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Abstract: Web cache refers to the temporary storage of web files/documents. In
reality, a set of caches can be grouped into a cluster to improve the server system’s
performance. In this paper, to achieve the overall cluster efficiency, we propose a
weighted load balancing (WLB) routing algorithm by considering both the cache ca-
pability and the content property to determine how to direct an arrival request to
the right node. Based on Knapsack models, we characterize three new placemen-
t/replacement schemes for Web contents caching and then conduct the comparison
based on WLB algorithm. We also compare WLB algorithm with two other widely
used algorithms: Pure load balancing (PLB) algorithm and Round-Robin (RR) algo-
rithm. Extensive simulation results show that the WLB algorithm works well under
the examined cluster content placement/replacement schemes. It generally results in
shorter response time and higher cache hit ratio, especially when the cache cluster
capacity is scarce.
Keywords: web cache placement/replacement scheme, Knapsack model, load bal-
ancing and routing algorithm, performance analysis.

1 Introduction

In recent years, with the rapid growth of the size of contents delivered and the number
of internet users, the World Wide Web (WWW) is better known as “World Wide Wait" [1].
Although various information technologies are being developed rapidly, which makes the internet
becomes faster and faster, according to [2]’s observation, “the trend of increasing traffic on the
Internet is likely to continue”. It is reported that if a web page can not be loaded within eight
seconds, then users are likely to give up or load the link in a second browser [3]. As a result,
a loss of revenue will be suffered, which is called the Zona effect [1]. For example, the possible
revenue loss by increasing a millisecond to execute automated trades, according to [3], can be
as high as $100 million. Therefore, there exist plenty of incentives to reduce the web response
time when the server capacity is constrained (It may cost a lot to enlarge the server capacity.).
In practice, an effective approach to alleviate the user-waiting problem and to optimize the Web
resource utilization is caching, in which the Web content is generated once and kept for a period
of time for the future use. When a user requests a previously requested content, the content can
be accessed directly from the cache. Recently, content caching has been a very active research
area.

Generally speaking, a good caching system must address the following issues:

Copyright c⃝ 2006-2013 by CCC Publications
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Figure 1: Overview of Caching

(1) What to cache. Cacheable elements include DNS mapping, connection, and content.

(2) Where to cache. A cache usually can reside in one of the three locations: (a) client level,
at the client browser and LAN, (b) network level, at a proxy somewhere in between the
client and the Web site, or (c) at the Web site itself.

(3) When and how to cache. When are elements are placed in cache and when are elements
are evicted from cache.

Industrial experts have already found clear answers/rules to address the first two issues
[4], however, more analysis and/or solving methods are needed to address the third issue [5].
Therefore, in this paper, we mainly focus on the third issue for the Web server with content
caching cluster at the web site, i.e., reverse proxy cache. Reverse proxy cache, which is a web
accelerator, can reduce the workload of a busy Web application server that provides both static
and dynamic contents. The static contents can be cached on the reverse proxy while the Web
application server is freed up to better handle the dynamic contents.

Towards the cache placement/replacement schemes, in practice, the Least-recently-used (LRU)
and least-frequently-used (LFU) are commonly used due to their simplicity. However, with no or
limited considerations of content properties or request patterns, these schemes could not provide
the best performance. Many other schemes have been proposed, which take into account the
retrieval latency of contents, their sizes, the popularity of references and temporal locality of
requested contents, to solve the problem in a systematic manner (e.g., [6]).

From a theoretic perspective, the focused problem in this paper is closely related to the
Knapsack problem that maximizes the benefit under a constraint capacity. Different approaches
have been proposed based on the Knapsack model in caching or similar applications, for example,
[7] and [8]. Most of these works utilize the cost-benefit optimizing idea of Knapsack model to
develop cache management schemes.

It is worth noting that, unlike hard disk storage space, cache’s internal main memory is still a
limited resource that must be managed wisely [9]. Accordingly, there is another trend in caching
technology which provides larger cache capacity (hereafter, cache capacity refers to its internal
main memory) to support more concurrent users: cluster-based design for web application server
(e.g., [10], [11], [12]). With this design, a set of caches are grouped into a loosely coupled cluster
to solve some common issues such as capacity, availability, and performance. When clustered,
cache’s capacity increases linearly and the number of cacheable missed requests sent to the Web
application server is reduced accordingly. The impact of an individual cache node failure in the
cluster on the site availability and performance is also reduced considerably. This Web cache
cluster architecture is represented in Figure 2, in which a load balancer utilizes the inherent
locality of the requests and an adaptive scheme to tune the load allocated to each node in the
cluster based on that node’s capability. Some leading companies also propose similar commercial
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solutions, such as Microsoft Internet Security and Acceleration Server with Cache Array Routing
Protocol, IBM Web Traffic Express proxy servers with Network Dispatcher, Oracle9iAS Web
Cache Cluster, Cisco Cache/Content Engine, and so on.

In short, our study was motivated by problems arising in practice and trends in cluster
caching. Most of the previous works required or assumed that all nodes in the cluster are
symmetric with an equal chance to serve any incoming request. We would like to relax these
assumptions and propose a more general solution. Also we want to consider the nonhomogeneity
of the content properties together with the request pattern so as to maximize the utilization of
the valuable cache capacity.

We first study how to efficiently place/replace cache contents by accurately monitoring the
properties of contents, i.e., whether to cache a content, and if we do that, which cluster node
to place it so that the system performance is optimized? Furthermore, based on the prior
knowledge about the requests arrival pattern, contents properties, and the cache contents place-
ment/replacement scheme, we develop a routing algorithm to determine how to direct an arrival
request by efficiently coordinating the cluster nodes.

The remainder of the paper is organized as follows. In the next section, we introduce our
Web cache cluster model. The content placment/replacement schemes are discussed based on
the Knapsack model in section 3. In Section 4, we propose a weighted load balancing algorithm,
by which we can design a smart load-balancer to determine how to direct an arrival request
to a cluster node. Extensive simulations have been carried out to evaluate the performance of
the algorithms. These simulation results are presented and discussed in section 5. Section 6
summarizes the paper.

2 Model Description

As a reverse proxy, our cache cluster is dedicated to a single or a set of original Web server
systems. The model consists of a set of cacheable contents N = {1, 2, ..., n}, and a set of caches
M = {1, 2, ...,m}, as illustrated in Figure 2. For convenience, we introduce some notation below.
More detailed descriptions will be presented when they are used.

Cj capacity of cache j, j ∈ M ,

λ total system requests arrival rate,

µ0 service rate of back-end server,

λ0 requests arrival rate of the back-end server,

µj service rate of the cache j, j ∈ M ,
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λj requests arrival rate of the cache j, we have λ =
∑
j∈M

λj ,

Oj set of all contents currently in the cache j, j ∈ M ,

w forwarding cost per unit of time in the cache cluster,

Ri retrieval cost of the requested content i from the back-end server,

Si size of the content i, i ∈ N ,

pi “profit" from serving the content i, i ∈ N ,

Pn(i) probability that an arriving request is made for the content i, i ∈ N , given that there
are n contents in N .

We formulate the cache cluster content placement/replacement problem as a Multiple-Knapsack
problem (MKP) with an objective of maximizing the total “profit" by placing the most “valuable"
contents in the available caches:

Maximize

n∑
i=1

m∑
j=1

pixij , (1)

subject to,

n∑
i=1

Sixij ≤ Cj , j ∈ M, i ∈ N, (2)

where

xij =

{
1, object i is placed in cache j.
0, otherwise.

3 Content Placement/Replacement Schemes

The cache cluster content placement/replacement scheme specifies the contents in caches to
achieve the specific performance objective. At each decision epoch, the following actions are
carried out:

1. initiation, preparing the initial cacheable contents,

2. update the cache contents when cache hit ratio is lower than a preset threshold value,

3. or update the cache contents when a hit miss occurs.

We can achieve different specific objective by specifying appropriate pi in the equation (1).
For example,

1. when pi = Pn(i), the objective is to maximize the cache hit ratio,

2. when pi = Pn(i)Si, the objective is to maximize the byte hit ratio,

3. when pi = Pn(i)Ri, the objective is to minimize the retrieval cost.

The Knapsack problem is known to be NP-hard. However, there exist fast heuristics with
good performance records. In the following subsections, we discuss how different cache manage-
ment methodologies are applied in different cases.
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3.1 As many contents in cache as possible (AMAP)

In this case, a cache cluster is regarded as a pure Multiple-Knapsack. We follow the principle
of placing as many contents in caches as possible to effectively utilize the capacity of the whole
cluster. Consequently we need to add one more constraint in addition to (2):

m∑
j=1

xij ≤ 1, i ∈ N. (3)

This constraint guarantees that no content would be cached redundantly. It is a reasonable
consideration when the contents space is huge while the cluster capacity is limited.

[13] present an approximate dynamic programming (ADP) approach for the multidimensional
Knapsack problem that produces near optimal solutions efficiently. We apply their adaptive fix-
ing heuristic to solve our cluster content placement/replacement problem. Our computational
evidence suggests that the ADP-based heuristic is an attractive methodology that usually gen-
erates good quality solutions in reasonable time.

3.2 Popular contents replication and hit ratio threshold (Threshold value)

In this case, we aim at achieving a high availability of the most popular contents on condition
that a certain level of hit ratio is guaranteed.

Some prior knowledge of the Web request pattern can facilitate Web cache resource planning
and cache hierarchy design, and help us to predict the most popular contents. It has been shown
that the Web page request follows a Zipf-like distribution (see [14]). Following this result, we rank
all the pages in order of their popularity where page i is the i’ th most popular page. Suppose
that the number of contents in the system is n, the probability that an arriving request is made
for page i is approximated by

Pn(i) =
Ω

iα
, (4)

where Ω =

(
n∑

i=1

1
iα

)−1

and α is the Zipf parameter determined by the system property.

If the top k most popular contents can guarantee a certain level of hit ratio, we only place
these top k most popular contents in caches. If there are extra free space, we duplicate these
contents in caches sequentially until there are no more free space in the cluster. Let Pth be a
threshold value for hit ratio, then k is determined by the formula below:

k = arg inf
l∈N

∑l
i=1 Pn(i) ≥ Pth.

With this replication caching scheme, the more popular contents are cached redundantly and
higher hit ratio can be achieved at any single node. At the same time, a high availability of
popular contents can still be maintained when any individual node fails. Due to the replication
of popular contents, the tradeoff is less effective usage of the combined capacity of the whole
cluster.

3.3 Web contents space partitioning (Partition)

In a cache cluster, cache members may not be identical and have different capabilities in deal-
ing with the arrival requests. Capability (capacity, processing power, bandwidth, etc.) represents
a member’s potential contribution to the cluster.

In this case, we follow [10] to partition Web contents space based on members’ capability, as
shown in Figure 3. Each cache is assigned to a certain part of the Web contents. Consequently,
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the MKP problem (1) reduces to multiple single-Knapsack problems with cache j being in charge
of the contents subset Nj , Nj ⊆ N .

A well-known Knapsack problem solution method is the Greedy heuristic, which selects ob-
jects for inclusion in the knapsack using the “density" of object as the criterion to be greedy
upon. Let dij = pij/Sij be the density of content ij , ij ∈ Nj . We set xij = 0 for all ij that
satisfies Sij > Cj , and then arrange the remaining contents in decreasing order of density from
top to bottom. Starting from the top, the Greedy heuristic sets xij = 1 as it goes down until the
cache capacity Cj is reached. At each stage, if the next content cannot be included in the cache
because its size exceeds the remaining capacity, xij is set to 0 for that content and the process
continues with the contents below it. The process terminates either when the cache capacity is
used up (in this case, xij = 0 for all contents below the current one), or when all the contents
have been examined in this way.

In the simulation section, we will compare the performance of these three schemes: placing
as many contents in caches as possible, threshold value for hit ratio and replication for popular
contents, and partitioning of Web contents based on caches’ capabilities under different parameter
settings.

4 Weighted Load Balancing (WLB) Routing Algorithm

Cache clustering introduces a new problem: When a browser requests a particular content, to
which cache in the cache cluster should the request be directed? How do we match an incoming
request with the cache best able to respond?

Content-aware routing working at application layer certainly can increase the cache hit ratio.
But inspecting every incoming HTTP request would increase the system delay, so that the
load-balancer may easily become a bottleneck itself and slow down the entire system. Thus,
the load-balancer should be kept as “light-weight” and simple as possible to avoid introducing
new vulnerabilities into the system (system is only as secure as its weakest component). So
in designing our load-balancer, we should consider the system response time and the cache hit
ration simultaneously. We want it to work at transport layer and focus on forwarding the data
at maximal speed without inspecting every incoming HTTP request, while still guarantees an
acceptable cache hit performance.

4.1 The dynamic routing model

When a new request arrives and is assigned to cache j, cache j will be associated with an
expected cost function F (j) for handling the request(s). We want to find a suboptimal and easy
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implemented routing strategy to determine which cache to serve the new arrival request so that
the cluster-wide total expected cost is minimized.

In general, serving a request directly from Web cache cluster, i.e., a cache hit, is significantly
faster than forwarding the request to the back-end server for generation. In the cache cluster,
we also assume that the network bandwidth between peer caches is large and network latency
is low, and thus retrieving a cached content from a peer cache is also significantly faster than
getting the same content from the back-end server. We denote as w the forwarding cost per unit
time in the cache cluster.

There are three possible ways for an arriving request to be served when routed to a cache:
(1) the cache contains the requested content and serves the request immediately; (2) the cache
does not contain the requested content, but another cache in the cluster contains the content
and serves the request; (3) the content is not cached and the request is eventually routed to the
back-end server. For the cases (1) and (3), the cost associated with routing the request to any
cache is the same. Thus, the cost difference only lies in the forwarding cost in the cluster when
the requested content is not cached in the assigned cache but is cached in the other node(s) in
the cluster.

From a request’s “viewpoint", the routing decision could be determined by the expected cost
of sending the request to a cache. i.e. we should direct each arriving request to the queue with
the minimum expected waiting cost. Therefore we need to find l = arg min

j∈M
F (j). Such a policy

minimizes each arriving request’s individual expected waiting cost as well as the long-run system
waiting cost [15].

4.2 WLB routing algorithm

We assume that the request inter-arrival times and service times are all exponential. Let λj

and µj denote the request arrival rate and the service rate at cache j, respectively. Let Oj denote
the set of all contents currently in the cache j and kj denote the number of outstanding requests

waiting at the cache j. p(i /∈ Oh, i ∈
m∪
v=1

Ov) denotes the probability that the request content i

is not in the cache h but is in the cluster.
Based on the above notation, assumptions and analysis, we need to compare two arbitrary

decisions h and l. We have

F (h)− F (l) =
khw

µh − λh

n∑
i=1

pn(i)p(i /∈ Oh, i ∈
m∪
v=1

Ov)−
klw

µl − λl

n∑
i=1

pn(i)p(i /∈ Ol, i ∈
m∪
v=1

Ov) ,

where

p(i /∈ Oh, i ∈
m∪
v=1

Ov) =

m∑
j=1

∑
e∈Oj

pn(e)−
∑

e∈Oh

pn(e)

m∑
j=1

∑
e∈Oj

pn(e)

.

The two terms in the right-hand side of the equation represent the forwarding costs when the
requested content is not cached in the assigned cache h (l) but is cached in the other node(s) in the
cluster, respectively. The router should direct the arriving request to cache l if F (h)−F (l) > 0,
or to cache h otherwise. Thus, we have the following heuristic routing policy:

Rule: when a request arrives, the router directs it to the server l if

l = argmin
j

{ kj
µj − λj

P [ the requested file is in another cache instead of cache j ]
}
.
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The essence of this WLB algorithm is that the queue length kj is weighted by the probability
that the cache does not have the target content and the service capability. The router directs each
arrival request to the cache with the lightest effective workload. This WLB routing algorithm
makes use of the information related to the cache (it’s service capability and workload) and the
property of the content (the probability that a request can be satisfied in one cache). Moreover,
this algorithm can be easily extended to implement Web server cluster. Since each Web server
can satisfy all of the requests, it is natural for us to utilize a pure load balancing policy to
guarantee the Web server cluster’s performance.

5 Performance Analysis

In this section we compare the performances of different caching schemes. With the WLB
arrival request routing algorithm, we first compare performance of LRU scheme with our proposed
three new content placement/replacement schemes based on the Knapsack model:

1. placing as many contents in caches as possible (AMAP scheme, see Section 4.1),

2. placing only contents with popularity values higher than a threshold value in caches (Thresh-
old Value scheme, see Section 4.2),

3. partitioning of contents based on caches’ capabilities (Partition Scheme, see Section 4.3).

Secondly, we compare the performance of the WLB algorithm with the following two routing
algorithms under the threshold value content placement/replacement scheme:

1. Pure Load Balancing (PLB) Algorithm. With this algorithm, a request is directed to the
server with the shortest queue length;

2. Round-Robin (RR) Algorithm. A request is directed to the server next to the server which
received the previous request.

Using simulation, the average response time (ART), cache hit ratio (CHR), and cache cluster
hit ratio (CCHR), the ratio between the total requests and the requests are not served rightly by
the assigned caches but by other cache in the cluster, of these algorithms have been compared
over following parameters setting:

1. size rate, the ratio of cache cluster size vs contents total size;

2. ρ, the ratio of request arrival rate vs the cache cluster service rate. This factor indicates
the level of system’s workload;

3. cache types, we assumed that the caches can be all identical, or be divided into two groups
with different capabilities (in terms of service rate, capacity, etc), or all be different in
capability.

5.1 Model-driven simulation

The primary motivation for performing model-driven simulation is to understand the effect
of different schemes on cache cluster content management. In the model-driven simulation ex-
periment, the arrival requests follow a poisson stream with rate λ. The target content of the
request has Zipf-like frequency distribution with the Zipf parameter α. Generally, without spec-
ifying otherwise, the default settings are λ = 0.3, µ0 = 0.05, µj = 0.045, m = 10 (i.e. there
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are 10 caches in the cluster). Hence the ρ = 0.6 (this means the system is of moderate level of
workload). The size rate equals 0.5, the Zipf parameter α = 0.8. We use 103 contents of sizes
uniformly distributed between 1 and 1000.

The ART, CHR, and CCHR are explored under different parameters combinations. The
results are presented in four sets of figures below. We now discuss the numerical results in detail.

Observation 1: Increasing cache cluster’s capacity can improve the system performances.
We observe the impact of varying the caches’ size on the system performances. From Figure 4
and Figure 5, ART is decreasing in cache cluster’s size, CHR and CCHR are increasing in cache
cluster’s size.

Observation 2: The threshold value scheme is more efficient when the cache cluster capacity
is scarce. The partition scheme is more efficient when cache cluster capacity is sufficient. We
compare the performances of different content placement/replacement schemes under different
situations aim to find which scheme is more appropriate for a certain situation. From Figure
4(a), it is noticed that when the cache cluster size is small (size rate < 0.6), the threshold value
scheme achieves shorter ART than other content placement/replacement schemes.

Observation 3: Better performance can be achieved by considering both node’s capability and
content’s property. With the threshold value content placement/replacement scheme, we compare
the performances of the WLB, PLB, and RR routing algorithms under different situations by
varying the setting of size rate, ρ, and cache cluster types. The simulation results (Figures 5)
suggest that the WLB has shorter ART, higher CHR and CCHR than PLB and RR algorithm
in most of the situations.
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Figure 4: Performances of content placement/replacement schemes with WLB algorithm

Of all the cases simulated, the average improvement in the ART achieved by the WLB is
2.56% compared with the PLB algorithm, and 13.96% compared with the RR algorithm.
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Figure 5: Performances of different routing algorithms with the threshold value scheme

5.2 Trace-driven simulation

We now present results from trace-driven simulations using real Web server’s traces, the
access log data of a Squid proxy server system which was in operation at HKUST in September
2012. The trace length is 409623 user accesses. We ran the trace-driven simulation for different
values of the cache cluster capacity by varying the size rate.

We first compare the performance of the following cache cluster management policies:

1. WLB routing algorithm with threshold value content placement/replacement scheme,

2. PLB routing algorithm with LRU content placement/replacement scheme,

3. RR routing algorithm with the LRU Value content placement/replacement scheme,

4. PLB routing algorithm with LFU content placement/replacement scheme,

5. RR routing algorithm with the LFU content placement/replacement scheme.

From Figure 6, we find that WLB algorithm with threshold value content placement/replace-
ment scheme achieves better performance than other combination policies significantly, especially
when the size rate is smaller. This observation validates the advantage of our Knapsack-based
cache cluster management scheme.

6 Conclusion

In this paper, based on the Knapsack model, we first propose three efficient placement/re-
placement schemes for content caching, and then develop a WLB routing algorithm working at
transport layer, which considers both of the node’s capability and content’s property, to deter-
mine how to direct an arrival request to the right node by efficiently coordinating the cluster
nodes.
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Figure 6: Performances of cache cluster management policies under Trace-driven Simulation

Extensive simulation results show that the WLB algorithm with the content replacement
scheme leads to satisfactory quality of service (shorter response time and higher cache hit ratio).
The simulation results also indicate that content placement/replacement scheme dominates the
system performance, and modeling the cache cluster into a multiple Knapsack problem is a good
way for us to study the content placement/replacement scheme. Furthermore, the simulation re-
sults point out which content placement/replacement scheme is more appropriate under different
situations.

In the future study, we plan to integrate the “admission control" and “request priority"
mechanisms into our Web cache cluster model with the objective to maximize the system reward.
We also expect to investigate the distributed data caching infrastructure over Internet and the
distributed resources optimization problems. Moreover, to consider how to organize the cluster
(e.g., finding out the optimal number of cache nodes in the cluster) will bring some insight in
cache cluster management.
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