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Abstract: Typically, gene expression data are formed by thousands of genes asso-
ciated to tens or hundreds of samples. Gene expression data comprise relevant (dis-
criminant) information as well as irrelevant information often interpreted as noise.
The irrelevant information usually affects the efficiency of discovering and grouping
meaningful latent information correlated to biological significance, process closely re-
lated to data clustering. Class discovery through clustering may help in identifying
latent features that reflect molecular signatures, ultimately leading to class forming.
One solution for improving the class discovery efficiency is provided by data dimen-
sionality reduction, where data is decomposed into lower dimensional factors, so that
those factors approximate original data.
Keywords: computational intelligence, microarray data analysis, clustering, recog-
nition.

1 Introduction

When analyzing high dimensional data the analysis process often becomes prohibitive and
computational intractable if the data is analyzed in its receiving form. Fortunately, in many
cases, data comprises redundant information, irrelevant or insignificant entries which can be
discarded without significantly affecting the final result or decision, process known as dimension-
ality reduction. Discovering latent and meaningful low-dimensional factors from high-dimensional
data is of great importance in many research fields. Basically, dimensionality reduction may be
accomplished by either feature selection or data transformation. The latter is a factorization
process that decomposes data into meaningful factors so that their product approximates the
initial data as good as possible. By factorization, some initial information is lost; however, the
factorization of gene expression should be performed so that the factors provide a biologically
meaningful decomposition of the data, which is a major goal for this particular task. The cluster
statistics should match the known sample labels when statistics are available from the full data.

Let us consider our data containing m samples of n - dimensional vectors stored into a
n ×m matrix V, where the vector elements indexed as i = 1 . . . n correspond to the receiving
information values. Dimensionality reduction refers to transforming the n - dimensional data into
a lower r - dimensional data. This further relates to decomposing the matrix V into factors W
of dimension n× r and H of dimension r×m, where r < (n,m) is often named the factorization
rank, so that their product approximates V, i.e. WH ∼= Ṽ ≈ V. For analyzing the receiving
information the n - dimensional space is replaced by the lower r - dimensional space where the
new information resides. Typically, W represents the basis factors and H the encoding (also
know as the decomposition coefficients). Thus, each j = 1 . . .m information embedded into an
n - dimensional column vector vj can be represented as linear (or nonlinear) combination of the
basis matrix W and the corresponding low dimensional coefficients vector hj , more precisely,
vj = Whj . When the factorization process is applied to gene expression data from a set of
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microarray experiments, we typically deal with gene expression profile for a single gene across
many samples or experimental conditions. More precisely, the matrix V comprises in its rows
the expression levels of genes, while the columns correspond to samples. Usually, n is of order
of thousands while m is often less than 100. In this context NMF seeks for finding a small
number of metagenes. Therefore, each column of W represents a metagene and each column of
H denotes the expression profile.

2 Approach

One of the frequently used dimensionality reduction approaches is given by singular values
decomposition (SVD). SVD has been proposed [1] to reduce the gene expression space where the
columns of W form orthonormal basis called eigenarrays, while H forms eigengenes. Sorting the
genes according to the descending values of eigengenes gives a global picture of the dynamics of
the gene expression, in which individual genes and arrays appear to be clustered into groups of
similar functions or cellular states. A robust SVD variant [2] has been further proposed to cope
with outliers or missing values often found in gene expression. Other approaches refer to novel
methods for analyzing SVD for obtaining gene groups along with a confidence measure [3], or SVD
based biclustering through incorporating simultaneous normalization of rows and columns [4].

A relatively recent approach for data factorization is provided by nonnegative matrix fac-
torization, where both factors are constrained to have nonnegative entries. The work of Lee
and Seung published in Nature [5] can be considered as a starting point from where the inter-
est in this approach almost exploded due to the algorithm’s simplicity and its compliance with
physiological principles. Ever since, new NMF variants have been developed in the attempt to
improve its convergence, numerical stability, processing speed or to extend the approach to tem-
poral domain. Original NMF has been applied to gene clustering [6] and, recently a sparse NMF
approach has been developed [7], that appears to yield better clustering performance compared
to the standard NMF.

Although the original NMF has been successfully applied to gene expression clustering, its
application was rather limited to three data sets. We have extended the previous work of [6] by
employing three more expression data sets in order to validate the efficiency of this decomposition
approach. In addition, two more NMF variants were applied for a systematic comparison. The
extension also includes the use of k-means clustering strategy along with the expression intensity
provided by the rows of H.

Moreover, the suitability of NMF approaches was investigated for the recognition task. Fi-
nally, we rank the algorithms according to their clustering and recognition performance as well
as with respect to their stability, as defined later.

3 Methods

3.1 Non-negative matrix factorization

In the NMF formulation the difference between the initial data matrix and the product of
its decomposition factors can be expressed in different ways leading to various cost functions
fNMF which quantify the decomposition quality. One frequently cost function is described by
the Kullback-Leibler (KL) divergence based cost function:

fNMF (v,w,h) ,
∑
i,j

(
vij ln

vij∑
l wilhlj

+
∑
l

wilhlj − vij
)
, (1)
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for any i = 1 . . . n, j = 1 . . .m, and l = 1 . . . r.
One solution for minimizing the above cost functions is given by adopting an Expectation -

Maximization (EM) like strategy [5] for iteratively updating the factors. Starting with random
values for W and H, at each iteration, the following updating rules are used to guarantee the
minimization (towards a local minimum) of the KL-based cost function:

hlj ←− hlj

∑
iwli

vij∑
l wilhlj∑

iwil
(2)

wil ←− wil

∑
j hjl

vij∑
k wilhlj∑

j hlj
(3)

3.2 Local non-negative matrix factorization

To enhance the decomposition sparseness, Li et al [8] have developed the Local Non-negative
Matrix Factorization (LNMF) algorithm, imposing more constraints to the KL cost function to
get more localized basis factors. The associated cost function is then given by:

hlj ←−
√
hlj
∑
i

vij
wil∑

l wikhlj
(4)

wil ←−
wil
∑

j vij
hlj∑

l wilhlj∑
j hlj

(5)

However, we should note that, here, although sparseness issue refers to the basis factors, this
approach does not guarantee a high degree of sparseness for the expression profiles. As we shall
see in the experimental section, the coefficient sparseness indeed seems to positively correlate
with the accuracy performance.

3.3 Polynomial non-negative matrix factorization

Unlike NMF, the polynomial NMF [9] [10] was developed as alternative to the standard
NMF for decomposing data in some nonlinear fashion. PNMF assumes that the input data
V ∈ V ⊆ Rn×m are transformed to a higher dimensional space F ⊆ Rl×m, l ≫ n. By de-
noting the set of the transformed input data with F = [ϕ(v1), ϕ(v2), . . . , ϕ(vm)], with the l
- dimensional vector expressed as ϕ(vj) = [ϕ(v)1, ϕ(v)2, . . . , ϕ(v)s, . . . , ϕ(v)l]

T ∈ F , a matrix
Y = [ϕ(w1), ϕ(w2), . . . , ϕ(wr)], Y ∈ F , that approximates the transformed data set, such that
r < n, can be found. Therefore, each vector ϕ(v) can be written as a linear combination as
ϕ(v) ≈ Yh. Defining a kernel function κ that satisfies κ(vw) , κ(v,w) = ⟨ϕ(v), ϕ(w)⟩, for all
v,w ∈ V, where ϕ is a mapping from V to an (inner product) feature space F , ϕ : v −→ ϕ(v) ∈ F ,
the following squared Euclidean distance based cost function was proposed [9]:

fPNMF (v,w,h) =
1

2
∥ϕ(vj)−Yhj∥2 (6)

= k(v,v)− 2k(v,wl)h+ hTk(wo,wl)h,

The cost function fPNMF should be minimized subject to hl, wil ≥ 0, and
∑n

i=1wil = 1, l =
1 . . . r.
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4 Results

The experiments were conducted with respect to the following aspects: (i) clustering error
defined as the number of misclustered samples expressed in percentage, and (ii) model stability
defined thorough the standard deviation of the clustering error for several NMF runs, and (iii)
recognition error defined as the percent of misclassified samples from the test set.

4.1 Data set description

We have applied NMF, LNM, and PNMF to six publicly available microarray data sets:
leukemia [11], medulloblastoma [12] , colon [13], DLBCL [14], SRBCT [15], and prostate [16]
data set, respectively. The first two data sets are exactly the ones used by [6]. We should also
note that the original DLBCL data set initially contained 7126 genes. By setting an intensity
thresholds at 20 - 16000 units, then filtering out genes with max/min ≤ 3 or (max - min) ≤
100, the final number if genes was 6285. The filtering procedure was similar to the one described
in [17]. For the prostate, the conditions for gene selection was a threshold at 100 - 16000 units,
with max/min ≤ 5 or (max - min) ≤ 50, conducting from a total of initial 12600 to 5966 genes.

4.2 Clustering

Starting from random values for both factors W and H, NMF iteratively modifies them
until the algorithm converges to a local minimum. More precisely, the running stops when the
difference between V and the product of its decomposition factors reaches a minimum imposed
threshold. Due to its stochastic nature, the algorithm does not always converge to the same
solution with different initial random values for the factors. Therefore, NMF should run several
times. In our experiments we ran NMF 30 times, and the minimum (Min.) and average (Av.)
clustering error along with its standard deviation (Std.) are reported. Standard deviation is a
good indicator for the model stability. A small value reveals better stability, i.e. the algorithm
leads to approximately the same performance for multiple runs.

Once NMF converged and found its final decomposition factors, it is the H that contains
clustering information. There are two approaches to assign sample labels. One approach sug-
gested by [6] refers to the label assignment according only to the relative values in each column
of H, i.e. the class labels are determined by the index of the highest metagene expression. When
the number of rows of H equals the number of known clusters we count the number of maxi-
mum values for each column of H with respect to the known class range. Clustering errors are
simply the misassignments, i.e. the mismatch between the index and associated value. Table 1
depicts the clustering errors, where the table column denoted by H indicates the first clustering
criteria. It may happen that this procedure does not lead to the correct number of clustering
for a particular run. Even worse, whenever this approach fails to discover the correct number of
clusters for any of those 30 runs, we report this case as N/A in the table.

The first clustering approach only applies when the number of rows of H (viewed as dimension
of H, or the decomposition rank) r equals the number of known clusters. The second clustering
approach deals with varying ranks. The NMF algorithms were run for r = {2, 3, 4, 5, 6, 7, 8}.
Each r - dimensional column vector of H was clustered with the help of K - means clustering
strategy. We have also carried out experiments with SVD, as baseline. The SVD method always
fails to discover the correct number of clusters for the first clustering approach for all data sets.
To emphasis the importance of dimensionality reduction task, experiments with the initial data
dimension were also conducted and shown in Table 1 corresponding to the row termed “No
processing”. Indeed, the high dimension technically halves the performance of the K - means
clustering.
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Table 1: Clustering results for the NMF methods. Clustering results for SVD as dimensionality
reduction approach is also tabulated. For comparison purpose, the clustering errors are also
shown when K means is applied for the initial data dimension. The first two lowest errors are
emphasized in bold.

Method Approach Clust. Err. (%) Data
Leukemia Medulloblastoma Colon DLBCL SRBCT Prostate

No
processing K means Min. 13.15 14.70 20.96 28.57 34.93 36.27

Min. 5.26 11.76 11.29 18.18 N/A 18.62
SVD K means Av. 23.97 34.11 29.26 27.27 N/A 38.67

Std. 17.42 9.61 9.27 6.94 N/A 10.86
Min. 2.63 38.23 25.80 28.57 N/A N/A

H Av. 4.94 39.64 26.25 34.41 N/A N/A
NMF Std. 1.15 1.49 0.73 4.76 N/A N/A

Min. 0 5.88 11.29 12.98 21.68 24.50
K means Av. 9.29 8.08 25.00 23.11 26.80 40.68

Std. 10.75 6.23 9.96 5.60 8.65 6.69
Min. 10.52 38.23 32.25 29.87 N/A N/A

H Av. 17.57 38.23 34.38 32.20 N/A N/A
LNMF Std. 2.24 0 2.45 0.99 N/A N/A

Min. 2.63 35.29 46.77 27.27 33.73 N/A
K means Av. 12.65 35.29 46.77 29.71 50.96 N/A

Std. 9.90 0 0 2.06 4.50 N/A
Min. 2.63 41.17 33.87 28.57 N/A N/A

H Av. 2.63 41.17 33.87 28.57 N/A N/A
PNMF Std. 0 0 0 0 N/A N/A

Min. 0 11.76 14.51 23.37 32.53 16.66
K means Av. 15.41 29.41 21.58 30.99 43.01 33.23

Std. 9.05 9.03 4.72 6.00 5.90 7.98

As far as the clustering ability is concerned, NMF seems to yield the lowest clustering er-
ror for all data sets but prostate. Comparing the two clustering approaches, K - means clearly
outperforms the first approach for all data sets and all the decomposition methods. Moreover,
except the prostate case for LNMF, this clustering approach always finds the correct number of
classes for several NMF runs. For the leukemia data set, K - means conducted to perfect cluster-
ing (zero clustering error) for both NMF and LNMF. Brunet et al. [6] as well as other authors,
including Kim and Park [7] reported that two ALL samples were consistently misclassified by
most methods, including NMF. The same tendency has been noticed by us when applying the
first clustering strategy but not with the second one. However, we should stress that this data
set is probably an easy one compared to the others, in terms of method’s clustering ability.

It is worth mentioning that, amongst all data sets, the prostate data seems to be the most
difficult one to be correctly clustered. This indicates hard overlaps within samples from both
tumor and non-tumor classes. Surprisingly, although PNMF performs modest on the other data
sets, in this case it had conducted to the lowest clustering error. This behaviors could be due
to the nonlinear nature of the PNMF algorithm that enables to find discriminant non-linear
biological structures for this data set. For the PNMF algorithm the best result corresponds to
the polynomial degree of 2.

Analyzing the model stability, LNMF followed by the PNMF algorithm are the most stable
models and tend to make the same errors for various numbers of algorithm runs, as indicated by
low or even zero standard deviation value. However, the LNMF was outperformed by all other
methods.

The stability of the algorithm was also measured through the cophenetic correlation coefficient
[6] computed for various decomposition ranks and displayed in Figure 1. All algorithms tend to
be instable as rank increases. However, the behavior differs from one data set to another.



Non-Negative Factorization for Clustering of Microarray Data 21

Figure 1: The cophenetic correlation coefficient versus decomposition rank for the leukemia,
medulloblastoma, colon, DLBCL, SRBCT, and prostate data set, respectively.

4.3 Sample recognition

The second major experimental task involves the recognition of samples previously misclas-
sified by the clustering K - means clustering approach. The correctly assigned samples were all
gathered to form a training set Vtr, while a test set Vte comprises all wrongly clustered samples
associated to the minimum clustering error. The NMF methods were only applied to the training
set. Thus, there is a big difference between clustering and recognition tasks in terms of train-
ing. While in the latter case the NMF uses all samples to extract relevant information, for the
recognition task, NMF employs only a subset of this statistics, more precisely, those associated
to the correctly clustered samples. Let us denote the final decomposition factors corresponding
to the training set by Wtr and Htr, respectively. To form a training feature vector, the training
data were projected into the inverse of Wtr, i.e., Ftr = W−1

tr ∗Vtr. Similarly, the test feature
vectors are formed as Fte = W−1

tr ∗Vte. We should note that, unlike the clustering procedure
where the clustering results depend on H, the sample recognition is solely affected by W. By
projecting the data into the inverse of W, Ftr comprises mixed positive and negative values. To
keep the non-negativity constraints we have also ran experiments by projecting the data into the
W. However, the classification results were much lower in this case.

A simple maximum correlation classifier (MCC) relying on the minimum Euclidean distance
between vectors was chosen as distance measurement. The distance from any hte to any htr is
expressed as ∥hte − htr∥2 = −2gc(hte + hte)

Thte, where gc(hte) = hT
trhte − 1/2∥htr∥2 is a linear

discriminant function of hte. By computing Q linear discriminant functions, a test sample is
assigned to the label according to the

MCC = argmaxc{gc(hte} (7)

In other words, the label of the training feature vector corresponding to the maximum corre-
lation is associated to the test feature vector (test sample). The recognition results are tabulated
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Table 2: Sample recognition results with MCC.

Method Data
Leukemia Medulloblastoma Colon DLBCL SRBCT Prostate

NMF - 50 57.14 40 55.55 28
LNMF 0 66.66 86.20 71.42 64.28 -
PNMF - 25 44.44 33.33 66.66 47.05

in Table 2. A recognition error of 100% indicates no improvement over the misclustered samples.
LNMF wrongly clustered only one leukemia sample that have been finally correctly recognized
by the recognition procedure. Four misclustered medulloblastoma samples are provided by the
PNMF, while three of them were also further correctly classified by the recognition procedure.
An impressive improvement was obtained in the case of NMF for the prostate data set. While
the clustering strategy leaded to 25 mislabelled samples out of 102, the recognition procedure
had further reduced those samples to 7.

5 Conclusions

Microarray analysis typically involves tens of samples where each sample is formed of thou-
sands of values (genes). This recasts into a high-dimensional matrix. The analysis of such matrix
is associated in the computer science community with the small size problem negatively affecting
both the clustering and recognition accuracy. Wisely reducing data dimension is one solution to
this issue. This paper addressed data dimensionality reduction applied to clustering and recog-
nition tasks by three non-negative decomposition variants, NMF, LNM, and PNMF. The novelty
of this work resides in the following: (a) we have carried out a systematic comparison in terms
of clustering of these NMF algorithms involving six gene expression data sets publicly available;
(b) we have shown that, unlike the clustering approach where the sample assignment depends
only on the relative (maximum) values in each column of H, strategy that failed to discover
the correct class for some certain methods and data sets, by employing a K - means clustering
approach the correct class discovery is always guaranteed for sufficient number of runs.

Concluding, the experiments indicate superior performance for the standard NMF over the
other two, leading to the lowest clustering errors. The standard NMF was closely followed by
SVD and PNMF. The nonlinear NMF approach (PNMF) outperforms NMF for only one data
set, i.e. prostate.
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