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Abstract: A membrane-inspired evolutionary algorithm (MIEA) is a successful in-
stance of a model linking membrane computing and evolutionary algorithms. This
paper proposes the analysis of dynamic behaviors of MIEAs by introducing a set of
population diversity and convergence measures. This is the first attempt to obtain
additional insights into the search capabilities of MIEAs. The analysis is performed
on the MIEA, QEPS (a quantum-inspired evolutionary algorithm based on membrane
computing), and its counterpart algorithm, QIEA (a quantum-inspired evolutionary
algorithm), using a comparative approach in an experimental context to better un-
derstand their characteristics and performances. Also the relationship between these
measures and fitness is analyzed by presenting a tendency correlation coefficient to
evaluate the importance of various population and convergence measures, which is
beneficial to further improvements of MIEAs. Results show that QEPS can achieve
better balance between convergence and diversity than QIEA, which indicates QEPS
has a stronger capacity of balancing exploration and exploitation than QIEA in order
to prevent premature convergence that might occur. Experiments utilizing knapsack
problems support the above made statement.
Keywords: Membrane computing, membrane-inspired evolutionary algorithm, dy-
namic behavior, quantum-inspired evolutionary algorithm; knapsack problem.

1 Introduction

Membrane computing, initiated by Păun in 1998 [1], focuses on the investigation of the
models, called membrane systems or P systems, abstracted from the structure and the functioning
of the living cell as well as from the cooperation of cells in tissues, organs, and other populations
of cells. Thompson Institute for Scientific Information, ISI, listed the seminal paper as a fast
breaking record and this area as an emerging research front in computer science in 2003, and
thereby membrane computing becomes a branch of natural computing and has developed very
fast into a vigorous scientific discipline [2–6].

Aiming at investigating the interactions between membrane computing and evolutionary
computation, membrane-inspired evolutionary algorithms (MIEAs) are considered as a class of
hybrid optimization algorithms, which use the concepts and principles of meta-heuristic search
methodologies and the hierarchical or network structures of P systems, and to some extent, some
of the rules of P systems [7,8]. A MIEA is regarded as a successful paradigm extending P system
models with capabilities that make them amenable to real-world applications [9]. Due to a very
wide range of applications of meta-heuristic search methodologies, such as genetic algorithms
and tabu search, there is a very promising perspective of applying P systems to solve various
complex and difficult engineering problems.

Copyright © 2006-2014 by CCC Publications
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In recent years, many investigations referred to MIEAs. The first version of membrane algo-
rithms was designed with a nested membrane structure (NMS) and a local search heuristic for
solving travelling salesman problems, which are well-known NP-hard optimization problems [10].
An approach combining NMS and genetic algorithms was presented and tested by using six
benchmark functions [11]. In the preceding work, we proposed a MIEA, called a quantum-
inspired evolutionary algorithm based on P systems (QEPS), which incorporates a one-level
membrane structure (OLMS) and a quantum-inspired evolutionary algorithm (QIEA) [12]. A
well-known NP-complete optimization problem, knapsack problem, was used to carry out exten-
sive experiments, which show that QEPS achieves better solutions than its counterpart QIEA
and OLMS has an advantage over NMS. In [7, 13–15], QEPS and its modified versions were
presented to solve various problems, such as radar emitter signal analysis and image processing.
In [16] and [17], DNA sequences design was optimized by designing a MIEA based on crossover
and mutation rules and a dynamic MIEA combining the fusion and division rules of P systems
with active membranes and search strategies of differential evolution (DE) and particle swarm
optimization (PSO), respectively. In [18], a memory mechanism was considered in the design
of MIEAs. In [19], a hybrid MIEA was presented by combining OLMS with PSO to solve con-
strained optimization problems. In [8], a MIEA was proposed by using the network membrane
structure of a tissue P system with five cells to organize five representative DE variants.

However, since MIEAs were initiated in 2004, a question has been asked many times by
researchers from the areas of membrane computing and evolutionary computation. The question
refers to the role played by P systems in MIEAs, that is, what advantages do P systems bring
to MIEAs? This is also a critical and tough question that has been haunting many researchers
in the field of membrane computing. So the motivation of this work is to try to some extent to
find an appropriate answer for this question.

In this study, we propose the analysis of the dynamic characteristics of MIEAs by using a
set of population diversity and convergence measures to comparatively investigate the evolving
processes of QEPS and its counterpart algorithm, QIEA. Due to the difficulty in theoretically
reasoning about MIEAs, we mainly focus on the experimental analysis. Also we present a
tendency correlation coefficient to analyze the relationship between the population diversity and
convergence measures and fitness to understand the importance of each measure and to provide
suggestions on how to improve the performance of MIEAs with respect to population diversity
and convergence. Furthermore, experiments conducted on knapsack problems are presented.

The rest of this study is organized as follows. Section 2 gives a brief description of QIEA and
QEPS, which is helpful to understand the dynamic behavior analysis of MIEAs expounded in
Section 3. Specific examples follow in Section 4 to verify the analysis presented in the preceding
section. Section 5 concludes this work.

2 QIEA and QEPS

2.1 QIEA

Inspired by quantum computing, Han and Kim [20] proposed a novel evolutionary algorithm,
called QIEA, for a classical computer. QIEA consists of three main components: quantum-
inspired bit (Q-bit) representation, a probabilistic observation and a quantum-inspired gate (Q-
gate) [21]. In QIEA, a genotypic gene is represented by using a Q-bit defined by a pair of numbers
(α, β) denoted as [α β]T , where |α|2 and |β|2 are probabilities that the observation of the Q-bit
will render a ‘0’ or ‘1’ state. A string of Q-bits is applied to represent a Q-bit individual. The
connection between genotypic representation (Q-bit representation) and phenotypic individuals
(binary solutions) is established by the probabilistic observation. The Q-gate is used to produce
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offspring. Generally speaking, QIEA is composed of the following steps:

(i) Initialization: a population Q(t) with n Q-bit individuals is generated, Q(t)={qt1, qt2, · · · ,
qtn} at generation t (here t = 0), where qti (i = 1, 2, · · · , n) is an arbitrary individual in
Q(t), which is represented as

qti =

[
αt
i1|αt

i2| · · · |αt
il

βti1|βti2| · · · |βtil

]
, (1)

where l is the number of Q-bits, i.e., the string length of the Q-bit individual.

(ii) Observation: a probabilistic observation is used to produce binary solutions P (t), P (t)={xt
1,

xt
2, · · · ,xt

n}, by observing the states of Q(t), to be specific, a binary bit 0 or 1 is obtained
in terms of the probability, either |αt

ij |2 or |βtij |2 of qti , i = 1, 2, · · · , n, j = 1, 2, · · · , l. Thus
a Q-bit individual with l Q-bits results in a binary solution xt

i (i = 1, 2, · · · , n) with l
binary bits.

(iii) Evaluation: the binary solution xt
i (i = 1, 2, · · · , n) in P (t) is evaluated thus obtaining its

fitness. Additionally the best solution among P (t) is stored.

(iv) Offspring generation: Q-gates are performed on Q-bit individuals in Q(t) to produce their
corresponding individuals at the next generation. For example, the j-th Q-bit in the i-th
Q-bit individual qti , j = 1, 2, · · · , l, i = 1, 2, · · · , n is updated by applying the current
Q-gate Gt

ij(θ). QIEA uses a quantum rotation gate as a Q-gate; this is given by

Gt
ij(θ) =

[
cos θtij − sin θtij
sin θtij cos θtij

]
, (2)

where θtij is an adjustable Q-gate rotation angle.

(v) Termination condition: the maximal number of evolutionary generations or the maximal
number of function evaluations could be utilized to stop the algorithm. If the termination
condition is satisfied, the algorithm will stop and output the final results, otherwise, the
generation number increases by 1, i.e., t = t+ 1, and the algorithm goes back to Step (ii).

2.2 QEPS

In the process of investigating the interactions between P systems and evolutionary algo-
rithms, we presented a MIEA, QEPS [12], which was designed with the hierarchical framework
of a cell-like P system, the objects consisting of Q-bits and classical bits, the rules made up of
Q-gate evolutionary rules in QIEA and evolution rules in P systems. QEPS uses OLMS, where
the skin membrane contains m elementary membranes defining m regions. Q-bits, organized as
a Q-bit individual in a proper way, are treated as multisets of objects. Classical bits, obtained
from their corresponding Q-bits by using a probabilistic observation, are arranged as a binary
string and are dealt with also as multisets of objects. In QEPS, a binary string corresponds to a
solution of a problem. The set of rules are responsible for evolving the system and selecting the
best fit Q-bit individuals. All the objects and rules are appropriately placed in the membrane
structure.

More precisely the P system-like framework consists of

(i) a membrane structure [[ ]1, [ ]2, · · · , [ ]m]0 withm+1 regions contained in the skin membrane,
denoted by 0;
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(ii) an alphabet that consists of all possible Q-bits and classical bits;

(iii) a set of terminal symbols, T = {0, 1};

(iv) initial multisets w0 = λ,

w1 = q1q2 · · · qn1 ,

w2 = qn1+1qn1+2 · · · qn2 ,

· · ·

wm = qn(m−1)+1qn(m−1)+2 · · · qnm ,

where qi, 1 ≤ i ≤ n, is a Q-bit individual; nj , 1 ≤ j ≤ m, is the number of individuals in
wj ;

∑m
j=1 nj = n, where n is the total number of individuals in this computation;

(v) rules which are classified as

a evolution rules in each of the compartments 1 to m which are transformation-like rules
updating a Q-bit individual according to the current Q-gate;

b observation rules which make binary solutions from Q-bit individuals;

c communication rules which send the best fit individual binary representation from
each of the m elementary membranes into the skin membrane and then the overall
best binary representation from the skin membrane to each elementary membrane.

3 Dynamic Behavior Analysis

This section analyzes the dynamic behaviors of MIEAs in the process of evolution from
two perspectives, the population diversity and convergence. Six diversity and four convergence
measures are introduced to comparatively exhibit the evolutionary behaviors of QEPS and QIEA.
We start from population diversity analysis and then turn to convergence analysis. Finally, a
tendency correlation coefficient is proposed to evaluate the relationship between diversity and
convergence measures and the quality of solutions.

3.1 Population Diversity Analysis

Population diversity is crucial for a population-based search method to prevent premature
convergence toward local optima. Diversity measures are used to evaluate the levels and types
of varieties of individuals in a population [22]. In this subsection, six diversity measures are
considered for QEPS and QIEA, and they are respectively

(1) Dqbw: Q-bit distance between the best and worst Q-bit individuals corresponding to the
best and worst fitness values in a population, respectively. Dqbw is described as

Dqbw =
1

m

m∑
j=1

∣∣∣|abj |2 − |awj |2
∣∣∣ (3)

where |abj |2 and |awj |2 are probabilities of the j-th Q-bit in the best and worst Q-bit
individuals, respectively; m is the number of Q-bits in a Q-bit individual. 0 ≤ Dqbw ≤ 1.
A larger value of Dqbw gives a hint of larger distance between the best and worst Q-bit
individuals.
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(2) Dqa: average Q-bit distance of all Q-bit individuals in a population. Dqa is defined as

Dqa =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

{
1

m

m∑
k=1

∣∣∣|αik|2 − |αjk|2
∣∣∣} (4)

where |aik|2 and |ajk|2 are probabilities of the k-th Q-bit in the i-th and j-th Q-bit indi-
viduals, respectively; m is the number of Q-bits in a Q-bit individual; n is the number of
individuals in a population. Dqa is the average value of the Q-bit distance between n(n−1)
pairs of Q-bit individuals. 0 ≤ Dqa ≤ 1 . A larger value of Dqa suggests a larger distance
between each pair of Q-bit individuals in a population.

The two diversity measures above are obtained in Q-bit space, so they can be regarded as
genotypic diversity measures for QEPS and QIEA. In what follows we will introduce four
phenotypic diversity measures: Hamming distance between the best and worst binary indi-
viduals (Dhbw) in a population, mean Hamming distance of all binary individuals (Dhm) in
a population, and two diversity measures based on dispersion statistical measures including
the diversity between chromosomes (Dbc) and the diversity between the alleles (Dba) [22].

(3) Dhbw and Dhm are depicted as

Dhbw =
1

m

m∑
i=1

(xbi ⊕ xwi) (5)

Dhm =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

{
1

m

m∑
k=1

(xik ⊕ xjk)

}
(6)

where xbi and xwi are the i-th bits in the best and worst binary solutions, respectively; m
is the number of bits in a binary solution; n is the number of individuals in a population;
the symbol ⊕ is exclusive OR operator; xik and xjk are the k-th bits in the i-th and j-th
binary solutions, respectively. Dhbw and Dhm vary between 0 and m. Larger values of
Dhbw and Dhm indicate more varieties between the best and worst binary individuals, and
each pair of binary individuals in a population, respectively.

(4) Dbc and Dba are defined as

Dbc =
1

n− 1

(∑
i S

2
i

L
− S2

L ∗ n

)
(7)

Dba =
1

L− 1

(∑
j S

2
j

n
− S2

L ∗ n

)
(8)

where n is the population size; L is the length of a chromosome; S is the sum of genes ‘1’;
Si and Sj are the sum over a row i and the sum over a column j, respectively. Dbc and
Dba have the following properties [23]:

(i) If the population is homogeneous in either 0 or 1, Dbc and Dba equals zero;

(ii) When all the chromosomes in the population are identical, Dbc is zero and Dba holds
a constant value that is dependent on how many genes ‘1’ are in a chromosome.

In what follows we use knapsack problems, which are described in Section 4.1, to show the
changes of the six population diversities in the evolution. Figures 1–6 illustrate comparisons of
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QEPS and QIEA for three knapsack problems with 400, 600 and 800 items. Each subfigure in
Figs.1–6 provides results of 30 independent random runs (green solid lines for QEPS and cyan
solid lines for QIEA) and the mean values over 30 runs (black bold solid lines for QEPS and black
bold dash-dot lines for QIEA). The values of Dqbw, Dqa, Dhbw, Dhm, Dbc and Dba in Figs.1–6 are
obtained by setting population size to 20 and the maximal number 20000 of function evaluations
(NoFE) as the stopping condition.

From the results, shown in Figs.1–6, about the comparisons of population diversity between
QEPS and QIEA, we can draw the following conclusions:

(i) The three subfigures, which correspond to the respective knapsack problems with 400, 600
and 800 items, in each of Figs.1–6, show respectively consistent trends for QEPS and QIEA,
which indicates the reasonableness of the six diversity measures to a certain degree.

(ii) Figures 1–2 show that QEPS can maintain better population diversity than QIEA in Q-bit
space. The two algorithms have approximate values, of about 0.4, for Dhbw and Dhm in
the initial states. As NoFE mounts up, the values of Dhbw and Dhm of Q-bit individuals
in QEPS decrease gradually to around 0.5 at NoFE 20000, whereas the values in QIEA
rapidly fall below 0.5 at NoFE 3000 and approximate 0 at NoFE 20000.

(iii) The Hamming distance Dhbw between the best and worst binary individuals and the mean
Hamming distance Dhm of all binary individuals in Figs.3–4 show a clear picture of QEPS
having a greater potential to preserve the population diversity than QIEA. More specifically,
QEPS and QIEA have almost the same initial values and decreasing values for changes
of Dhbw and Dhm with respect to NoFE, but QEPS maintains a much higher level of
population diversity than QIEA throughout the evolutionary process. The six subfigures in
Figs.3–4 also demonstrate that QIEA loses population diversity too fast and very quickly
goes down to a small value close to 0 when NoFE reaches values around 10000, which
implies that the individuals in QIEA become nearly identical and therefore lose exploration
capability. When NoFE increases to 20000, QEPS still has one-fourth of initial values of
Dhbw and Dhm.

(iv) Dbc and Dba, two diversity measures based on dispersion statistical measures in Figs.5–
6, also clearly illustrate that QEPS has better population diversity than QIEA through
the whole process. Dbc values of QIEA rapidly fall down to 0 and Dba values of QIEA
rapidly rise to and stay at a higher steady level, while QEPS maintains more varieties in
the population, even when the algorithm stops at values of NoFE close to 20000.
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Figure 1: Dqbw of QEPS and QIEA with items 400, 600 and 800.
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Figure 2: Dqa of QEPS and QIEA with items 400, 600 and 800.

100  5000 10000 15000 20000
0

50

100

150

200

250

NoFE

D
hb

w

 

 
QIEA
QEPS

(a) 400 items

100  5000 10000 15000 20000
0

50

100

150

200

250

300

350

NoFE

D
hb

w

 

 
QIEA
QEPS

(b) 600 items

100  5000 10000 15000 20000
0

50

100

150

200

250

300

350

400

450

NoFE

D
hb

w

 

 
QIEA
QEPS

(c) 800 items

Figure 3: Dhbw of QEPS and QIEA with items 400, 600 and 800.
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Figure 4: Dhm of QEPS and QIEA with items 400, 600 and 800.

The loss of population diversity means that the algorithm will fail to further explore the
solution space. In the following description, we will go further to analyze the convergence per-
formance of membrane algorithms.

3.2 Convergence Analysis

Convergence is very important for a meta-heuristic search method as it shows the speed of
the method in finding a satisfactory solution to an optimization problem. In this subsection, the
convergence behavior of MIEAs is observed by presenting four measures: best Q-bit individual
convergence (Cqb), average Q-bit individual convergence (Cqa), the best fitness convergence (Cfb)
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Figure 5: Dbc of QEPS and QIEA with items 400, 600 and 800.
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Figure 6: Dba of QEPS and QIEA with items 400, 600 and 800.

and the average fitness convergence (Cfa).
Both QEPS and QIEA use Q-bit individuals to construct a population. Thus we can apply the

best Q-bit individual convergence and the average Q-bit individual convergence in a population
to observe how much Q-bits approach 0 or 1 in the searching process. Their definitions are as
follows.

(i) The best Q-bit individual convergence is described as

Cqb =
1

m

m∑
j=1

max
{
|αbj |2, |βbj |2

}
(9)

where [αbj βbj ]
T is the j-th Q-bit in the best Q-bit individual corresponding to the best

fitness in a population; m is the number of Q-bits in a Q-bit individual. 0.5 ≤ Cqb ≤ 1.

(ii) The average Q-bit individual convergence is depicted as

Cqa =
1

n

n∑
i=1

 1

m

m∑
j=1

max
{
|αij |2, |βij |2

} (10)

where [αij βij ]
T is the j-th Q-bit in the i-th Q-bit individual in the population with n

individuals; m is the number of Q-bits in a Q-bit individual. 0.5 ≤ Cqa ≤ 1.

Cqb and Cqa, calculated in the Q-bit space, can be regarded as genotypic convergence
measures. Cqb and Cqa have not a direct relationship to the quality of solutions. Therefore
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we employ the other two convergence measures, the best fitness and the average fitness, to
observe the convergence rates of solutions.

(iii) The description of Cfb and Cfa is given as follows

Cfb =
n

max
i=1

fi(x) (11)

Cfa =
1

n

n∑
i=1

fi(x) (12)

where fi(x) is the fitness of the i-th individual. Equation 11 is listed based on a maximum
optimization. For a minimum problem, Cfb is to find the minimal fitness among n solutions.

We still apply the three knapsack problems with 400, 600 and 800 items to observe the
convergence performances of QEPS and QIEA. The population size, NoFE and independent
runs are assigned as 20, 20000 and 30, respectively. The changes of Cqb, Cqa, Cfb and Cfa are
shown in Figs.7–10, where each subfigure provides the results of 30 independently random runs
(green solid lines for QEPS and cyan solid lines for QIEA) and the mean values over 30 runs
(black bold solid lines for QEPS and black bold dash-dot lines for QIEA). The comparisons
between QEPS and QIEA, shown in Figs.7–10, give us the following hints.

(i) The three subfigures corresponding to the respective knapsack problems with 400, 600 and
800 items, in each of Figs.7–10, show respectively similar changes for QEPS and QIEA.

(ii) It can be seen from the results shown in Figs.7–8 that Cqb and Cqa have similar tendencies,
to be specific, QIEA converges much faster in Q-bit space than QEPS and quickly arrives at
the maximal value 1, which implies that no further improvement of solutions in QIEA can be
gained at the second half of evolutionary processes. The drastic convergence easily makes
QIEA trapped in local extrema and consequently a premature end of the evolutionary
process appears. On the contrary, Cqb and Cqa of QEPS go up much slower than those
corresponding to QIEA with respect to NoFE and finally mount up to around 0.9 for values
of NoFE in the region of 20000, which suggests that the solutions can be further improved
if more NoFE is provided.

(iii) In Figs.9–10, QIEA has faster increases of Cfb and Cfa than QEPS and then stays at a
relatively flat level after a certain NoFE, while QEPS goes through a slower start than
QIEA and then rapidly goes beyond QIEA and keeps an ascending trend. Thus QEPS
obtains better solutions than QIEA. The observations in Figs.9–10 can also be derived from
the results in Figs.7–8. Additionally, it is worth noting, according to the six subfigures of
Figs.9–10, that QEPS has better performance than QIEA in terms of the consistency of the
results obtained for 30 independent runs when mean values are considered. This suggests
that QEPS has better robustness properties than QIEA.

The convergence and population diversity are often conflicting features for population-based
search methods. Rapid convergence usually results in a fast loss of population diversity, whereas
better varieties of individuals produce more possibilities to improve solutions. The dynamic
behaviors can be observed from the changes of population diversity, shown in Figs.1–6, and
convergence performance in Figs.7–10. The diversity and convergence analysis above indicate
that QEPS can achieve a better trade-off between convergence and diversity than QIEA, i.e.,
better balance between exploration and exploitation than QIEA. This better balance of these two
essential features of any evolutionary approach is the principal explanation of the fact that QEPS
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achieves high quality solutions, better than QIEA if NoFE is large enough. For example, NoFE
is greater than 10000 for the knapsack problems with 400, 600 and 800 items, which corresponds
to 100 evolutionary generations.
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Figure 7: Cqb of QEPS and QIEA with items 400, 600 and 800.
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Figure 8: Cqa of QEPS and QIEA with items 400, 600 and 800.
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Figure 9: Cfb of QEPS and QIEA with items 400, 600 and 800.

3.3 Correlation between Measures and Fitness

The goal of MIEAs is to find the optimal solution of an optimization problem, so the relation-
ship between the diversity and convergence measures and fitness is very important for improving
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Figure 10: Cfa of QEPS and QIEA with items 400, 600 and 800.

the algorithm performance with respect to diversity and convergence. In this subsection, we
introduce a tendency correlation coefficient to evaluate the importance of the eight measures:
Dqbw, Dqa, Dhbw, Dhm, Dbc, Dba, Cqb and Cqa.

The tendency correlation coefficient of two sequences, S1 = (s11, s
1
2, · · · , s1L) and S2 = (s21, s

2
2, · · · , s2L)

, is defined as

ρ =

∑
i
(∆S1 ·∆S2)√∑

i
∆S1

2 ·
∑
i
∆S2

2
(13)

where ∆S1 = (∆s11,∆s
1
2, · · · ,∆s1L−1) and ∆S2 = (∆s21,∆s

2
2, · · · ,∆s2L−1) , where ∆s1k and ∆s2k

(k = 1, 2, · · · , L− 1) are respectively

∆s1k = s1k+1 − s1k (14)

∆s2k = s2k+1 − s2k (15)

The tendency correlation coefficient ρ varies in the range between -1 and 1. The maximal
value 1 and minimal value -1 mean that the two sequences S1 and S2 have identical and completely
opposite tendencies, respectively. Thus a larger absolute value of ρ indicates a stronger tendency
correlation.

We use the tendency correlation coefficient to analyze the relationship between each of the
eight measures, Dqbw, Dqa, Dhbw, Dhm, Dbc, Dba, Cqb and Cqa, and each of two kinds of fitness,
Cfb and Cfa. Experimental results are listed in Table 1, where each datum is calculated by
using the statistical results of three knapsack problems with 400, 600 and 800 items in Sections
3.1–3.2.

It can be seen from experimental results in Table 1 that the three diversity measures, Dqa,
Dhm and Dba, have stronger tendency correlation with fitness than the other five measures. So
the improvement of Dqa, Dhm and Dba could be a promising way to enhance the algorithm
performance. In the column of Dba, positive tendency correlation coefficients show that Dba

and fitness have similar trends, which implies that a larger value of Dba may correspond to a
better fitness. While in the columns of Dqa and Dhm, negative values demonstrate that the two
population diversity measures have contrary trends with fitness, which might mean that smaller
values of Dqa and Dhm could result in better solutions.
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Table 1: Correlation between fitness and diversity, convergence measures.
Measures Dqbw Dqa Dhbw Dhm Dbc Dba Cqb Cqa

QIEA

400 items Cfb -0.7335 -0.7804 -0.7706 -0.9251 -0.4812 0.9180 0.1627 0.1707
Cfa -0.6894 -0.7174ĄĄ -0.7004 -0.8643 -0.6312 0.8500 0.1579 0.1606

600 items Cfb -0.6878 -0.6976 -0.7737 -0.9064 -0.3604 0.8921 0.2663 0.2412
Cfa -0.6548 -0.6818 -0.7792 -0.8940 -0.4993 0.8764 0.2591 0.2493

800 items Cfb -0.6812 -0.6664 -0.8153 -0.9086 -0.4291 0.8969 0.2914 0.2865
Cfa -0.6491 -0.6794 -0.8174 -0.9171 -0.4466 0.9035 0.2436 0.2749

QEPS

400 items Cfb -0.3260 -0.8679 -0.3008 -0.7910 -0.1042 0.7715 -0.0007 0.0061
Cfa -0.2004 -0.6672 -0.2155 -0.6895 -0.4590 0.6175 0.0220 0.0246

600 items Cfb -0.3004 -0.8260 -0.3192 -0.8121 -0.0638 0.7960 0.0522 0.0427
Cfa -0.2300 -0.7009 -0.2148 -0.7635 -0.3809 0.7067 0.0231 0.0691

800 items Cfb -0.2531 -0.8121 -0.2878 -0.8472 -0.0524 0.8356 0.1060 0.0573
Cfa -0.2057 -0.7123 -0.2370 -0.7767 -0.3477 0.7336 0.0575 0.0766

4 Examples

In this section, a knapsack problem is described and more experiments are conduced to further
verify the observations in the preceding section.

4.1 Knapsack Problem

A knapsack problem can be described as the process of selecting from among various items
those that are most profitable, given that the knapsack has limited capacity [12, 20, 21]. The
knapsack problem is to select a subset from the given number of items so as to maximize the
profit f(x):

f(x) =

k∑
i=1

pixi (16)

Subject to
k∑

i=1

wixi ≤ Ck (17)

where k is the number of items; pi is the profit of the i-th item; wi is the weight of the i-th item;
Ck is the capacity of the given knapsack; and xi is 0 or 1. This paper uses strongly correlated sets
of unsorted data: wi =uniformly random [1, 50], pi = wi + 25. The average knapsack capacity
Ck is applied.

Ck =
1

2

k∑
i=1

wi (18)

4.2 Experiments and Results

In this subsection, we carry out the experiments on 15 knapsack problems with 200, 400,
600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800 and 3000 items to compare
the performance of QEPS and QIEA. In the experiments, QEPS and QIEA use 20 individuals
and 30 independent runs are performed for each case. QEPS uses the OLMS, where 15 ele-
mentary membranes and the maximal number 9 of iterations for each elementary membrane are
considered, according to the investigation in [12]. The stopping condition for QEPS and QIEA
is set as follows: 20000 NoFE for the first four knapsack problems; 30000 NoFE for the three
knapsack problems with 1000, 1200 and 1400 items; 40000 NoFE for the four knapsack problems
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with 1600, 1800, 2000 and 2200; 60000 NoFE for the last four knapsack problems. The best,
worst and average solutions over 30 independent runs are recorded and listed in Table 2. We also
provide the results, shown in Table 3, for each problem when NoFE is one-tenth of the prescribed
value.

Several facts can be obtained from the results in Tables 2 and 3.

(i) The results in Table 3 show that QIEA achieves better results than QEPS when NoFE is
only one-tenth of the prescribed value for each of the 15 knapsack problems.

(ii) The statistical data in Table 2 show that QEPS is superior to QIEA in terms of the quality
of solutions. Even the worst solution of each problem obtained by QEPS is better than the
best one provided by QIEA.

(iii) It seems that there is a conflict between the two conclusions in (i) and (ii). Actually these
conclusions can be explained by using the analysis of population diversity and convergence
in Section 3. The advantage of QIEA over QEPS in Table 3 comes from the fact that QIEA
has a faster convergence speed and shows more rapid changes of population diversity than
QEPS. Slower changes can also be regarded as a better balance, between diversity and
convergence, leading to improved searching capabilities for QEPS, which results in the
superiority of QEPS over QIEA, as shown in Table 2. Moreover, these experimental results
provide sufficient details explaining the behavior of QEPS and QIEA, as stated in Section
3.

Table 2: Experimental results for QEPS and QIEA, where NoFE for each problem is prescribed.

Items QIEA QEPS
Best Average Worst Best Average Worst

200 5885 5786 5359 5959 5945 5909
400 11650 11553 11396 11873 11837 11778
600 17403 17173 16851 17702 17647 17575
800 22940 22659 22010 23403 23257 23109
1000 28673 28333 27954 29531 29373 29198
1200 34399 33984 33424 35441 35292 35061
1400 39560 39149 38488 40886 40722 40364
1600 45277 44864 44423 47242 47018 46672
1800 50784 50163 49506 52772 52600 52395
2000 56453 55879 55129 58775 58543 58065
2200 61645 61175 59820 64513 64230 63680
2400 66683 65984 64981 70402 70015 69726
2600 72546 71992 71497 76621 76245 75296
2800 77511 76734 75924 81918 81486 80683
3000 83294 82608 82020 88207 87657 87044

5 Conclusion

The dynamic behavior analysis of MIEAs is very illustrative for a better understanding of
the role played by P systems in the context of evolutionary algorithms. This paper discusses
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Table 3: Experimental results for QEPS and QIEA, where NoFE for each problem is one-tenth
of the prescribed value.

Items QIEA QEPS
Best Average Worst Best Average Worst

200 5574 5476 5359 5496 5395 5306
400 10964 10836 10687 10744 10666 10548
600 16004 15928 15775 15914 15721 15549
800 21234 21096 20860 21230 20839 20686
1000 26755 26571 26309 26501 26274 26124
1200 32148 31925 31707 31849 31635 31460
1400 36990 36832 36553 36754 36482 36179
1600 42918 42588 42352 42634 42270 42038
1800 47878 47559 47353 47428 47121 46788
2000 53376 53068 52803 53001 52654 52433
2200 58646 58335 58102 58271 57957 57622
2400 63441 63195 62819 63226 62806 62328
2600 69342 69077 68676 69196 68755 68420
2800 74051 73613 73269 73524 73207 72833
3000 79630 79236 78743 79361 78886 78483

for the first time significant aspects of developmental processes occurring in MIEAs using a
comparative approach in an experimental context, whereby a set of population diversity and
convergence measures were introduced and analyzed. This work not only provides some answers
to the difficult and intriguing question of what are the benefits of using P systems in evolutionary
algorithms, but also suggests possible improvements for MIEAs. On the basis of this work, a
promising research might start with a multi-objective optimization framework utilizing concepts
and principles of P systems in a systematic and consistent way.
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