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Abstract: In this paper, we design and evaluate a control system which, by using as
input RSSI measures, allows anticipatory movements of robotic arms decreasing idle
times at the CIMUBB Laboratory. Classical Log-Normal model, which relates the
strength of a signal received by a node with the distance at which the sender of the
signal is, was adopted. The hidden state of the system is determined by the Extended
Kalman filter which allows us to estimate the distance and the speed of pallets moving
over a closed-loop conveyor belt. From these estimates, remaining time in which the
pallet will get to a stopping point near the robot is determined. This information
is finally processed by a controller to determine the instant at which the robot must
operate and handle the pallet. Both, a Proportional-Integral and a Fuzzy controller,
were implemented and evaluated. Results show the feasibility of using wireless signals
to accomplish the described goal, with some practical restrictions.
Keywords: Anticipatory control, intelligent manufacturing, wireless sensor net-
works, computer applications, localization.

1 Introduction

In the last few years, Wireless Sensor Networks (WSNs) [1] have attracted the industrial
sector because of their many advantages such as low power consumption, high flexibility and
scalability. Indeed, many application cases of WSNs, including factory and building automation,
inventory management, efficient irrigation, cattle tracking and many others, nowadays exist [2–6].
Moreover, latest works on new approaches, such as the “active products”and the “ambient intelli-
gence”, have considered WSNs as a supporting technology because they represent an efficient way
to embed autonomous intelligence, sensing and communication capabilities on multiple objects
(see, for example, works in [7–9]). On the other hand, localization and positioning of people,
machines, vehicles, and other entities moving in automated environments are highly desired ca-
pabilities in modern industries and services. Indeed, these capabilities may allow significant
improvements in process control, monitoring, tasks distribution, resources optimization, safety,
and others. In certain application cases, these can be achieved thanks to very accurate location
systems, such as the Global Positioning System (GPS) [10] and Ubisense [11]. In the matter of
WSNs in localization applications, these are interesting for many cases where, given the number
of units to identify, limitations of the technologies, and other factors, accurate solutions such
as GPS or UWB-based indoor location technologies represent too important energy, economic
or structural costs, or when we want to take advantage of the already installed wireless sens-
ing equipment. Here, in order to provide distance estimations, many works have applied the
Received Signal Strength Indicator (RSSI), because it is inherently provided by most of the
currently applied transceivers in wireless sensor nodes.

Copyright © 2006-2015 by CCC Publications
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In [12] we reported our first experiments on the 1-Dimensional (1-D) positioning of pallets
moving through a closed loop conveyor belt at the CIMUBB Laboratory [13]. We aimed to
minimize the idle time of a robot arm by integrating information about the position of the
pallets approaching its Flexible Manufacturing Cell (FMC). To do so, pallets carried WSNs
devices periodically sending messages to a receiver node near the robotic arm. RSSI traces were
captured and analyzed concluding that, even if this indicator presents high instabilities in closed
environments, this metric could be useful in our case study.

In this paper, we design and evaluate a control system which, by using RSSI measures as
input, allows anticipated movements of robotic arms decreasing idle times at the CIMUBB
Laboratory, continuing works in [12]. In the system, we adopted the classical Log-Normal model
which relates the strength of a signal received by a node with the distance at which the sender of
the signal is. The hidden state of the system is determined by the Extended Kalman filter which
allows us to estimate the distance and the speed of the objects of interest (the pallets). From
these estimates, remaining time in which the pallet will get to the stopping position near the
robot is determined. This information is finally processed by a controller to determine the instant
at which the robot must operate and manipulate the pallet. Both, a Proportional-Integral (PI)
controller and a fuzzy controller, were implemented and evaluated. Results show the feasibility of
using wireless signals to estimate distances in an indoor real-world manufacturing environment,
such as the CIMUBB Laboratory, considering some restrictions.

The remainder of this article is organized as follows: In Section 2 we present the CIMUBB
Laboratory, describing its physical configuration. In Section 3 we design the anticipatory control
system, describing the developed models, filtering, and controllers to be evaluated. In Section 4
we describe our test implementation, exposing performed tests and results in Section 5. Finally,
in Section 6 we conclude and give some future directions.

2 Case study: CIMUBB Laboratory

CIMUBB laboratory is a small scale fully automated Flexible Manufacturing System (FMS)
consisting of three flexible manufacturing cells. All of the flexible cells are integrated by means
of a closed loop conveyor belt through which several parts travel on pallets. The transportation
between the various cells and the conveyor belt is made by preprogrammed robotic arms. Due
to the way this system is implemented, most of the time, the robots do not have any information
about the position of the pallets to be handled. Indeed, only when a pallet passes over a
stop station (where magnetic sensors are located), the system knows the position of a particular
pallet. This produces a long-term significant idle time between the time the pallet is identified and
stopped until the moment the robot handles it (this is where this work acts). The implementation
adopted in this work is similar to the one in [12]. Pallets carrying WSNs devices periodically
send messages to a receiver node near the target FMC stop station. RSSI traces are collected and
processed by a control system. The system sends orders to the robotic arm, trying to match the
time of the pallet’s arrival with the end of a robot movement reaching an approaching position
that allows it to grasp the pallet with minimal waiting time.

Obviously, this is not the industrial solution. The simplicity of this system should enable us
to meet the same goal by simply placing sensors before the stop station. Our current research
subjects aim to provide positioning systems and anticipatory control (among others) in more
complex production environments. This work is a study that will allow us to determine (as has
been done in other work environment) how usable the RSSI is as a metric to estimate distance
and speed of moving objects in real-world indoor environments, initially, in a simple cyclic system
such as the CIMUBB laboratory.

Regarding the problem of using an RSSI-based location, our previous studies have resulted
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in the characterization of electromagnetic (EM) waves allowing to observe the manner in which
signals behave in this system. Now, it is necessary to characterize the behavior of the object
of interest (i.e., the pallets) at which we want to estimate distances. The behavior of a pallet
is given by the mathematical model of its position regarding time. Therefore, it is necessary to
know the technical details of the conveyor system. The conveyor is a closed loop conveyor system
made of metal. It is supported by pillars that rise the system 1 meter above the building’s floor.
Circulating pallets moving on the conveyor are dragged by a belt consisting of two plastic chains
running in parallel and driven by an AC motor. This rotates at a constant speed giving the
pallets a forwarding speed of 0.19[m/s] over straight lines, which decreases to 0.18[m/s] at the
corners. activated via a switch which makes it to operate independently from the FMS. The
location of the flexible cells, together with the dimensions of the conveyor belt, are shown in
Figure 1(a). In this work, we focused on the Machining FMC which is shown in Figure 1(b).
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Figure 1: Case study.

Now, knowing the conveyor’s geometric structure it is possible to model the path of the pallets
within the area of interest. The pallets path, over the area of interest, can be divided into five
sections, as shown in Figure 1(b): three of them, in which pallets perform straight movements
(sections 1, 3 and 5), and two for curved movements (sections 2 and 4). Thus, the position of a
pallet over time can be defined as:

−→r k =


−→r k−1 +

−→
V .∆T during straight

movements

R.
[
(cos (−ω.∆T + θ) + Pcenx) .̂i+ (sin (−ω.∆T + θ) + Pcenx) .ĵ

]
during curved
movements

(1)

were θ = arctan
(
Pk−1y−Pceny

Pk−1x−Pcenx

)
and ω =

∣∣∣−→V ∣∣∣
R . For both of cases, −→r and

−→
V represent the position

and velocity vectors of the pallet, respectively. The unit vectors i and j, take the direction
of the Cartesian reference system xy. ∆T is an increment in time. Thus, the equations give
the new position of the pallet at a determined time increment from its current position (rk−1).
Particularly, during curved movements, ω is the angular velocity of the pallet calculated from its
rapidity and the radius of the curve (R). The pallet’s position is reflected in the angle that has
about the center of rotation Pcen (see Figure 1(c)).

We established a reference system in the plane xy, with its origin at the bottom left of the
conveyor (end of Section 5). From this reference coordinate, various reference points are fixed in
order to mark the beginning and the end of each section of the path. Along with these references,
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the location of the data collector node is set. This point will serve as a reference point for distance
estimation. This node is located 24 centimeters from the stop station.

3 System design

The proposed “Anticipatory Control System”(ACS) will be in charge of detecting the ap-
proaching of a pallet to the manufacturing cell and estimate the time at which the robot must
act in anticipation of its arrival. The system estimates the proximity from available RSSI infor-
mation supplied by the collector node (a node located near the controlled robotic arm). These
values are calculated by the node upon receipt of datagrams sent by the wireless nodes located on
the pallets. These act as beacons regularly indicating their presence. The intensity with which
the collector gets beacons’ signals can be related to the distance at which pallets are through a
mathematical model describing their behavior. However, these signals are not free from inter-
ferences. Indeed, various factors affect the radio-frequency (RF) waves such as the composition
of the surroundings (walls, objects, etc.), the orientation of the transmitters, signals bouncing,
etc. From experiments, generated disturbances were observed and analyzed, observing that these
phenomena do not completely affect the tendency of the received signal regarding the studied
models. Then, it is necessary to develop the estimation system using a mathematical model that
approximates the EM waves path loss and an algorithm allowing noise filtering or the estimation
considering such alterations. For this task the Extended Kalman filter (EKF) is used as a tool.

Along with estimating the proximity of a pallet, the system handles the operation of the
SCORBOT-ER 9 robot manipulator and the control of the FMS’s conveyor belt. In addition,
we implemented an interface that allows a user to interact with the system. Figure 2 illustrates
a general view of the system, exposing the different components and interacting devices.

XBee Transmitter Xbee Receiver

SCORBOT-ER 9

PLC

User interface

Robot

Conveyor

ACS

Anticipatory

Control

System

Figure 2: ACS general scheme.

3.1 System model

One of the key aspects on the development of the ACS is to obtain a mathematical model for
path loss of the wireless signal, phenomenon related to the distance between the sender and the
receiver nodes. Such a system can be modeled considering it as a “gray-box system”because a
part of the dynamics of the RF signals is known, existing different prediction models. However,
many variables and interactions with the environment are unknown. One of the models used to
describe the propagation loss is the “Log-Normal Shadowing”, whose equation is given by:

PL(d)[dB] = PL(d0)[dB] + 10.γ. log10

(
d

d0

)
+Xσ[dB] (2)

wereXσ represents noise and interference as a zero-mean Gaussian random variable with standard
deviation σ. In order to find the value of power received by the receiver node, we must substract
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this attenuation to the transmission power of the signal Pt, so we have:

PLrcvd(d)[dBm] = Pt[dBm]− PL(d)[dB] = −10.γ. log10
(
d

d0

)
+
(
Pt − Pl(d0)

)
−Xσ (3)

A relationship between the received strength and the distance between the nodes can be
obtained by the propagation model . Along with this variable, it is also necessary to know the
speed with which the pallet approaches, thus we must find a relationship between the pallet’s
speed and its distance to the stop station. An alternative is the derivation of the speed value
from distance estimations, however we should consider that this value represents only a measure
of the distance change rate and not the actual speed of the pallet. Despite this, both of the
values are related, therefore it can be used as an indicator of how quick the pallet moves.

By derivation we obtain the instantaneous speed with which the pallet approaches: δd
δt = ν,

in this work, considered as a constant. This expression is discretized, obtaining the distance for
instant tk + 1:

d(tk + 1) = ν(tk)T + d(tk) (4)

Next, and in order to identify a discrete model parameters, a linear difference equation can
by used as y(t) + a1y(t− 1) + . . . + any(t− n) = b1u(t− 1) + . . . + bmu(t−m), where u(t) and
y(t) are the input and output, respectively, and an and bm are the system’s parameters. From
the last expression it is possible to determine the value of the next output solving the difference
equation for y(t) and predict the system’s output from the system’s observed measurements and
its parameters [14]. Considering a system of N equations and n unknowns, the estimated output
can be written as [14]:

Ŷ (N) =M(N).θ̂ (5)

where the variables have, respectively, the structures: Y (N) = [y(1) y(2) . . . y(N)]T , Ŷ (N) =
[ŷ(1) ŷ(2) . . . ŷ(N)]T , andM(N) = [m(1) m(2) . . . m(N)]T . In order to estimate the pa-
rameters of Equation 5, Least Squares method is used. The predictions made using estimated
parameters will have an associated error defined as E = Y (N)− Ŷ (N).Then,the Least Squares
method reduces this error by minimizing a functional which is a sum of squared errors, i.e.,
min

(
J(θ̂) = ET (N).E(N)

)
, with J(θ̂) =

∑N
K=1 e

2(k). In order to minimize the error, we must

have ∂J(θ̂)

∂θ̂
= 0. Developing for θ from previous equations, we obtain the following expression

for obtaining parameters which minimizes the prediction error that can be used to estimate
parameters of the propagation loss model :

θ̂ =
[
M(N)T .M(N)

]−1
.M(N)T .Y (N) (6)

Let us consider the propagation model in Equation 3. This can be developed to adopt the
structure of Equation 5, by doing:

PLrcvd(d) = −10.γ.G(tk) +W (7)

where G(tk) = log10

(
d(tk)
d

)
and W =

(
Pt− Pl(d0)

)
. For modeling purposes, the random

variable Xσ was considered as zero, obtaining a log-normal model. Finally, expressing Equation
7 in matrix form we have:

PLrcvd(d) =
[
G(tk) 1

]
.

[
−10.γ
W

]
(8)

In this way, the variables are: (1) The system output Y (N) : PLrcvd(d), (2) the measurements

vector M(N) :
[
G(tk) 1

]
, and (3) the parameters vector θ :

[
−10.γ
W

]
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In order to generate useful data for estimations, various experiments were performed. In these,
the pallets circulate in the conveyor while the robot takes one of the predetermined positions used
in previous experiments. These experiments are performed with each of the three transmitting
nodes adopted in this work (3 variants of the Digi’s XBee family, explained in Section 4). As
an example, Figure 3 illustrates the parameters estimation for a XBee wire antenna transmitter.
Table 1 presents estimated parameters for each of the used nodes.
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Figure 3: Parameter estimation for a XBee wire antenna transmitter case.

Table 1: Parameters of transmitter nodes.

Transmitter node Pt P l(1.5[m]) γ

XBee chip antenna 0[dBm] 59.156[dBm] 1.142
XBee wire antenna 0[dBm] 53.0017[dBm] 1.438
XBee Pro wire antenna 16[dBm] 51.376 1.065

The devices sampling time was set to 54[ms], however, the time observed during measurements
is not constant. This has a mean deviation of 82[ms] with a standard deviation of 34[ms].
Therefore, the sampling time used in the model will be estimated during the algorithm execution,
by the time difference between a RSSI measurement and the previous one. To summarize, the
model of the system is given by the following equations:

d(tk + 1) = v(tk)T + d(tk) (9)
v(tk + 1) = v(tk) (10)

PLrcvd(d) = −10.γ. log10
(
d(tk)

d0

)
+

(
Pt− Pl(d0)

)
(11)

3.2 Signal filtering

For this work the Extended Kalman Filter (EKF) is used. EKF is a variant of the traditional
Kalman filter that addresses the problem of estimating states in nonlinear systems. Let us
consider the nonlinear model of the process in a discrete-time state variable representation, i.e.,
representing the unknown state of the system as xk = f(xx−1, uk−1, vk−1), with known input
uk, and the observable output zk = h(xk, nk). vk and nk are random variables representing the
process and measurement noises, respectively. It is assumed that the distribution densities are
Gaussian and both vk and nk are random variables independent to each other, so we can define
p(xk−1|z1k−1) = N(Xk−1|k−1, Pk−1|k−1), p(vk−1) = N(O,Q), and p(nk) = N(O,R). However,
being a non-linear model, distribution densities p(xk|z1:k−1) and p(xk|z1:k) for next instant k
may not be Gaussian, therefore, they are approximated to a Gaussian density. At the densities
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and distribution of vk−1 and nk, Q and R are the covariance matrices of process disturbance and
measurement disturbance covariance, respectively [15]. So, the filter operation may be divided
into two stages:

1. Prediction. This stage generates a priori prediction of the state xk|k−1 = f(xk−1, uk, 0)

and the error covariance Pk|k−1 = F xk|−1.Pk−1.
(
F xk−1

)T
+ F vk−1.Qk−1.

(
F vk−1

)T , considering
all the information available at that time.

2. Correction. At this stage, previous estimates are corrected, then generating a pos-
teriori estimates of xk|k and Pk|k. For this, we calculate the Kalman gain as Kk =

Pk|k−1. (H
x
k )
T .

[
Hx
k .Pk|k−1. (H

x
k )
T +Hη

k .Rk.
(
Hη
k

)T ]−1
. This factor minimizes the error

covariance of the new state estimation. So, new estimates are calculated as xk|k =
xk|k−1 +Kk.

(
zk − h(xk|k−1, 0)

)
and Pk|k = (I −Kk.H

x
k ) .Pk|k − 1.

Matrices F xk−1, F
v
k−1, H

x
k and Hη

k are obtained as Jacobians of the system’s function and
of the output function, i.e., F xk−1 = ∂f

∂x

(
xk−1|k−1, uk−1, 0

)
, F vk−1 = ∂f

∂v

(
xk−1|k−1, uk−1, 0

)
, Hx

k =
∂h
∂x

(
xk|k−1, 0

)
, and Hη

k = ∂h
∂η

(
xk|k−1, 0

)
.

The EKF is a recursive algorithm. Therefore, the prediction and correction stages are ex-
ecuted in cycles while the algorithm is running. For more details about an EKF recursive
implementation see [16]. On the application of the filter to the developed system it is necessary
to obtain matrices F xk−1, F

v
k−1, H

x
k and Hη

k , with respect to the exposed model in Equations 9,
10 and 11. These are defined as:

F xk−1 =

∣∣∣∣∣∂f1∂v ∂f1
∂d

∂f2
∂v

∂f2
∂d

∣∣∣∣∣ =
∣∣∣∣∣
∂d(tk+1)
∂v(tk)

∂d(tk+1)
∂d(tk)

∂v(tk+1)
∂v(tk)

∂v(tk+1)
∂d(tk)

∣∣∣∣∣ =
∣∣∣∣∣T 1

1 0

∣∣∣∣∣ ; F vk−1 =
∂f

∂v
= I ;

Hx
k =

∣∣∂h
∂v

∂h
∂d

∣∣ = ∣∣∣∂PLrcvd(tk)
∂v(tk)

∂PLrcvd(tk)
∂d(tk)

∣∣∣ = ∣∣∣0 − 10.γ
d(tk). ln(10)

∣∣∣ ; Hη
k =

∂h

∂η
= I (12)

To initialize the algorithm it is necessary to designate initial values for the estimated states
matrix and the error covariance matrix. In case of xk|k−1, it is considered that during the system
startup the pallet is far from the stop station and outside the area of interest. The pallet’s initial
speed is considered as zero. For the case of the Pk|k−1 matrix, it is initialized to a small value
different but close to zero, because if the covariance is zero the filter will keep the last estimated
value without innovating.

Matrices of process perturbation covariance and measurement are assumed to be constant
although in practice this does not happen like that. Values of matrix Q related to the process,
are generally more difficult to obtain, but it is presumed that the variance values of the process
are low. Matrix R related to measurements can be predicted from the output observable values.
From experimentation, a standard deviation of the measurements less than 0.5[dBm] for the case
of the chip and wire antenna XBee nodes and less than 2.5[dBm] in the case of XBee Pro nodes, is
observed. However, these values, measured in a quasi-stationary regime (i.e. without movements
of the node-of-interest and by controlling as many environmental variables as possible), increase
in dynamic conditions reaching a deviation of 5[dBm]. Due to this instability in measurements,
an intermediate value for the deviation of 2[dBm] is considered. In this way, variances arbitrarily
selected for the process variables and measurements are σ2d = σ2v = 0.002 and σ2PLrcvd

. The

disturbance covariance matrices are Q =

∣∣∣∣∣0.002 0

0 0.002

∣∣∣∣∣ and R = 4.
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3.3 Estimating time of arrival

EKF, together with the discrete system model, allows the estimation of the hidden states of
the system. For our case, they will be the variables of distance (between the pallet and the stop
station) and the rate at which this changes. Estimating the time at which the manipulator robot
must act only with distance information may be appropriate under the studied environment which
considers a constant movement speed. However, alterations on this parameter would trigger an
erroneous reaction of the system. Therefore, it is necessary to determine the instant in which
the manipulator operates by considering both the distance and speed of the pallet estimations.

Estimates of distance and speed can be used together to determine the time a pallet will take
to get to the target stop station. We name this estimate time-of-arrival.

The preceding variable modeling is made from both experimental data and data obtained
through the pallet’s path simulation.

By Matlab’s surface fitting toolbox we obtain the surface that best fits the available data.
This is a 2-order polynomial defined as:

Tarrival(tk) = p00 + p10.d(tk) + p01.v(tk) + p20.d
2(tk) + p11.d(tk).v(tk) + p02.v

2(tk) (13)

where Tarrival is the time-of-arrival and d and v are the pallet’s distance and speed respectively.
Surface parameters pxx are obtained for each of the wireless modules used in the pallets.

3.4 System controller

The instant at which the manipulator robot must act is determined by the time of arrival of
the target pallet. The operation of the robot must be done in the instant in which the time the
robot employs in executing the approaching routine equals the time of the pallet’s arrival. To
achieve the above consideration two controllers were implemented.

The first control is an open-loop PI. This was chosen due to the lack of feedback on the
system. Its implementation is performed from the discretization of the PI controller given by
y(tk) = Kc (e(tk)− e(tk − 1)) + Kc

Ti
Tse(tk) + y(tk − 1), where y(k) is the output and e(k) is

the calculated error between the controller input and a given reference for a time k, and Kp

and Ki are the proportional and integral gains, respectively. The implementation is recursively
performed using as a reference the time of the robot operation (TOP_Robot) and the time of arrival
of the pallet as input (TArrival). Thus the controller was modeled as follows:

e(tk) = TOP_Robot − TArrival ; a(k) = Kp.e(tk) ; b(k) = Ki.e(k) (14)

y(k) = a(k)− a(k − 1) + b(k) + y(k − 1) (15)
a(k − 1) = a(k) (16)
y(k − 1) = y(k) (17)

During algorithm’s operation, Equation 15 represents an update of the controller output.
Equations 16 and 17 are updates of the variables.

The second implemented control was a Fuzzy logic controller that is based on the fuzzy sets
theory developed by Lotfi A. Zadeh [17]. This kind of logic intends to represent human logical
thinking allowing a system to work with information that is not accurate (e.g., input sentence
“the pallet is very close”). The truth degree of a variable x to a “linguistic variable”(e.g., “The
pallet is far”) is determined by a membership function that takes truth values in the 0 to 1
range. The linguistic variable or label is associated with a fuzzy set which can be defined as:
A = {x, uA(x)|x ∈ Ut}, were uA(x) is the membership function of x and U is the universe
of discourse or the exact values that can take the variable [18]. The membership function can



710 J.A. Silva-Faundez, C. Duran-Faundez, P. Melin, C. Aguilera

adopt many geometries, such as triangular, trapezoidal, etc. The components of the controller
are shown in Figure 4(a), where the Fuzzification stage converts crisp inputs or real-world values
to a membership degree of a linguistic variable. Later, this variable is evaluated by a set of rules
of type: IF {set of conditions to meet} Then {set of consequences}. Finally, the obtained fuzzy
result must undergo a reverse process or Defuzzification in order to obtain a crisp output or an
output with useful values for the process, again, using a membership function for the output
values.

Fuzzy logic controller

Fuzzy rule base

Fuzzy inference

Fuzzification Defuzzification

Fuzzy input Fuzzy output

Crisp input Crisp output
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Figure 4: (a) Components of a fuzzy logic controller and (b) the implemented fuzzification (top)
and defuzzification (bottom) membership functions.

As in the PI controller, for the fuzzy controller design only one input was considered. This
input is the tracking error e(tk) described above. An input range for this variable from 0 to
10 [sec] is established. Besides this, three linguistic variables are defined within the established
universe of discourse, “Far ”, “Medium”and “Close”. On the other hand, for the Deffuzification
stage, three types of linguistic variables are defined: “Wait”, “Prepare”and “Capture”. The
set universe of discourse corresponds to the range 0-12. Figure 4(b) shows the implemented
membership functions.

For the fuzzy inference stage the following set of rules are implemented: (1) If e(tk) is
“Far ”Then Output is “Wait”, (2) If e(tk) is “Medium”Then Output is “Prepare”, and (3) If
e(tk) is “Close”Then Output is “Capture”.

Different controller parameters have been selected from our experience operating the system.
The adjustment of membership functions was performed by various assays in the system.

4 Implementation

Pallets moving on the conveyor belt transport wireless beacon nodes periodically sending data
packets to a collector node located near the stop station. The collector is directly connected
to a Personal Computer (PC) executing the control software. Three types of wireless nodes
corresponding to the Digi’s XBee family [19] were used in this work. They are: a XBee Chip
Antenna, a XBee Wire Antenna, and a XBee Pro Wire Antenna, all from the product’s 1 Series.
These components are based on the IEEE 802.15.4, and are mainly differentiated by hardware
features, such as type of antenna and supported power outputs. In our experiments, the three
different XBee modules were tested as beacon nodes. A XBee Chip Antenna module was used
as the collector. Nodes main parameters are detailed in Table 2. The rest of the parameters are
set to be default parameters recommended by the manufacturer.

Both the robotic arm and the conveyor system are controlled by the ACS software via serial
ports. These elements only execute predetermined tasks. The robot has its own operating
system. This manages its resources and provides a programming interface for which the user
has a set of available functions and operations to work with the robot. Three routines were
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Table 2: XBee modules configuration.

Collector node Beacon nodes
Device XBee Chip Antenna XBee Wire/Chip Antenna - XBee Pro
IEEE 802.15.4 Role Coordinator End device
Interface speed 57600[bps]
Sampling rate - 54[ms]
Operation mode API
Power output 0[dbm] 0[dbm]-16[dbm]
Power source USB Batteries

programmed in its controller:
(1) Standby: places the robot in one of four positions previously recorded.
(2) Approaching target: moves the robot from any position to a position near the point of
capture of the pallet (over the stop station).
(3) Target capture: allows the robot handling the template carrying the target pallet.

The conveyor system is controlled by a PLC with a resident program. This executes the
pallet control services at the stop stations (stop, release, or identify a pallet over a stop station).
The services are provided via serial communication software to the ACS. This must extract
the relevant information from the data frames sent by the PLC and to generate the necessary
commands to perform the required actions.

On the PC, the core of the ACS is a Matlab-based software implementing the filtering and
control routines, and serial i/o and user interfacing. The ACS software aims to estimate the
proximity of the objects of interest (the pallets) and to determine the instant in which the
system must generate the necessary commands to anticipate the arrival of the pallet, using as
input only RSSI traces. The software components are summarized in Figure 5a.

The operations sequence cyclically executes the following steps: (1) devices reading, (2)
estimation algorithm execution, and (3) device status update. This sequence is repeated until
achieving the target pallet capture. The operating cycle of the program is initiated by a user
requirement. The software starts the cycle by reading the RSSI value and the transmitting node
id, from the assigned serial port (these data are delivered by a C++-based program who actually
reads and decodes packets from the XBee collector). Then, the data are filtered before being
processed by the estimation algorithm. Once the arriving time is estimated, its value is entered
to the system controller. If the estimated time does not equal the reference time, the current
system’s output state remains and the cycle is repeated. On the contrary, the controller gives
the order to start the operations of approaching and capturing of the target pallet.

To summarize, Figure 5b illustrates the implemented algorithm stages.

5 Tests and Results

At the begging of the system’s integration stage, parameters are adjusted in order to achieve
a proper system’s operation. System calibration is performed by contrasting experimentally ob-
tained information and simulations of system’s models. For obtaining real data from the system,
we registered RSSI values for each node considering different positions of the manipulator robot
(as discussed in previous section). With these data we simulate the behavior of the estimation and
control algorithm under adjusted system parameters. These parameters are: Reference power
PL(d0), Path loss exponent γ, Standard deviation of the process disturbance σpp, and Standard
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Figure 5: ACS (a) software components and (b) general scheme.

deviation of measurement disturbance σpm. System parameters calibration was performed by
the Greedy algorithm [20]. Table 3 shows the new parameters obtained.

Table 3: Adjusted system parameters.

Node Pt P l(1.5[m]) γ σpp σpm
XBee chip antenna 0[dBm] 59.490[dBm] 1.949 0.0034 4.090
XBee wire antenna 0[dBm] 53.838[dBm] 3.186 0.0025 4.818
XBee Pro wire antenna 16[dBm] 52.160[dBm] 2.720 0.0023 6.0

After calibration, we performed an execution test in order to verify the estimation algorithm
parameters for each beacon node. During this test, pallets are not stopped at the stop stations.
Figure 6(a) shows registered RSSI values for each node. Figure 6(b) and 6(c) show estimations
of time-of-arrival and distance for each node.
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Figure 6: Estimation with calibrated parameters for À XBee A. Chip, Á XBee A. Wire and Â XBee Pro A.
Wire. In (a), input captured data. In (b) and (c) show r real arriving time and distance, respectively, and
estimations for the three nodes À XBee A. Chip, Á XBee A. Wire and Â XBee Pro A. Wire.

We observe that the best distance estimate is performed on the first half of the workspace
represented by the first 21 seconds in Figure 6(c). In Here, the pallet approaches the stop station
reaching the shortest distance between the transmitter and the collector nodes (approximately
at second 21). Then, the pallet moves away.
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Now, in order to evaluate the performance of the ACS, several tests under different operating
conditions were conducted. The objectives of these tests are: (1) to compare system performance
for different transmitting nodes, (2) to compare performance of the system under different ini-
tializations of the error covariance matrix, (3) to measure overall system performance, and (4)
to observe the effect of sampling rate variations in the system estimates. To accomplish these
objectives, we performed both an individual and a global performance tests, and a test to ob-
serve the degradation of the estimation due to sampling rate variations. In each test estimates
of distance, time-of-arrival and time of capture of the pallet are recorded. This last value is
defined as the time between the arrival of the pallet to the stop station and the time the robot
takes to get the catching position. A good result for the capture time is a near zero (seconds)
value. The performance metrics of the system are: the Distance Absolute Error Estimation, the
Time-of-Arrival Absolute Error Estimation, and the Absolute Capture Time Absolute Error.

In the individual performance test, we compare ACS performance considering the use of
different beacon nodes. Firstly, individual beacons are located on a template, then we let them
move over the conveyor. Individual tests are performed with the three types of XBee nodes and
different initial positions of the robotic arm. In each case, ACS executes a full cycle allowing the
robot to capture the template. Along with this, we want to observe the effect of the initialization
of the error covariance matrix (P ). For this, we executed two versions of the estimation algorithm:
(Version A) the original version of the algorithm, initializing the error covariance matrix to a near
zero value, modifying its value as tests succeed, and (Version B) a modified algorithm, where the
error covariance matrix is initialized with a default value. This value is obtained after successive
runs of the original algorithm. During each execution of the experiment the value of the array
is initialized to this value. Average results for these tests are shown in Figure 7. In the global
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Figure 7: Average results for the individual performance tests with the tree wireless nodes À XBee Antenna
Chip, Á XBee Antenna Wire and Â XBee Pro Antenna Wire. In (a), Absolute Error of the Estimated Distance
with both versions of the filter A (left) and B (right). In (a), Absolute Error of the Estimated Time-of-Arrival
with both versions of the filter A (left) and B (right). In (c), Absolute Error of the Capturing Time with both
versions of the filter A (left) and B (right).

performance test, we observe the performance of the system under normal operating conditions.
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This involves capturing any of the three available pallets on the system from a random position
as the starting point for the robotic arm. For this test, we use the three adopted types of nodes
as beacons transmitting simultaneously. We compare the performance of each node individually
with the performance of the system to a random selection of the target node. The selection of
the initial position of the robot is performed at random for each test. As in the previous test, we
observe the effect of the P matrix initialization. For each configuration of the experiment 10 tests
are performed in a row. Average results for these tests are shown in Figure 8. Finally, we study
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(b), Absolute error of the estimated distance and of the estimated time-of-arrival for both of the filter versions A
and B. In (c) and (d), the absolute error of the capturing time for both filter version A and B, respectively.

the degradation of the estimation produced by reductions on the sampling rate. This test is
performed by using the same Beacon node (a XBee Chip Antenna) while the manipulator robot
adopts a same initial position for each of the experiments. The experiments consider increases
100[ms] in the given sampling rate from an initial value of 100[ms] and a final test value of
1100[ms]. Average results for these tests are shown in Figure 9(a), 9(b), and 9(c).
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the absolute capture time shows the absolute error of the capturing time with respect to the sampling time. In
(d) the effect on the sampling time of increasing the number of transmitting nodes.

From the results, we can observe a system performance decline when including a larger
number of simultaneously operating transmitter nodes (see Figures 7(a) and 8(a)). Note that
the operation mode of the transmitting nodes causes dispute over the transmission medium. The
information received from these nodes is at random, without an order in the delivery. This causes
instability and decrease in the RSSI sample rate, resulting in an increased error in the estimation
of distance which grows in a 18.3 %. Figure 9(d) illustrates this effect. The figure shows the
sampling rate for XBee Chip Antenna nodes operating independently and the rate obtained in
a scenario with 3 nodes transmitting simultaneously.

Regarding the performance of the system, this is maintained within acceptable parameters by
using only one node Beacon, observing errors in distance estimation and in the time-of-arrival of
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25[cm] and 1.5[s] around, respectively. This allows the system to meet the design requirements
by obtaining a capture time of less than 3[s] (2[s] average).

The last performed test allows us to determine the maximum sampling rate supported by the
system. This is 600[ms] for the case of an individual node. In case of using a larger number of
nodes this rate should allow increasing the number of nodes without significantly affecting the
system performance. However, a way to synchronize the senders to the collector node is necessary.
A sampling time greater than the determined one can cause the system not to properly determine
the area of operation of the controller. This affects the pallet capturing algorithm, causing it not
to stop in a timely manner so the pallet flows without stopping at the corresponding stop station
and must wait for a new approach to perform the capture. This is observed in Figure 9(c) in
which higher values to the determined one produces excessive time increases in pallet capture.
Moreover, results show that there is a considerable improvement in the obtained results when
initializing the error covariance matrix to a preset value (Version B of the algorithm). In general,
we observe a decrease in errors estimates close to 8%. In the case of capture time we observe an
improvement of 10% by using the version B of the algorithm. Regarding the performance of the
controllers employed in the system, better results are observed when using the fuzzy controller
in all of the implemented tests. The fuzzy controller has reduced capture times compared to PI
controller by 27% in the individual performance test and 10% in the overall performance test.

Finally, we observe the performance of the system considering the three employed nodes.
From these, the best results, considering the best estimate of time-of-arrival and time of capture
of the pallet, are obtained by applying the XBee Wire Antenna module. This is observed in
Figures 7(b) and 7(c).

6 Conclusions and Future Works

This paper presents the development and implementation of a proposed control scheme which
is able to trigger an anticipatory control action. For the above, RSSI measurement from a wireless
sensor mounted in a moving pallet are used along with an EFK in order to estimate the speed
and distance of the moving pallet relative to a stop station.

The control scheme is proposed for short distance in order to avoid many factors which affect
the signals behavior (bouncing, multipath, etc.). Specifically for a 2.25 m radius case the control
scheme is able to estimate the time of arrival of the pallet traveling at 0.19 m/s and to generate
the necessary control action (for the case presented the movements of a robotic arm) before
it reaches the stop point. Due to the lack of a feedback loop for the robotic arm used, a PI
and Fuzzy controller are implemented, obtaining a better response by the fuzzy strategy with a
54[ms] sampling time.

Due to RSSI instabilities it is necessary to avoid significant changes in the environment in
order to estimate correctly speed and position of the pallet. Future work will focus in the RSSI
instabilities compensation.
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