despite the modest performance of the ResNet-50 model, the gap between its validation
and training performance was found narrow. However, despite the fluctuation of the model validation
accuracy, the ResNet-50 model performance improved over the 50 epochs.

The dataset size was quite acceptable compared to those used in similar studies. The dataset
consisted of 2,000 images sampled from a larger dataset that included 56,000 images. The sample
consists of 500 images in each class, representing various crack types, directions, and concrete colors.
The resolution and dimension of the images are compatible with images that can be captured by
ordinary cameras, unlike some of the studies reported in the literature that used only a few high-
resolution pictures that were acquired by a high-tech camera, which may increase the costs and
constrain the potential deployment or embedding in an SHM system. On the other hand, some of
the related studies that have been investigated in this research use only very small datasets of very
high-resolution images [10, 30], which limits the reproducibility of the results and casts doubt on the
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validity of the results as they depend on generated rather than original images.
Furthermore, all the related work investigated only identified the cracks, classifying the images

into two classes: cracked and non-cracked samples. This work moves further by assessing the levels
of concrete degradation into three categories: minor, moderate, and severe, in addition to the fourth
normal level. This contribution is important for providing continuous and real-time monitoring of
concrete health, particularly in strategic structures such as dams, tunnels, bridges, walls, and towers,
which help avoid the catastrophic partial or total collapse of these structures, which may endanger
lives and cause huge financial damages.

7 Conclusion
In this work, we have successfully created three deep learning models that assess the severity of

concrete structure degradation and its severity level using deep learning. The results have demon-
strated that the SCNN model achieved an excellent performance in validation classification accuracy
with a score of 90.2% based on 20 epochs. In contrast, the Xception and ResNet-50 models scored an
accuracy of 86.3% and 70%, respectively, based on 50 epochs.

The models created in this work can be integrated into an SHM system to automate the assessment
of concrete cracks and diagnose the degradation of concrete structures based on the crack’s visual signs,
which would help to stop or create remedies for the concrete degradation and would also help to provide
a faster and better response in case of emergency.

Future works that extend this study may involve using more images and innovative algorithms
to achieve even better results. It also enhances the results by investigating the influence of image
resolution, dimensionality, colouring, shadowing, and other image properties. We also recommend
conducting further research that may involve deploying the models as part of an Internet of Things
(IoT) system that can collect and process the crack images in real-time. Similar studies can also be
conducted to assess cracks in asphalt and road payments as part of road engineering and maintenance.
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