
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 9(5):539-554, October, 2014.

ANN Method for Control of Robots to Avoid Obstacles

E. Ciupan, F. Lungu, C. Ciupan

Emilia Ciupan, Florin Lungu, Cornel Ciupan*
Technical University of Cluj-Napoca
Romania, 400641 Cluj-Napoca, Bd. Muncii, 103-105
emilia.ciupan@mis.utcluj.ro, florin.lungu@mis.utcluj.ro
*Corresponding author: cornel.ciupan@muri.utcluj.ro

Abstract: The avoidance of obstacles placed in the workspace of the robot is a
problem which makes controlling them more difficult. The known avoidance methods
used for the robots control are based on bypass trajectory programming or on using
the sensors that detect the position of the obstacle. This paper describes a method of
training industrial robots in order for them to avoid certain obstacles in the workspace.
The method is based on the modelling of the robot’s kinematics by means of an
artificial neural network and by including the neural model in the robot’s controller.
The neural model simulates the robot’s inverse kinematics, and provides the joint
coordinates, as referential values for the controller. The novelty of the method consists
in the deliberately erroneous training of the network, so that, when programming a
direct trajectory in the workspace, the robot avoids a known obstacle.
Keywords: Artificial Neural Network (ANN), control, robot, obstacle avoidance.

1 Introduction

Proportional-integrative-derivative PID controller is widely used for the control of robots,
because it is model-free, and its parameters can be adjusted easily and separately. An integrator
in a PID controller reduces the bandwidth of the closed-loop system. In order to remove steady-
state error caused by uncertainties and noise, the integrator factor has to be increased, having
the effect of reducing the performance of transient regime [19].

The application of neural networks to robots control is well known [10], [11] and an alternative
to the adaptive control is represented by the neural controllers [21].

Lewis et al. [10] demonstrate that neural networks do indeed fulfil the promise of providing
model-free learning controllers for a class of nonlinear systems. Neural network control offers
two specific advantages over adaptive control:

− neural network controller works for any rigid robot arm without computing a regression
matrix or performing any preliminary analysis

− neural networks provide a basis set for any smooth function, while the linear in the param-
eters equation provides a basis set only for linear systems.

There are several approaches to combine PID control with the intelligent control, such as the
neural control. The first way is to form neural networks into PID structure [5], [6], [10], [17].
By proper updating laws, the parameters of PID controllers are changed so that the closed-loop
systems are stable. The second method used intelligent techniques to tune the parameters of
PID controllers, such as fuzzy tuning [11], neural tuning [7], [18], and expert tuning [8].

All known approaches require the set point (the reference values) determination that consists
in drive joints coordinates which are obtained from the inverse kinematic analysis.

In the inverse kinematic analysis [14], [16], the coordinates and the effector’s orientation
(X,Y,Z,ψ,θ,φ) are considered to be known, and the coordinates of the joints (represented by qi,
i=1, ..., m, where m is the number of kinematic axes, equal to the number of the degrees of

Copyright © 2006-2014 by CCC Publications

540 E. Ciupan, F. Lungu, C. Ciupan

freedom) are to be determined. Although an apparently easy task, determining the coordinates
of the joints becomes more complicated when robots with complex kinematic structure, such as
the parallel robots, are at stake [20].

Given its advantages, neural computing is often used to solve the problem of inverse kine-
matics. The training of the neural network and the getting of the neural model implies solving
two important problems [7]:

a) getting the training data, especially when the mathematical model is not known, and
measurements on the physical model are necessary

b) performing the training process and obtaining an acceptable error, in the case of a large
amount of training data.

The proper control of the robot is carried out by the robot’s control equipment, by means of
generating a control input for each joint, so that it achieve coordinate qi resulted from the inverse
kinematics, and the effector pass through the points that belong to the trajectory. Therefore an
important problem is to determine the coordinates of joints.

Figure 1 shows a neural controller for the positioning of the effector, which uses a neural model
NM for the generation of the coordinates of the joints qi, PID controllers and feedback loops.
The method implies the completion of the following stages: providing the coordinates of the some
points that define the robot’s trajectory, generating some additional points on this trajectory
and determining the coordinates of the joints by using an NM neural model implemented onto
the robot’s control equipment, transmitting the coordinates of the joints to the controllers of
the PIDi axes, which generate the actuating quantity ei corresponding to the Mi motors of the
robot.

Figure 1: Neural network controller

In order to obtain and implement the NM neural model, it is necessary to complete the
following steps: creating a neural network, creating a set of training examples, training the
neural network, which results in the creation of the neural model, testing and validating the
neural model, and using the neural model by implementing it in the control equipment. The set
of training examples consists of pairs of input-output data which are determined by the choice
of a point cloud in the robot’s workspace. The input signals are considered to be the positioning
coordinates of the points in the workspace, while the output signals, the coordinates of the joints
associated with these positions.

The disadvantage of this method is that when programming a straight trajectory between
two points the robot cannot avoid an obstacle, even though the volume covered by the obstacle
has been excluded from the set of training examples. At the same time, another disadvantage
consists in the large number of training examples needed to cover the entire workspace of the
robot.

In the majority of the handling applications, the robot’s task is to complete linear movement
between points that belong to the workspace, points where it has to retrieve or deliver objects,
or where the robot perform operations. This general method can also be used to obtain a neural

ANN Method for Control of Robots to Avoid Obstacles 541

model in the case of the effector’s move between two points, so that it can avoid an obstacle.
In this case, the set of training examples is constituted by the association of coordinates of the
points on the deviation trajectory with the coordinates of the joints corresponding to them. It
is necessary for the trajectory to be described in this case.

A way of describing the trajectory is by its mathematical expression, which has the disadvan-
tage of having to determine it. The next step consists in the determination of the coordinates of
the joints for a set of points that belong to the bypass trajectory. For complex structure robots,
such as the parallel robots with 6 degrees of freedom, the expression of the joints determination
is complicated. The general form of the expression is qi=fi(X,Y,Z,ψ,θ,φ), i=1, ...,6. In this case,
the calculation is complex and it involves a large number of mathematical operations. This is a
disadvantage, especially in the case of robots that operate at high speeds, given that calculations
are made in real time.

Also, in the patent literature [9], [12], [13], there are many methods of robot control using
neural networks. Patent CN102346489 discloses a pulse neural network method of robot object
tracking control. The collision avoidance is done by processing a set of information from the
sensors. There is no information regarding a method to avoid a static obstacle in the robot’s
workspace to be achieved exclusively by neural network training, without the use of visual sensors
to identify the obstacle [15].

Some of the authors have been previously involved in research concerning the use of neural
networks for economic applications, or robot control. The program presented in [1], [2] was
designed with the purpose of using neural computing in the modelling and the simulation of pro-
cesses or activities. It is suitable for the study of any activity for which a three-layer perceptron
neural network may serve as a model.

Also, [3] shows a neural model for the kinematical analysis of six parallel robot. For reasons
related to simplification, there has been considered the move of the effector in a cube with a side
of 10 cm, without taking into account the variation of the position angles. For the training of the
network, there have been generated 130 training examples, and then the neural model for the
move of the robot on different trajectories has been validated. In the application of the neural
model, there has been noticed that the training of the neural model in a larger working space,
specific to a robot, is difficult, especially when the robot has to avoid an obstacle. That is why
the authors have aimed to develop a more effective method of control for the cases in which the
robot has to avoid an obstacle.

In [4] there has been presented the main principle of a method of obstacle avoidance, by
means of an erroneous instruction of the network. The experiments have been completed in a
smaller part of the robots workspace (a cube with the side 10 cm). Further research illustrated
the difficulty of obtaining an effective neural model that can lead the effector with a precision
that is appropriate to the application, and avoid the obstacle. There have been circumstances in
which the neural model did not offer the coordinates that lead the effector beside the obstacle [3].
The validation of the models presented [3], [4] has been made based on sets of data that have
not been used as training data; there has been completed no cross-validation.

In the current paper the authors have developed the method in terms of the generation of
the set of the training examples. In this sense, there have been stated clear rules that establish
the training examples. In a first stage, there has been completed a neural model tested through
a 4-fold cross-validation technique. The case studies have been carried out in a workspace that
had the shape of a cube with a side of 600 mm, corresponding to the majority of the applications,
by using an obstacle with a cube shape with a side of 200 mm. In order to avoid the collision,
there have been studied three types of envelopes.

There are several types of neural networks that can be used in modelling a system. They
can be classified based on criteria such as the structure or the instruction types (networks of

542 E. Ciupan, F. Lungu, C. Ciupan

perceptron type, radial basis function networks, Kohonen self-organization networks, Hopfield
networks, fuzzy neural networks, networks with supervised or non-supervised training and so
on). In all the modelling activities that are referred to in this paper there have been used
neural networks of the type of a three-layer perceptron, in which the initial layer has 6 neurons
corresponding to the position (X,Y,Z,ψ,θ,φ) of the effector. In the case of some of these models,
the final layer has 6 neurons corresponding to the coordinates of the joints qi, i=1, ...,6, or only
one neuron, corresponding to the coordinate of a single joint (q3 for instance). The number of the
neurons of the hidden layer has been determined by trial, throughout several training sessions,
based on the criteria of the minimization of the mean square error. The chosen activation
functions have been log-sigmoid for the neurons of the hidden layer, and the function purelin
for the neurons on the output layer. The training of the networks has been completed using
the Levenberg-Marquardt method. Unlike the descent gradient method, the process of training
through the Levenberg-Marquardt method could converge quickly when close to the solution. As
it is a method based on Hessian, there is no risk that in such a circumstance the solution be lost,
as it can occur in the training with the descent gradient method, when a higher rate of learning
is used. In the modelling activity, there has been used the Matlab application.

2 Method to avoid obstacle

2.1 Method presentation

The problem that this paper solves consists in the elaboration of an industrial robot training
method based on neural network modelling and training, so that, when programming a straight
trajectory between two points through which the robot’s effector has to pass, the robot avoid an
obstacle that it encounters.

The method of training robots to avoid obstacles is based on the modelling, training and
use of three-layer perceptron type neural networks, having k neurons in the input layer, which
corresponds to the number of degrees of freedom, m neurons in the output layer, which corre-
sponds to the number of kinematic axes, and a number n, consisting of 15 to 50 neurons, which
corresponds to the hidden layer. Figure 2 shows the scheme of a neural network of this type that
has 6 neurons in the input layer, corresponding to the 6 degrees of freedom, 6 neurons in the
output layer, corresponding to the 6 kinematic axes and an unspecified number n, in the hidden
layer.

The training data are determined from the mathematical model or by experimenting on the
physical model of the robot, by choosing a point cloud contained in a work plane included in
the robot’s workspace, plane in which the robot has to operate at least one move between two
given points. The avoidance of the obstacle in the robot’s trajectory is achieved by the training
of the network, with input data corresponding to the coordinates of some points on the robot’s
direct trajectory between two points, and output data (the joints coordinates) corresponding to
the bypass trajectory.

The set of training examples will have as input signals the coordinates of the cloud of points,
while as output ones, the coordinates of the joints, calculated according to the rule R below:

R1) for a point in the work plane outside the obstacle or its envelope, it is established as pair
the coordinates of the correct joints (in accordance with the mathematical model which
describes the robot’s kinematics, or in accordance with the experimental measurements)

R2) for a point in the work plane that belongs to the obstacle or its envelope, it is established as
pair the coordinates of the joints that belong to a different point, the latter being situated
on the surface of the obstacle, or on its envelope, depending on the case.

ANN Method for Control of Robots to Avoid Obstacles 543

Figure 2: Neural network diagram

The number of neurons in the hidden layer is chosen by means of trials, a practice which is
used in neural computing.

The novelty of this method consists in the way the training set is built. This leads to a
deliberately erroneous training, so that in the recall phase it is not necessary to know the bypass
trajectory.

The set of training examples is constituted by input-output data pairs, in which the input
signals correspond to some points on the robot’s direct Td trajectory. The output signals, in the
training phase, are the coordinates of the joints, but in "deliberately erroneous" way, they are not
the coordinates associated to the direct trajectory that crosses the obstacle, but to the output
signals corresponding to the points situated outside the obstacle, on a Ta avoidance trajectory.
Thus, in the recall phase, the model is going to behave erroneously. This means that for the
points on a direct trajectory (a line, in most of the cases) which does not bypass the obstacle,
transmitted as input data, the neural model will generate, as output, the coordinates of the
joints that will lead the robot beside the obstacle.

In order to achieve the neural model NM, one has to complete the following steps:

− create a neural network that has, in its input layer, a number of neurons equal to the
number of the robot’s degrees of freedom, and in its output layer, a number of neurons
equal to the number of joints qi

− create a set of training examples formed by pairs of effector coordinates, which belong to the
robot’s work plane, and corresponding coordinates of the joints qi, determined according
to rule R described above

− train a neural network with the sets of training data, the result of the training process
being called "neural model"

− test the neural model achieved previously and validate it, in case acceptable errors are
obtained

− use the neural model, which means that the neural model receives exclusively input data
which consists of robot effector positions, and generates the coordinates of the joints.

544 E. Ciupan, F. Lungu, C. Ciupan

2.2 Cross validation of the method

Let us consider the case of a serial robot with six degrees of freedom (Figure 3), given by
three positioning movements (X, Y and Z), and other three effector orientation movements (ψ, θ,
φ). Based on the robot’s kinematic scheme (Figure 3a), one can describe the connecting relations

Figure 3: a. Kinematic diagram; b. The robot architecture

between the joints coordinates qi, as well as the effector’s position (X, Y, Z, ψ, θ, φ). Thus, the
mathematical model for the inverse kinematics is obtained by solving the system of equations
(1)-(6):

X = X0 + q1 · iTx + l2sin(θ) (1)

Y = Y0 + q2 · iTy + (l1 + l2cos(θ))sinψ (2)

Z = Z0 + q3 · iTz − (l1 + l2cos(θ))cosψ (3)

ψ = ψ0 + q4 · iTψ (4)

θ = θ0 + q5 · iTθ (5)

φ = φ0 + q6 · iTφ (6)

where iTx, iTy, iTz, iTψ, iTθ, iTφ represent the transfer functions of the transforming mech-
anisms which generate the given movements, and X0, Y0, Z0, ψ0, θ0, φ0 represent the initial
values obtained for qi=0, i=1,...,6.

The architecture of the robot in Figure 3a is shown in Figure 3b. A portion of the robot’s
workspace (Figure 3b), which has the shape of a parallelepiped with base P1P2P3P4 is being
considered. In the workspace there is an obstacle ABCDA′B′C ′D′ which has to be avoided
during the operation. It is assumed that the robot’s effector has to move between points P1 P3,
but on a trajectory that should avoid the obstacle ABCDA′B′C ′D′.

The plane of points P1, P2, P3, P4 is called work plane (represented as Wp), namely a plane in
which the robot has to complete a number of operations (retrieve or place objects, feed equipment
etc.).

We are looking for a simple and comfortable method of the robot control, which would provide
as input data the coordinates of some points on the direct trajectory Td and make the robot move

ANN Method for Control of Robots to Avoid Obstacles 545

on the trajectory Ta which avoids the obstacle. This is achieved by a "deliberately erroneous"
training of the neural network which models the robot’s behaviour.

The set of training data, under the form of input-output matrix pairs, is obtained by the
association of the effector’s coordinates (X, Y, Z, ψ, θ, φ) with the joints coordinates (qi, i=1,
..., 6) resulted by means of mathematical model or by measuring on the physical model. The
generation of the training data is made according to table of Figure 4.

Figure 4: The way for obtaining the training data

In order to avoid the obstacle, the robot has to move on a deviating trajectory Ta. For the
robot to move on the deviating trajectory Ta, its control equipment has to receive information
regarding the shape of the trajectory as some coordinates of some points on the trajectory. A
possible description of the trajectory is given by its mathematical expression, which has the
disadvantage of having to determine it. The next step is to determine the coordinates of the
joints for a set of points which belong to the deviating trajectory Ta.

According to the approach of this paper the avoiding trajectory is approximated by a set of few
points, without knowing the mathematical expression of the trajectory, and the determination
of the joints is done on basis of a neural model.

In order to complete the data in table of Figure 4, in the case of the robot in Figure
3b, there have been chosen the points P1(200,200,200), P2(800,200,200), P3(800,800,200) and
P4(200,800,200). The obstacle is considered to be a parallelepiped defined by the points A(400,400,200),
B(600,400,200), C(600,600,200) and D(400,600,200), situated in the work plane and the points
A′(400,400,400), B′(600,400,400), C ′(600,600,400) and D′(400,600,400), situated in a plane par-
allel to the work plane, 200 mm away.

For the validation of the method, there has been considered the move of the effector on the
diagonal P1P3 (figure 3b). In order to establish the set of the training and testing examples for
the move on the segments P1A and CP3, rule R1 is applied. As for the movement on the segment
AC, there is applied rule R2. The set of the training data is shown in table of Figure 5.

There has been applied a 4-fold cross-validation technique of the method. Thus, the set of
the training examples in table of Figure 5 has been divided into four subsets. The inclusion
rule regarding the training examples in the four subsets is described by means of the indexes of
the lines in table of Figure 5, grouped in the subsets Mk, k=1, ...,4, according to the algorithm
below:

Mk = {jk,n | jk,n = k + 4n, k ∈ [1, 4], n ∈ [0, 75]} (7)

For the validation of the method, out of the four subsets, there has been successively retained
a subset for validation, while the other three subsets have been used, merged, for training. Thus,
there have been completed four rounds of training and validation of the method, using the
neural networks. Within each round, there have been developed several neural models of the
three-layer perceptron type, having the architecture 6-m-6, where m represents the number of

546 E. Ciupan, F. Lungu, C. Ciupan

Figure 5: The set of training examples for cross-validation

the neurons in the hidden layer. The activation functions chosen have been the log-sigmoid for
the neuron for the hidden layers, and the purelin function, respectively, for the neuron on the
output layer. The instruction has been completed by using the Levenberg-Marquardt method,
in the case of the Matlab application. Following the criterion of the minimization of the mean
square error throughout the repeated trainings, there have been retained models for which m=31.
The training parameters have default values, namely maximum epochs (1000), performance goal
(0), minimum gradient (10−05), maximum validation checks (6), multiplication factor (0.001),
multiplication factor decrease ratio (0.1), multiplication factor increase ratio (10), maximum
value of multiplication factor (1010).

Table presented in Figure 6 shows the most effective (minimum mean square error, marked
as MSE) obtained when training the networks in the case of each of the four rounds.

Figure 6: The best MSE

It has been noticed that for each of the four neural models obtained by means of the combi-
nation of three subsets Mk, there has been obtained, through testing on the fourth test subset,
very good results for the coordinates X, Y, ψ, θ, φ. The results of the four simulations are briefly
shown in Figure 7 and in table of Figure 8.

The analysis of the results obtained shows that there appear problems when simulating the
coordinate Z at the intersection of the direct trajectory with the obstacle, close to the latter.
Outside the area close to the points AA′ and CC ′, all the four simulations grant good results for
coordinate Z as well.

ANN Method for Control of Robots to Avoid Obstacles 547

Figure 7: The errors of coordinates X, Y, Z

Figure 8: Cross-validation results

548 E. Ciupan, F. Lungu, C. Ciupan

In a subsequent stage, efforts have been made to improve the solution by the development of
some simplified neural models. Thus, there have been considered the networks of the three-layer
perceptron type, with 6 neurons in the input layer, corresponding to position (X, Y, Z, ψ, θ,φ)
of the effector, and a single neuron in the output layer, corresponding to the coordinate of the
joint q3, which determines the Z coordinate. There has been applied the validation technique
of the models, the 4-fold cross-validation. The training has been completed using the set of the
examples shown in table 2; a remark that should be mentioned in the case being that only the
values of the coordinate q3j have been taken into account as output. This set has been divided
into four subsets according to the rules described by sets Mk, k=1, ..., 4. For each of the four
combinations of the sets Mk, k=1, ...,4, there have been realized four trainings of the network.
Thus, during the training, there have been obtained mean square errors that belong to the in-
terval [10−10, 10−1]. For each of the four rounds of training-validation corresponding to the four
combinations of the sets Mk, k=1, ...,4, there has been determined the root mean square error
(RMSE) of approximation of coordinate Z. This has been calculated as an overall mean of all the
individual errors Z(k)

j,l for a given value k data, where l=1, ..., 4 corresponds to the four neural
models obtained within each round. These values are shown in table of Figure 9.

Figure 9: The overall RMSE

The analysis of the data in tables of Figures 8 and 9 shows that there is no significant
difference between the errors of approximation of coordinate Z in the case of the two modelling
approaches. As a conclusion of this cross-validation, it has been remarked that the method can
be applied, but in order to avoid the obstacle it is necessary to envelope it (to cover the obstacle
with a smoother surface). The following case studies play the role of evaluating the avoidance
method by using the neural models in which the obstacle is enveloped.

ANN Method for Control of Robots to Avoid Obstacles 549

3 Case study for an enveloped obstacle

In order to analyse the avoidance precision, based on the same number of training points,
the obstacle with three types of envelopes (Figure 10) has been considered.

The point O1 has the coordinates (500,500,200), while the point O′
1 has the coordinates

(500,500,450), the distance O1O
′
1 being greater than the segment AA′. In order to reduce the

number of the training examples, it is considered that ψ=θ=φ=0.

Figure 10: The obstacle envelopes

Figure 11: Training data for Envelope 1

For the points in the work plane that do not belong to the obstacle proper or to its envelope,
the coordinates of the joints are calculated based on the coordinates (Xj , Yj , Zj , ψj , θj , φj)

550 E. Ciupan, F. Lungu, C. Ciupan

which define these points.
For the other points in the work plane which belong to the obstacle, or to its envelope, namely

those which are at the intersection between the work plane and the envelope of the obstacle, the
coordinates of the joints are calculated based on the coordinates of some corresponding points
situated on the envelope.

For each of the three envelopes of the obstacle, there has been created and trained a neural
network. Table of Figure 11 shows how the training data for Envelope 1 has been achieved.

The training of the neural network has been completed having as input signals coordinates
Xj , Yj , Zj , ψj , θj , φj of the points (columns 1-3 and 5-7 in table of Figure 11), and as output
signals, the coordinates of the joints qi,j (columns 8-13 in table of Figure 8) corresponding to
points Xj ,Yj and Z ′

j . The same has been applied in the case of Envelopes 2 and 3.

Figure 12: Errors for Envelope 1, 2, 3

In order to validate the method and the neural models, there have been considered as input
data the coordinates of points (Xj , Yj , Zj , ψj , θj , φj) corresponding to the move of the effector on
the direct trajectory P1P3 (columns 1-3 and 7-9 in table of Figure 12). Based on the coordinates
of the joints qi,j simulated by the neural models corresponding to the envelopes, by means
of relations (1)-(6), there have been calculated the effector coordinates and they have been
graphically represented in Figure 13. The error obtained through the simulation on the neural
model corresponding to each envelope is shown in table of Figure 12 (columns 10 - 18).

The results in table of Figure 12 show that Envelope 1 does not solve the problem at the
borders of the intersection of the direct trajectory with the obstacle, as it is possible for the
latter to be hit. This problem is solved in the case of Envelopes 2 and 3. The precision obtained
by simulation for the models Envelope 2 and Envelope 3 can be accepted only in the case of
some handling applications that do not require a high level of precision. This precision can be
improved by increasing the number of training examples and by increasing their density in the
workspace. In this research, there have been used only 169 training examples for the entire

ANN Method for Control of Robots to Avoid Obstacles 551

Figure 13: Effector coordinates for a. Envelope 1; b. Envelope 2

workspace, the distance between two successive points being 50 mm.

Figure 14: Direct and simulated trajectory

In order to test the obstacle avoidance in the case of programming several trajectories in the
work plane (Envelope 3), there has been considered the robot’s move on direct trajectories under
the form of straight segments between points P1-P4-P5-P6-P3-P1 (Figure 14). The points P1, P4,
P5, P6, P3 are points in which the robot has to complete operations and where the effector has
to position itself with an accuracy corresponding to the application. All the points P1, ..., P6

are situated in the work plane Wp. For the validation, there has been used the neural network
for Envelope 3 and the results are shown in Figure 14.

The analysis of the results in Figure 14 reveals that, although the input data consisted
of coordinates of some points on the direct trajectories Td, the neural model offers the joint
coordinates that make the robot avoid obstacle when direct trajectory Td intersects the envelope
of this obstacle. When the direct trajectory does not intersect the obstacle, the neural model
NM provides data that leads the robot’s effector on the direct trajectory Td.

4 Conclusions and future work

In order to validate the method by numerical research, there has been considered a robot
with six degrees of freedom that has to move between two points in the workspace Wp. In
plane Wp, there has been considered a parallelepiped-shaped object which has to be avoided.
The research aimed to obtain several neural models of the robots kinematics based on a certain

552 E. Ciupan, F. Lungu, C. Ciupan

method of creation of the set of training examples. Within the research, it has been noticed that
the model obtained by the training of the robot so that it move on a trajectory that avoids, to
the limit, the straight trajectory (the completed trajectory follows the obstacles outline) does
not approximate well the move along the axis OZ at the frontier of the obstacle. There have
been recorded relative errors of approximately 50% in such points.

In order to obtain an improved model, there have been considered three envelopes that dress
the obstacle. For each envelope, there has been trained a neural network, each having the
same number of training examples. The set of training examples has been generated by inverse
kinematics analysis, considering a cloud of equally distanced points in the robot’s work plane.
The joint coordinates have been generated depending on the obstacle’s envelope, in accordance
with rule R described in the paper.

It has been noted that in all the three cases the neural model provides the joint coordinates
that lead the end-effector on a bypass trajectory. In all the three cases studied, the bypass
trajectory intersects the obstacle near the points that limit its superior base (A′B′C′D′). The
positive deviation from the coordinate Z does not affect the obstacle avoidance, only the negative
ones.

The analysis of the errors in the case of the coordinates (Xrj , Yrj , Zrj) simulated by the
neural network relating to the programmed coordinates (Xj , Yj , Zj) shows that the results are
influenced by the choice of the obstacle envelope as follows:

• for Envelope 1:

– the coordinates Xrj and Yrj are approximated with errors less than 2%

– there are important errors in the case of coordinates Zrj simulated by the neural model
in the area close to the obstacle (40%, table of Figure 12, row 7)

– close to points A′ and C′, the deviant trajectory intersects the obstacle (%Zrj =
-5.27%, table of Figure 12, row 16)

• for Envelope 2:

– the coordinates Xrj and Yrj are approximated with errors less than 2.5%

– the coordinates Zrj simulated by the neural model are quite well approximated (%Zrj<8%,
table of Figure 12, row 6)

– close to points A′ and C′ , the deviant trajectory intersects the obstacle (%Zrj= -3.98%,
table of Figure 12, row 16)

• for Envelope 3:

– the coordinates Xrj and Yrj are approximated with errors less than 1%

– the coordinates Zrj simulated by the neural network are well approximated (%Zrj<3%)

– close to points A′ and C′, the deviant trajectory intersects the obstacle (%Zrj=-2.81%,
table of Figure 12, row 16).

The problem of the intersection between the bypass trajectory and the obstacle can be solved
by the choice of an envelope that exceeds the obstacle in all its points. Thus, for the case in point,
if one chooses the parallelepiped ABCDA′B′C′D′ with sides 10% larger that the dimensions of
the obstacle, the problem of the collision is going to be avoided. Another option is to increase
the training examples number.

Future research aims to optimize the avoidance trajectories and to improve the position
accuracy in the working points. The trajectory optimization will account for accuracy and

ANN Method for Control of Robots to Avoid Obstacles 553

energy consumption refinements. The positioning accuracy in the working points will be made
by choosing a denser cloud of points around them. Further research aims to study the method
presented in this paper using other types of neural networks and make a comparative analysis of
the results.

Bibliography

[1] Ciupan E.; Bojan I.(2009); Own Software Used in the Modelling of an Economic Supplying
Activity, Proceeding of the 5th International Conference on the Management of Technological
Changes, ISSN 1726-9679, (1): 209-212.

[2] Ciupan E. (2007); Software Designed for Modelling and Simulating Using Three-layer Neural
Networks, Annals of DAAAM 2008 & Proc. of the 19th International DAAAM Symposium,
ISBN 978-960-89832-7-4, (1): 275-276.

[3] Ciupan E. (2010); A Model for the Kinematical Analysis of a Six Degrees of Freedom Parallel
Robot, Proceedings of the 2010 IEEE International Conference on Automation, Quality and
Testing, Robotics AQTR 2010, ISBN 978-1-4244-6724-2, (1): 261-264.

[4] Ciupan E. (2012); Modelling a Handling Robot to Avoid an Obstacle, Proc. of the 2012 IEEE
International Conference on Automation, Quality and Testing, Robotics AQTR 2012, ISBN
978-1-4673-0702-4, (1):391-395.

[5] Cong S.; Liang Y. (2009); PID-Like Neural Network Nonlinear Adaptive Control for Uncertain
Multivariable Motion Control Systems, IEEE Trans. Ind. Electron, ISSN 0278-0046, 56, (10):
3872-3879.

[6] Debbache G.; Bennia A.; Gola N. (2007); Neural Networks-Based Adaptive State Feedback
Control of Robot Manipulators, International Journal of Computers Communications & Con-
trol, ISSN 1841-9836, 2(4):328-339.

[7] Feng Y.; Wanh Y.; Yang Y. (2012); Inverse Kinematics Solution for Robot Manipulator
Based on Neural Network under Joint Subspace, International Journal of Computers, Com-
munications & Control, ISSN 1841-9836, 7(3): 459-472

[8] Karray F.; Gueaieb W.; Al-Sharhan S. (2005); The Hierarchical Expert Tuning of PID Con-
trollers Using Tools of Soft Computing, IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B , 35(6):1283-1294

[9] Lee S. H. et al. (2007); Patent KR100752098, Robot System Based on Neural Network.

[10] Lewis F. L.; Jagannathan S.; Yesildirak A. (1998); Neural Network Control for Robots
Manipulators and Nonlinear Systems, ISBN0748405968, Tylor & Francisc Inc. Bristol, 1998.

[11] Mann G. K. I.; Hu B-G.; Gosine R.G. (2001); Two-Level Tuning of Fuzzy PID Controllers,
IEEE Transactions on Systems, Man, and Cybernetics, Part B, 31(2): 263-269.

[12] Min T. et al. (2012); Patent CN102346489, Pulse Neural Network Based Method for Con-
trolling Object Tracking of Robot.

[13] Park K. T. et al. (2005); Patent KR20070072314, Method for Controlling Pose of Robot
With Using Neural Network, Recording Medium Thereof, Apparatus for Controlling Pose of
Robot With Using Neuron-Network and Robot Therewith.

554 E. Ciupan, F. Lungu, C. Ciupan

[14] Pisla D. L.; Itul T. P.; Pisla A. (2007); Considerations Regarding the Geometrical Modelling
of Parallel Mini-Manipulators With Triangle Platform, Proc. of 11th Int. Research/Expert
Conference Trends in the Development of Machinery and Associated Technology TMT 2007,
ISBN 9958-617-30-7: 607-610.

[15] Rigatos G. (2009); Model-based and model-free control of flexible-link robots: A comparison
between representative methods, Applied Mathematical Modelling, 33(10): 3906-3925.

[16] Siciliano B.; Katib O. (2008); Springer Handbook of robotics, Springer-Verlag, Berlin Hei-
delberg, ISBN 978-3-540-23957-4.

[17] Uang H. J.; Lien C.C. (2006); Mixed H2/H & PID tracking control design for uncertain
spacecraft systems using a cerebellar model articulation controller, IEEE Proc.- Control The-
ory and Applications, 3(1): 1-13.

[18] Yu D. L.; Chang T. K.; Yu D.W. (2005); Fault Tolerant Control of Multivariable Processes
Using Auto-Tuning PID Controller, IEEE Transactions on Systems, Man, and Cybernetics,
Part B , 35 (1): 32-43.

[19] Yu W.; Rosen J. (2013); Neural PID Control of Robot Manipulators application to an Upper
Limb Exoskeleton, IEEE Transactions on Cybernetics, 43(2): 673-684.

[20] Zhang P.Y.; Lu T.S.; Song L.B. (2004); RBF networks-based inverse kinematics of 6R
manipulator, International Journal of advanced manufacturing technology, 26(1): 144-147.

[21] Zilouchian A.; Jamshidi M. (2001); Intelligent Control Systems using Soft Computing
Methodologies, CRC Press LLC, ISBN 0-8493-1875-0.

