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Abstract: In the real medical world, there are many symptoms or chronic diseases
that cannot be characterized in a deterministic way, and which must be examined in
a random way. In the study of these stochastic processes, Markov chains are used.
There is a wide variety of phenomena that suggest a behavior in a Markov process
manner such as: the probability that a patient’s health to improve, to get worse,
to remain stable or to progress to death within a certain time slot, depending on
what happened in the previous time window. Our goal is to show that the Markov
chains can be applied to the patients with Parkinson’s disease in order to predict the
evolution of the disease over time. So the doctor may decide a therapeutic solution
that is adapted to the patient’s needs, and that can improve the quality of the patient’s
life with Parkinson’s disease in terminal stage.

Keywords: Parkinson’s disease, Markov chains, Multistate Markov Models, Predic-
tion

1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disease that occurs due to loss of dopamine
that is a neurotransmitter and due to slow and inexorable destruction of neurons. Brain area
affected by progressive destruction of neurons is responsible for movements controlling [1|. For
this reason, patients with Parkinson’s disease have rigid and uncontrollable gestures, postural
instability, tremor, and speech disorders. Although Parkinson’s disease is considered specific
old age, the average age is 50 years and can be confused with the normal aging process of
the individual [2]. When first symptoms are manifested, it is believed that between 60% and
80% of the cells for the control of motor activity are destroyed [3]. Parkinson’s disease is a
progressive disease, with signs and symptoms accumulated over time. Although this is potentially
an invalidity disease, it progresses slowly so that most patients benefit from many years of active
life after diagnosis. Moreover, unlike other serious neurological disorders, Parkinson’s disease
is treatable. Treatment is surgical or based on drugs, but may also consist of an implanted
device for brain stimulation [4]. Worldwide, the disease is diagnosed in 300,000 people each
year [5]. Disease incidence and prevalence increase with age. Parkinson’s disease affects 1% of
people aged over 65. Rarely, the disease occurs in childhood or adolescence. The incidence is
1.5 times higher among males than among women [6]. If Parkinson’s disease would be detected
in an early stage, the physician may interfere with a proper treatment in order to slow the
disease’s progression. Unfortunately, currently there is no screening test or biomarker that
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can be highlighted in Parkinson’s disease. The three cardinal signs of Parkinson’s disease are
resting tremor, rigidity and bradykinesia. Among them, two are essential for diagnosis. Postural
instability is the fourth cardinal sign, but occurs late, usually after 8 years of disease evolution. In
70% of cases, uncontrollable rhythmic gestures of the hands, head and feet are the first symptoms
and occur mainly at rest and during the stress’ periods (see [7]- [9]). Tremor is diminished during
movements, disappears during sleep, and is exacerbated by stress and fatigue. Tremor becomes
less evident as disease progression. This tremor, in the absence of other characteristic signs,
indicates an early stage of disease or another diagnosis (see Table 1) [10]- [14].

Table 1: Neurological disorders characteristic signs

Moment Speed Location | Neurological Disorders
Rest tremor 4-6 Hz | arms, legs Parkinson’s disease
Postural tremor | 7-12 Hz hands Essential tremor
Intention tremor | 2-5 Hz | arms,legs Cerebellar lesions

From the many symptoms or diseases that cannot be characterized in a deterministic way,
but in a random way, PD is a prominent example. In our study, we used Markov chains as they
characterize very well stochastic processes like diseases evolutions. So, our goal is to show that
the Markov chains can be applied to the patients with PD in order both to predict the evolution
of the disease over time, and illustrate the response to the specific treatment. In this way the
doctor may decide upon a therapeutic solution that is adapted to the patient’s needs, and can
improve the quality of the patient’s life in terminal stage.

2 Multistate Markov models

In mathematics, a Markov process is a stochastic process having the property that, given its
present state, the future states are independent of the past. This property is called the Markov
property [15]- [19]. In a Markov process, the system can change or keep its state, according to a
certain probability distribution. Changes of its state are called transitions. A random experiment
that consists of a series of random sub-experiments is called a stochastic process. Such a special
class of these processes is made by the Markov chains [20]- [26].

The evolution of a Markov process can be described by a transition matrix. We can consider
the evolution of the health status of a patient as a Markov process that passes through the
following states: Well, Suspicious, Ill (PD), or Dead, as is illustrated in Figure 1. For the
Markov process illustrated in Figure 1, we can write the general matrix (1), where m = 4
(possible mutually exclusive results: E1 well, E2 suspicious, E3 ill/PD, E4 dead).

P=| .. ... (1)
0... Pdd

As it can be seen, the transition matrix consists of p;; elements, which represent the condi-
tional probability that the system will change from the initial state (well) to next state j. The
probability that the system remains in the same state after the experiment is given by p;; with
i = j, and the probability for the system to move from one state to another is given by p;; with
i#j. The transition matrix for the proposed system is a square matrix of order m = 4. The
elements of the transition matrix must satisfy the following properties [19]:
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Figure 1: Four-state Markov Model for Parkinson’s disease stage (well, suspicious, ill/PD, dead)

2. Z;’;l pij = L,i = 1,2,...,m. The sum of the elements of each line must be 1 because
FEq, ..., E,, is a complete system of events.

3. paq = 1, for our application.

Information about the transitions from one state to another in a Markov chain can be rep-
resented by a transition matrix. It consists of elements p;; - probability of crossing a step from
state i to state j (i,j = 1,..., m, where m=4). We can talk about the transition probability of
exactly k steps and a matrix formed by them. So, multistate Markov models in continuous time
may be used to model the course of Parkinson’s diseases. Since Markov chains are stochastic
processes, we cannot know exactly what it is happening on each state, so the system must be
described in terms of probability.

Definition 1. [19]: Consider a Markov chain with m states. A state vector for Markov chain
is a probability vector X = [x1,x2,...,Z;,]. The x; coordinates of the state vector X should be
interpreted as the probability that the system be in the state i.

The behavior of a Markov chain can be described by a sequence of state vectors. The initial
state of the system can be described by a state vector noted Xgy. After a transition, the system
can be described by a vector X and after k transitions the system is described by the state vector
X}. The relationship between these vectors can be summarized by the following theorem [19]:

Consider a Markov process with the transition matrix P. If X and Xj4, are vectors that
describe a process state after k and k 41 transitions respectively, then Xj 11 = Xj * P.

We represent structural elements as a vector S = [s}, ..., st, ..., 7], that for each t = 1,...,n
and for each i = 1,....m, s varies between 0 and 1, and the sum of structural elements is 1 for
any t. In order to model a Markov process, we must respect the following steps [19]:

1. First-order differences of the vector Sy will be calculated, thus AS; Ji—1 = Sy — Si_1.

2. For each pair t/t — 1 of consecutive periods of time we will buid the partial transition
matrices (MTP), as MTP,/;_1(m#*m) form. The elements of the MT' P, ;,_; (mm) matrix
can be determined as follows:

MTP,_| = min(si_1,s])ifi = j (2)
i, ) As
MTPZ/]t—l = ASi/t—l g t/tiij ) (3)
Zi:2(+A5t/t_1)
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if i # j and Asi/tq < 0 and As{/t_l > 0.

MTPF},_, =0, (4)

for the other elements, where i,j =1,....m.

In formula (3) the expression Z?;2(+A51]/'t—1) denotes the sum of positive values of the
difference vector As;/;_;.

3. MTP(m % m), total transition matrix is determined by summing the elements of partial
transition matrixes.

4. M P(m % m), transition probability matrix is calculated by ratio between each element of
the total transition matrix and the sum of the line on which is located than item.

5. In the final stage of the algorithm, we obtain a forecast of the structural elements for future
p periods by multiplying transposed of the matrix M P(m % m) raised to the k power with
the vector of structural elements for the last period.

3 Intelligent system for health status prediction using a Markov
chain

The architecture of the proposed system is shown in Figure 2. It consists from three modules.
The first module will handle with the signal acquisition from patients suspected of Parkinson
disease. In terms of software, this module is a software application that can acquire biomedical
signals from WiiT™ Remote device or other devices that can acquire signals generated by tremor.
All data acquired from these devices are analyzed using the method presented in Section 2.
Furthermore, the data are saved on a server. On this server, physicians can access data in order
to establish a long history of patient evolution.

The second module of this system is represented by the extracting knowledge from biomedical
signals acquired from the patients. This module consists of a software application that runs on
the server where there are kept biomedical signals acquired. The third module is the application
that is executed in the doctor’s office. This application performs an interfacing of the doctor with
the intelligent system, and presents the medical treatment and rehabilitation options. It must
be said that bio-signals can be acquired in the doctor’s office but also at home if the patient
has a PC and an internet connection. The design and development of this intelligent system
used the newest technologies for distributed application development (WCF, SOAP), and the
observations received from patients and specialists.

3.1 Database

For the database we used the proposed methodology in previous papers [27], [28]. Database
with affected patients has been provided by Suceava Emergency Hospital (Neurology Clinic).

This dataset is composed of a range of biomedical tremor measurements from 88 people,
28 with Parkinson’s disease (PD), 30 "normal" tremor and 30 "suspicious" PD (undiagnosed).
Each column in the table is a particular tremor measure, and each row corresponds one of 2500
tremor recordings from these individuals ("name" column). The main aim of the data is to
discriminate healthy people from those with PD, according to "status" column which is set to
0 for healthy and 1 for PD or "Suspicious". All patients are suffering of moderate to severe
postural tremor. This postural tremor cannot be differentiated on clinical features (frequency,
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Figure 2: Intelligent system for health status prediction of a patient using a Markov chain
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Table 2: Data: size, age, gender, and disease duration distribution of PD, SPD, and NT subjects

PD SPD NT

Number of patients 28 30 30
Mean age 64.54 63.24 64.52
(range in years) (40-90) | (27-94) | (24-86)
Gender (male/female) | 18/10 16/8 19/11
Mean disease duration 16,4 5,3

amplitude). Patients were kept under observation and investigation for 2 years, and data were
acquired at 6 months, 1 year and 2 years (see Table 2).

The mean disease duration (time for disease to install, in years), age and sex of PD patients
were compared with the SPD or NT in Table 2. Notice in Table 2 that the mean age of PD,
SPD and NT populations is similar, but the age ranges are different. This could be considered
as an indicator that the PD starts years before actual diagnosis.

3.2 Tremor recoding

Yet, some researches have been made (including in Romania) in order to early diagnose the
PD and its progress by means of the tremor or the gait analysis or other symptoms [29]- [34].
The tremor time series were acquired using an accelerometer sensor from a Wii’™ console [35],
connected via Bluetooth to a PC. The data were analyzed using an application implemented in
Visual C 2010 Professional. The Wii’™ Remote is the primary controller for Nintendo’s Wii! Mi
console. A main feature of the W4i”™ Remote is its motion sensing capability, which allows the
user to interact with and manipulate items on screen through the use of accelerometer and optical
sensor technology [35]. Nintendo works on three axes: x - lateral, y - anteroposterior, and z -
vertical. The device records both acceleration induced by hand movement and the component
of gravitational force. If the controller is rotated, the gravity accelerometer affects the values on
the x, y, and z axes (see Figure 3).

This system using a WiiT™ Remote is capable of analyzing frequency and estimated ampli-
tude of tremor between 3 - 15 Hz (N tremor is between 5 - 12 Hz, and PD tremor is between 4-6
Hz). The WiiT™i Remote and PC are connected by Bluetooth - Human Interface Device Profile.
The tremor analysis program was developed using Visual C 2010 Professional. The acceleration
sampling period was set at 10 ms in the Nintendo device. Because the transmission rate through
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Figure 3: Interactive GUI using WiiT™ Remote (tremor application)

the Bluetooth device is limited, the sampling period of the tremor analysis was 40 ms. The ac-
celerometer built into W4i’™ Remote (Nintendo) measures gravitational and non-gravitational
acceleration. The results of this paper suggest that Nintendo is useful for measurement and
analysis of tremor using the methodologies described in [28], [29], [31]. We defined the following
linguistic variables (for instance for X axis):

e If x is between -0.10 mm and -1 mm then x is minimum X,,;,;
e If x is between -0.10 mm and 0.10 mm then x is medium X,,,.4;
e If x is between 0.10 mm and 1 mm then x is maximum X,,q.

We counted the number of spikes for each interval, and we used these values to describe the state
vector.

Next we proposed to predict the state of a patient using Markov chains. In this analysis the
state vector is defined as:

S = sz'ny Xmeda Xhigha Ymina Ymed7 Yhigha Zmina Zmeda Zhigh (5)

. Table 3 presents the number of spikes in each category for "normal" subjects, while Table 4
presents the values of the state vector for a subject with diagnosed Parkinson’s disease.

For this paper we chose to exemplify the calculation of transition matrices from TO to T1
and from T1 to T2 only for patients with Parkinson’s disease, by following the methodology
presented in Section 2 (here notations Ti were used instead of ti and we illustrated the method
only for PD patients and normal patients).

In the first step we computed, according to the methodology, the deviations ASyy,pg =
St1 — S7o and ASTQ/Tl = Spo — St1. We illustrate this in Tables 5 and 6 only with data
acquired from a patient with PD.

We computed next the transition matrices from T0 to T1 and from T1 to T2 (Tables 7 and 8,
respectively). For example, the transition matrix from T0 to T1, MT Ppy /po(m*m) is computed
as follows:

1. the elements from the main diagonal are (Sk, S&);
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Table 3: "Normal" subject vector, spikes number at T0, T1 and T2 for 60 seconds each record

Features Vector | TO | T1=6 months after TO | T2=12 months after TO | Total spikes
Xoin 284 257 286 827
Ximed 1524 1458 1511 4511
Xmaz 651 687 558 1896
Yiin 1289 1439 1435 4163
Yined 1283 1247 1257 3787
Yiaz 664 657 557 1878
Zmin 392 382 378 1152
Zmed 768 865 789 2422
Zmaz 2031 1998 1875 5904

Table 4: Data: size, age, gender, and disease duration distribution of PD, SPD, and NT subjects

Features Vector | TO | T1=6 months after TO | T2=12 months after TO | Total spikes
Xmin 382 358 379 1119
Xomed 785 758 688 2231
Xmaz 897 857 912 2666
Ymin 578 547 524 1649
Yined 457 479 487 1423
Ymaz 354 349 357 1060
Zmin 257 282 253 792
Zmed 578 549 754 1881
Zmaz 1300 1329 1348 3977

Table 5: The deviations ASpy /79 = St1 — Sto (PD patient) T1 vs. TO, for the state vector S

Time Xmin | Xmed | Xmaz | Ymin | Ymed | Ymaz | Zmin | Zmed | Zmaz | SUM
T1 358 758 857 o047 479 349 282 549 1329
T0 382 785 897 o978 457 354 257 o978 1300
Deviation -24 =27 -40 -31 22 -5 25 -29 29
Deviation+ 22 25 549 29 76

Table 6: The deviations ASyy /79 = Sr1 — Sto (PD patient) T2 vs. T1, for the state vector S

Time szn Xmed Xmax Ymin Ymed Ymax Zmzn Zmed Zmaa: SUM
12 379 688 912 024 | 487 | 357 253 754 | 1348
T1 358 758 857 047 | 479 349 282 549 | 1329
Deviation 21 -70 55 -23 8 8 -29 205 19
Deviation+ 21 55 8 8 205 19 316
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2. if i # 7, AS%“l/To < 0 and AS%l/To > 0, so the matrix equals the absolute value of
AST. /70

k ———————
UTO ™ ST ASY, pg>0

AS:

3. the rest of elements equals 0.

Table 7: The transition matrix from TO0 to T1

Features Vector | Xmin | Xmed | Xmax | Ymin | Ymed | Ymax | Zmin | Zmed | Zmax
Xmin 358 0 0 0 0 0 0 0 0
Xmed 2.548 758 1.625 | 10.244 0 0 4.345 0 0
Xmax 0 0 857 0 0 0 0 0 0
Ymin 0 0 4.548 547 0 0 0 0 0
Ymed 7.413 0 1.021 | 12.547 | 479 0 0 12.457 0
Ymax 1.124 0 1.245 | 6.333 0 349 0 1.125 0
Zmin 1.354 0 0 6.687 0 0 257 2.548 0
Zmed 0 0 0 0 0 0 0 549 0
Zmax 4.211 0 0 24.442 0 0 0 8.457 | 1.300

Table 8: The transition matrix from T1 to T2

Features Vector | Xmin | Xmed | Xmax | Ymin | Ymed | Ymax | Zmin | Zmed | Zmax
Xmin 358 0 2.387 0 0 0 0 0 0
Xmed 0 688 0 6.257 0 0 4.345 | 6.211 0
Xmax 1.250 0 857 0 4.587 0 0 0 5.244
Ymin 0 0 1.287 524 0 0 0 0 0
Ymed 0 5.687 | 1.021 | 8.985 479 0 0 6.258 0
Ymax 1.124 0 1.245 0 0 349 0 1.125 0
Zmin 1.354 0 0 6.154 | 5.698 | 2.542 257 | 2.548 0
Zmed 0 0 0 0 0 0 0 549 2.241
Zmax 4.211 0 0 3.587 | 2.587 | 2.325 0 9.237 | 1.329

In the third step we calculated the total transition matrix (Table 9), which is the sum of
partial transition matrices computed in the previous stage.

In the fourth stage we computed the probability transition matrix by the ratio of each element
of the total transition matrix to the sum of the line where the element is located.

In the final stage of the algorithm we obtained the forecast of the structural elements for
next year by multiplying the transposed matrix of transition probabilities with the vector of
the structural elements for T2, i.e. the vector corresponding to T2 = 12 months. We get the
following transition probabilities between the 9 elements of the features vector X,nin, .-y Zmaz-

The values of the main diagonal are the probabilities that the patient progress to state that
is described by the features vector (which corresponds to a stage of the disease). The forecast of
the Xpnin..-Zmaz for the next year is obtained by multiplying the two matrices (transposed and
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Table 9: The total transition matrix (in %).

Features Vector | Xmin | Xmed | Xmax | Ymin | Ymed | Ymax | Zmin | Zmed | Zmax | Total %
Xmin 100 0 2.387 0 0 0 0 0 0 100
Xmed 9.59 90 0.0005 | 0.0051 0 0 0 0.0015 0 100
Xmax 8.54 0 91.46 0 0 0 0 0 0 100
Ymin 1.07 0 0 98.93 0 0 0 0 0 100
Ymed 12.91 0 0.17 1.69 84.71 0 0 0.5 0 100
Ymax 7.96 0 0.0004 | 0.47 0 91.37 0 0.14 0 100
Zmin 8.94 0 0.0009 | 0.90 0 0 89.79 | 0.26 0 100
Zmed 8.1 0 0 0 0 0 0 91.9 0 100
Zmax 15.19 0 0.0008 | 0.85 0 0 0 0.25 83.6 100

elements for T2). Thus we obtain the patient’s evolution for next year, for "normal" and "PD"
(Table 10 and Table 11).

Table 10: The "normal" subject’s evolution for the next year (no. of spikes)

Features | TO | T1=6 months | T2=12 months | T3=24 months sfter TO | T4=24 months after
Vector after TO after TO (with Markov chain) TO(recorded)
Xomin 244 257 286 295 299
Xned 1442 1458 1511 1657 1656
Xmaz 651 687 688 689 694
Yoin 1412 1439 1442 1420 1421
Yined 1233 1247 1257 1243 1240
Yax 614 627 665 688 686
Zomin 392 399 410 412 414
Zmed 768 788 789 786 785
Zmaz 1992 1998 1999 1995 1994

From the last two tables one can see, by using Markov chains, the tremor symptom evolution
of certain patients. Also we may note the very good prediction power of this method, as the
features vector elements for the predicted tremor signal after 24 months from the first recording
are very similar with the same vector elements, but acquired and measured by means of Wiil™
Remote and the appropriate software. The maximum error between prediction and measured
values was 1.33%.

Similar judgement was used and corresponding good results concerning the prediction of
disease evolution were obtained in the case of "suspicious PD" patients, for whom some early
signs were found (insomnia, constipation, loss of smell, equilibrium and postural impairment,
tremor symptom or speech difficulties) and they became to be attentively monitored. Also,
another remark may be made related to the similarity between features vectors measured for
"suspicious PD" patients and "diagnosed PD" patients, when using the same Markov chains for
status prediction.
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Table 11: The PD patient’s evolution for the next year (no. of spikes)

Features | TO | T1=6 months | T2=12 months | T3=24 months sfter TO | T4=24 months after
Vector (with Markov chain) TO(recorded)
Xmin 382 385 396 398 399
Xied 785 792 784 796 795
Xmaz 837 857 912 944 946
Yonin 518 537 544 586 585
Yed 457 459 467 489 488
Ynaz 354 359 373 382 380
Lmin 257 282 278 310 308
Zmed 528 549 558 568 566
Zmaz 1300 1329 1348 1399 1398

4 Conclusions

In this paper we describe a general purpose model of PD prognosis based on Markov process
and show how this simple mathematical tool may be used to generate detailed and accurate
assessments of Parkinson’s disease stage and therefore may be applicable in medical screening
for PD. Markov models consider a patient to be in one of a finite number of discrete states of
health. All clinically important events are modeled as transitions from one state to another.
Thus, the use of Markov models has the potential to allow the development of decision models
that more faithfully represent clinical problems.

Our study used a database where there are subjects who are considered normal, but with
some tremor symptoms, and subjects considered "suspects", for whom we can apply the above
methodology and can see if certain subjects move to the "normal" state or the first symptoms of
Parkinson’s disease will appear. Thus, medical staff can intervene with specific medication for
Parkinson’s disease.

Using Markov chain is an efficient way to find the features vector for an individual patient
at a given time, and this state vector may be used to predict and identify a stage in Parkinson’
disease. So, the physician can choose a treatment, based on this forecast with an appropriate
level of medication.

The system was validated for 88 patients under observation: 28 with PD tremors, 30 with
SPD ("Suspicious" PD tremor), and 30 with NT (Normal tremor), and we plan to expand the
study to more patients with PD. Already results interpretation and discussions with involved
neurologists are directed to the validation of the study. The next step will be the creation of an
expert or decision-support system based on fuzzy logic for Parkinson’s disease screening, which
will help a physician to diagnose PD in its early stages, especially of individuals in the class
"Suspicious" of PD. So, future research approaches will include the testing and validation of a
screening test, in order to detect Parkinson’s disease or other neurological disorders in their early
stages.
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