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Abstract: In this paper, new sufficient conditions for synchronization of non-
identical discrete-time hyperchaotic maps is proposed for hyperchaotic cryptosystem
communication. They use aggregation techniques for stability study associated to
the Benrejeb arrow form matrix for system description. In addition, suitable choice
of outputs feedback brings the problem of synchronization of two non-identical hy-
perchaotic maps to two identical hyperchaotic maps one. The considered case of
synchronization of third order hyperchaotic Hénon-Baier Klein maps shows the ef-
ficiency of the proposed approach to recover secure transmission of an image and a
text.
Keywords: synchronization, discrete-time hyperchaotic maps, aggregation tech-
nique, arrow form matrix, secure communication.

1 Introduction

During the last decades, the problem of the synchronization of chaotic and hyperchaotic
maps has gained a significant attention due to its potential applications, especially in the light
of its application in secure communication area. Synchronization phenomena of chaotic systems
makes the trajectories of the master system and the slave ones achieving synchronism after a
transition time, starting from different initial conditions. Many effective methods have already
been successfully applied to the problem since Pecora and Carrolls research works [1]. Recently,
with the development of nonlinear control theory, various synchronization schemes have been
proposed such as: adaptive control [3], observer-based control [13, 15], backstepping control [4],
active control [5] or nonlinear control [14]. However, most of the methods, mentioned above,
are designed to synchronize two identical chaotic systems. In this paper, the proposed synchro-
nization of two non-identical discrete-time chaotic systems which is well adapted with the secure
communication is based on establishing new output feedback stabilizing conditions. With the use
of the Borne and Gentina practical criterion for stability study [7, 8] associated to the Benrejeb
arrow form matrix for system description [6, 10, 11], this approach constitutes an extension of
previous results on synchronization studies of identical discrete-time chaotic processes [14, 15].
In Section 2, sufficient conditions leading to conclude to the synchronization of non-identical
discrete-time hyperchaotic maps are given for a secure communication scheme combining con-
ventional cryptographic methods and synchronization of discrete-time hyperchaotic systems. In
section 3, the proposed design of a complete synchronous output feedback stabilizing controller
of two non-identical Baier-Klein map-Hénon maps is applied with success for secure transmission
of signals as an image and a text.

Copyright © 2006-2015 by CCC Publications
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2 Design of observer synchronization for non-identical chaotic
maps using single channel transmission

In this section, the discrete-time hyperchaotic secure communication, called hyperchaotic
cryptosystem, figure 1, shows the efficiency of the proposed non-identical hyperchaotic approach
synchronization. This cryptosystem is a combination of a classical cryptographic technique and
of observer-based synchronization, allowing the receiver to recover the information transmission
without considering noise such that: ym(k) = ys(k).
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Figure 1: Block diagram of hyperchaotic communication based on cryptography

The goal is to synchronize, at the same time, a master and a slave maps by designing a suitable
output control law.
Consider an n-dimensional master hyperchaotic system, described as follows:

xm (k + 1) = Axm (k) + f (xm (k)) + E + δNV (k)

ym (k) = Cxm (k) + δV (k)
(1)

N = [n1 . . . nq]
T is a constant vector characterizing the way to mix the ciphertext V (k) with

the chaotic signal xm(k), δ a scaling factor chosen to allow the term δNV (k) to belong to a
compatible range with respect to the minimum and the maximum bounds of states variables of
master and slave chaotic signals [19]
Let consider a slave system in the receiver side described as:

xs (k + 1) = A1xs (k) + f1 (xs (k)) + E1 +Bu (k)

ys (k) = Cxs (k)
(2)

with, xm (k) =
[
xm1 (k) . . . xmn (k)

]T
∈ Rn, xs (k) =

[
xs1 (k) . . . xsn (k)

]T
∈ Rn,

E and E1 are constant vectors of systems (1) and (2), respectively,

B = In×n (3)

(xm (0) , xs (0)) = ((1, 0.1, 0) , (−0.5, 0, 0.3)) initial conditions, A = {aij} and A1 = {a1ij} con-
stant matrices and f (xm (k)) and f1 (xs (k)) nonlinear vectors.
The key Ke (k) in the transmitter side is defined by:

Ke (k) = int

(
A
√

x4m1 + · · ·+ x4mn

)
mod 256 (4)

and the key Kd (k) in the receiver side as following:

Kd (k) = int

(
A
√

x4s1 + · · ·+ x4sn

)
mod 256 (5)
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The function int (x) gives the integer part of x.
The used encryption e (.) is an XOR algorithm:

V (k) = e (m (k) ,Ke (k)) = m (k)⊕Ke (k) (6)

and the decryption function d (.) is as following:

mr (k) = d (V (k) ,Kd (k)) = V (k)⊕Kd (k) (7)

mr (k) is the recovered encrypted signal, d (.) the corresponding decryption function. If the
chaotic systems of the receiver and transmitter are synchronized, the receiver side can find the
same Kd (k), as in the encrypter, Ke (k). The goal now is to synchronize master and slave
systems and, at the same time, to design a Luenberger-like discrete observer depending on gain
based on a suitable choice of the control law u (k) designed to make two non-identical chaotic
systems achieving the complete state synchronization.
The evolution of the error vector e (k) between the master and the slave systems:

e (k) = xs (k)− xm (k) (8)

can also be described by the following:

e (k + 1) = A1xs (k) + f1 (xs (k))−Axm (k) + f (xm (k)) + E1 − E +Bu (k) +NδV (k) (9)

The following vector controllers u (k), retained in this case, is by outputs feedback control design
and by the introduction of an additional compensation term:

u (k) = (A−A1)xs (k) + f (xs (k))− f1 (xs (k))− E1 + E + L (ym (k)− ys (k)) (10)

where:

• L (.) = {li (.)} ∈ Rn is an unknown vector gain of observer to be determined,

• u (k) is chosen as (10) to bring the synchronization study of non-identical discrete-time
hyperchaotic systems (1) and (2) to synchronization study of two identical hyperchaotic
systems, described as (1).

The substitution of (10) into (9) yields the error system as following:

e (k + 1) = Ae (k)+ f (xs (k))− f (xm (k))+NδV (k)−BL (Cxm (k) + δV (k)− Cxs (k)) (11)

e (k + 1) = (A−BLC) e (k) + δV (k) (N −BL) + f (xm (k))− f (xs (k)) (12)

If the considered
N = BL (13)

is satisfied, it comes:

e (k + 1) = (A−BLC)e (k) + f (xm (k))− f (xs (k)) (14)

Once can observe that by the choice of the output control law u (k) as (10), it brings the study
of synchronizing of two non-identical hyperchaotic systems to the study of two identical ones.
For several chaotic systems, f (xs (k))−f (xm (k)) can be, as shown in [18], factorized as following:

f (xs (k))− f (xm (k)) = Q (xm (k) , xs (k)) e (k) (15)



On Observer Synchronization of Non-identical Discrete-time
Hyperchaotic Maps Using Arrow Form Matrix 311

where matrix Q (xs (k) , xm (k)) is a bounded matrix whose elements depend on xm (k) and xs (k).
Then, the error system can be rewritten as:

e (k + 1) = Aa (xm (k) , xs (k)) e (k) (16)

with:
Aa (xm (k) , xs (k)) = (A+Q (xs (k) , xm (k))−BLC) (17)

The error process, described by (16), is stabilized by the a choice of suitable control law of
(10), making the matrix Aa (xm (k) , xs (k)), defined by (17), in the arrow form. For this
purpose, the following theorem can be established, based on the use of Borne and Gentina
criterion [7, 8] associated to the canonical Benrejeb arrow form matrix Aa (.) = {aaij (.)} =
(A+Q(xs (k) , xm (k))−BLC) [6, 10], such that:

Aa (.) =


a11 a12 · · · a1n

a21
...

a22

. . .

an1 ann

 (18)

gives sufficient conditions of synchronization of slave (1) with master (2) systems [9,12]. Theorem
Theorem 2.1. The synchronization error, described by (16) converges towards zero, if the matrix
Aa (.), defined by (17) and (18), is in the arrow form such that:

1. the nonlinear elements are isolated in one row of the matrix Aa (.);

2. the diagonal elements, aaii (.) of the matrix Aa (.) are such that:

1− |aaii (.) | > 0, ∀i = 2, . . . , n (19)

3. there exist ε > 0 such that:

1− |aa11 (.)| −
n∑

i=2

(
|aai1 (.) aa1i (.)|
× (1− |aaii (.)|)

−1

)
> ε (20)

Proof: The comparison system [8] of the error system (17), associated to the vectorial norm
p(z (k)) = [|z1 (k) | . . . |zn (k) |]T , z (k) = [z1 (k) . . . zn (k)]

T , is defined by the following equation:

z (k + 1) = M (Aa (.)) z (k) (21)

with M (.) = {mij (.)} such that mij (.) =
∣∣aaij (.)∣∣∀i, j = 1, 2, . . . , n.

The error system (16) is stabilized by the output feedback law (10) if we make an appropriate
choice of vectors gains L and C such as the matrix (I −M (Aa (.))) is an M matrix [16] i.e if, by
application of the practical stability criterion of Borne and Gentina [7, 8], we have:{

1− |aaii (.))| > 0, ∀i = 2, . . . , n

det(I −M(Aa (.))) > ε
(22)

The computation of the first member of the last inequality, led as following:

det(I −M(Aa (.))) =


1− |aa11 (.)|

−
n∑

i=2

(
|aai1 (.) aa1i (.)|
× (1− |aaii (.)|)

−1

)×

 n∏
j=2

(
1−

∣∣aajj (.)∣∣)
 (23)

achieves easily the proof of the theorem. 2

By the design of suitable output feedback and the above theorem, synchronisation of non-
identical hyperchaotic maps is satisfied.
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3 Synchronization of two non-identical hyperchaotic 3D general-
ized Hénon map and 3D Baier-Klein map

In this section, a proposed synchronization approach for a class of two non-identical discrete-
time hyperchaotic systems is applied for the case of Baier-Klein/ Hénon.
Consider the following 3D discrete-time Baier-Klein map [17] which can be described as:

xm1 (k + 1) = b− x2m2 (k)− a.xm3 (k) + δl1V (k)

xm2 (k + 1) = xm1 (k) + δl2V (k)

xm3 (k + 1) = xm2 (k) + δl3V (k)

ym (k) = c1xm1 (k) + c2xm2 (k) + c3xm3 (k)

(24)

For the parameters a and b such that a = 0.1 and b = 1.76, the system (24) is hyperchaotic as
shown in figure 2.
In state space, (24) becomes as (1), with:

A =

 0 0 −0.1

1 0 0

0 1 0

 (25)

f (xm (k)) =
[
−x2m2 (k) 0 0

]T
(26)

and:
E =

[
1.76 0 0

]T
(27)

Consider the following 3D generalized Hénon map [2] as the slave system:

xs1 (k + 1) = −b1xs2 (k) + u1 (k)

xs2 (k + 1) = 1 + xs3 (k)− a1x
2
s2 (k) + u2 (k)

xs3 (k + 1) = b1xs2 (k) + xs1 (k) + u3 (k)

ys (k) = c1xs1 (k) + c2xs2 (k) + c3xs3 (k)

(28)

The 3D generalized Hénon map (28), for the parameters a1 = 1.07 and b1 = 0.3, exhibits a
hyperchaotic attractor as shown in figure 3.
In state space, (28) becomes as (2), with:

A1(xs (k)) =

 0 −0.3 0

0 0 1

1 0.3 0

 (29)

f1 (xs (k)) =
[
0 −1.07x2s2 (k) 0

]T
(30)

and:
E1 =

[
0 1 0

]T
(31)

The figure 4 shows the error states between systems (24) and (28), with the following initial
conditions (xm (0) , xs (0)) = ((1, 0.1, 0) , (0.1, 0.2,−0.31)), when the control law is turned off. It
is obvious that the error grows chaotically with time.
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Figure 2: 3D discrete-time Baier-Klein
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Figure 4: Error dynamics for hyperchaotic Hénon and Baier-Klein maps

Let consider the synchronization error between systems (24) and (28) described by:

ei (k) = xsi (k)− xmi (k) , i = 1, 2, 3 (32)

Applying (10), u (k) can be written as:

u1 (k) = 0.3xs2 (k)− 0.1xs3 (k) + 1.76− x2s2 (k)−
3∑

j=1
l1cjej (k)

u2 (k) = xs1 (k)− xs3 (k)− 1 + 1.07x2s2 −
3∑

j=1
l2cjej (k)

u3 (k) = −xs1 (k) + 0.7xs2 (k)−
3∑

j=1
l3cjej (k)

(33)

The choice of the control law (33), transforms the synchronization of the two non-identical 3D
hyperchaotic Baier-Klein and 3D generalized Hénon maps problem to two identical 3D hyper-
chaotic Baier-Klein hyperchaotic maps one.
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In the state space, the error system is as (16) and (17), with:

Q(xm (k) , xs (k)) =

 0 −(xs2 (k) + xm2 (k)) 0

0 0 0

0 0 0

 (34)

B = I3×3 (35)

C =
[
c1 c2 c3

]
(36)

and:
L =

[
l1 l2 l3

]T
(37)

The matrix, Aa(x (k)) can be rewritten as:

Aa (.) =

 −l1 (.) c1 (.)

1− l2 (.) c1 (.)

−l3 (.) c1 (.)

− (l1 (.) c2 (.) + xm2 (k) + xs2 (k))

−l2 (.) c2 (.)

1− l3 (.) c2 (.)

−0.1− l1 (.) c3 (.)

−l2 (.) c3 (.)

−l3 (.) c3 (.)

 (38)

The choice of correction parameters c3 and l3 constant and satisfying the constrains:{
l2c3 = 0

1− l3c2 = 0
(39)

makes this matrix Aa(x (k)) in Benrejeb arrow form, such that:

Aa (.) =

 −l1 (.) c1 (.)

1− l2 (.) c1 (.)

−l3 (.) c1 (.)

− (l1 (.) c2 (.) + xm2 (k) + xs2 (k))

−l2 (.) c2 (.)

0

−0.1

0

0

 (40)

The system characterized by (16) is asymptotically stable, if the control gains li and cj , i, j =
1, 2, 3, are chosen so that the following conditions are satisfied:

1. the nonlinear elements are isolated in one row of the matrix Aa(x (k));

2. the diagonal element of the matrix Aa(x (k)) is such that:

1− |l2c2| > 0 (41)

3. there exist ε > 0 such that:

1− |l1c1| −
(xm2 (k) + xs2 (k) + |l1c2|) (|1− l2c1|)

1− |l2c2|
− 0.1c1

c2
≥ ε (42)

Boundedness property
The solutions xm (k) respectively xs (k) of the hyperchaotic attractor of systems (24) and (28)
are forward completely and uniformly bounded.
Boundedness is a common assumption for many physical systems such as oscillators and, more
particularly, chaotic oscillators. The boundedness property of (24) and (28) allows us to perform
the following transformation : |xmi| < 2 and |xsi| < 2; thus, we have: | xm2 + xs2 + l1c2 |< 4+ |
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l1c2 |
The condition (iii) of the above theorem can be rewritten as follows:

1− |l1c1| −
(4 + |l1c2|) (|1− l2c1|)

1− |l2c2|
−
∣∣∣∣0.1c1c2

∣∣∣∣ > 0 (43)

Then, instantaneous gains li and cj , ∀i, j = 1, 2, 3, satisfying inequalities (41) and (43) such as:

C = [1.73 0.91 0] (44)

L = [ - 0.20 0.55 1.10]T (45)

guaranty the synchronization of systems (24) and (28), as shown in figures 5 and 6.
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The transmitted messages used in this paper, to show the efficiency of the proposed output
control law, are exemples of a text and of a photography of Lena.

The figures 7 and 8 show that the synchronization between two discrete-time hyperchaotic
systems is achieved via an output feedback law using the proposed approach. One can see that
the generalized Hénon system is controlled to become Baier-Klein system. We can conclude that
the proposed approach is applied with success to recover messages, as it is shown in figures 9
and 10.
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Stabilization conditions are proposed for 3D chaotic discrete-time systems synchronization.

(α)

(γ)

(β)

ÿýýþþþþþýþþþýýþÕ¸�� � qrsq!`re proposed for 3D chaotic discrete-time systems synchronization.

Figure 9: A single channel transmission: (α) original text m (k), (β) crypted text δ−1ym (k), (γ)
recovered text mr (k)

(α) (β) (γ)

Figure 10: A single channel transmission: (α) original Lena photo m (k), (β) crypted Lena photo
δ−1ym (k), (γ) recovered Lena photo mr (k)

4 Conclusion

In this paper, new suitable output feedback stabilizing conditions is proposed between two
non-identical hyperchaotic discrete-time systems, for the case of image and text transmission.
Numerical simulations illustrate the efficiency of the above stabilization conditions for the ex-
emple of 3D generalized hyperchaotic Hénon and 3D Baier-Klein maps bringed in two identical
Baier-Klein ones.
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