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ABSTRACT 

Surface texturing, using micro-milling, has promising applications in the industry of medical implants, since it can assist 

cell adhesion and thus improve osseointegration. Ti6Al4V alloy is used as implant material due to its excellent 

biocompatibility and high mechanical strength. However, those mechanical properties reduce machinability creating 

some challenges for micro-milling. The way to initially assess cell adhesion is using surface wettability, usually 

conducted with water. At the present work, micro-channels were machined in Ti6Al4V by micro end-milling with 

500 µm width per 50 µm depth with 1000 µm distant from each other. The effect of feed per tooth (fz) on wettability 

was analysed and some interesting relations with burrs formed on channel walls were obtained. Values of feed per 

tooth were 3, 6, 12 and 15 µm. Wettability results showed that slotted surface is more hydrophilic on channel 

direction, with contact angles around 30° to 43°. In contrast, on the perpendicular direction the surface tends to be 

hydrophobic with contact angles between 75° and 146°. In addition, contact angle increases (hydrophobic tendency) 

as feed per tooth increases (along with roughness), even on channel direction. The presence of burrs also tends to 

disturb wettability results. Therefore, surface wettability depends on channel direction, burr size and tool feed per 

tooth, as well. 

Keywords: Micromilling, wettability, Ti6Al4V, surface roughness, burrs. 

 

1 INTRODUCTION 

Implants made of pure titanium or Ti6Al4V alloy, begin with conventional machining processes, such as turning 

and/or milling, which produce characteristic roughness and macro textures on the surface, allowing initial biological 

integration [9]. Micro-milling can create 3D textures to help cell adhesion, growth and proliferation, due to its 

characteristics [20]. However, there are still few studies relating feed per tooth and the influence of burrs on surface 

wettability, which is the first indication for good biological integration with human body, when applied to medical 

implants. Textured surface for implants has been extensively investigated lately to reduce healing time and reducing 

body rejection, after work published by Brånemark et al., 1969 [2]. Nowadays, the number of implants tends to 

increase, since life span is steadily growing and customization will be even more necessary. First studies addressing 

facial titanium implants in dentistry applications, between 1969 and 1980, realized that surface roughness could 

significantly affect healing period, which was later referred as osseointegration [1].  

Shorter times for osseointegration and, consequent success in medical implants, are straightly related with cell 

adhesion, growing and proliferation [3]. In order to develop and stimulate those vital cell mechanisms, implant 

material has to match body region, roughness and textures must be adequate at macro-, micro- and nano-levels as 

well as surface energy [12]. After 1990 new surface treatments, after machining, such as thermal aspersion, chemical 

corrosion, sand blasting and anodization have contributed to improve implant surface even further. Some 

biomimetics process, coating with hydroxyapatit and using some bio-glasses are another ways to improve 

osseointegration phenomena potentially [7].  

Overall, machining has been the most promising process to create textures to improve wettability and, as a 

consequence, biological integration. Recent publications, such as, Pratap & Patra, 2018b [15] reported that certain 
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geometries obtained with micro ball noses can affect wettability. Wang et al., 2016 [21] shown that combining micro-

milling and anodization led to better cell adhesion. In a recently published article on micro dimples, indicated that 

micro-textures type conical modify bacterial adhesion on the surface [8].  

One of the variables indicated to assess the potential of an implant surface is wettability. The wettability may 

indicate how the blood will behave interacting with the material surface and its speed to promote better 

osseointegration [16]. Thus, when proposing the construction of topography in biomaterials at the macro, meso, 

micro and nanometric scales, it is necessary to investigate the wettability and its interaction with the topography and 

roughness [18]. Depending on the implant region, a more uniform wettability can be chosen, where the fluid spreads 

evenly over the surface. Another possibility is the creation of grooves so that the spreading is more effective in one 

direction. This effect of spreading non-uniform fluid is called wettability anisotropy [6]. Grooves on the surface of 

Ti6Al4V have enhanced cell adhesion compared to smooth surfaces [4]. Micro-milling can be an alternative for the 

manufacture of cavities (slots or channels) that promote anisotropy of wettability and have potential application in 

metallic implants. 

The present work investigates wettability of Ti6Al4V of a surface textured with micro channels. Channels were 

end-milled with increasing values of feed per tooth (fz), resulting in different roughness values and some burrs at the 

walls. Wettability results were different, depending on roughness at the bottom of channels, on direction and on 

burr shape, orientation and dimensions. 

 

2 Materials and Methods 

2.1 Material and Experimental Set-Up 

The material used was Ti6Al4V ELI (Extra low interstitial) titanium alloy in the annealed condition and with the 

presence of the α and βphases, in the form of hot-rolled sheets produced by the company TIMET, which meets the 

requirements found in the ASTM F136 standard. Table 1 contains the typical chemical composition of the sample, 

hardness (Rockwell scale) and average grain size according to ASTM E112-12. 

 

Table 1: Typical chemical composition Ti6Al4V, grain size and hardness. 

 

Elements Fe V Al C O N 

Grain 

Size 

ASTM 

(µm) 

Hardness 

(Rc) 

Weight 

percent 

0.18 4.08 5.98 0.009 0.11 0.009 10 30 

 

 

The samples of Ti6Al4V/ELI alloy were initially prepared by gently flat-milling them into small blocks with 12 x 

26 x 10 mm. A flat-end mill, diameter 20 mm, with 2 inserts, was used working with 720 rpm, fz = 0.050 mm/tooth 

and depth of cut 0.100 mm. Insert recommendations (R390-11 T3 08M-PL 1030) for cutting conditions.  

The texture experiments were carried out on a three-axis machining centre (Hermle C800U), 500 nm positioning 

system (±3µ). In its spindle, a NSK Nakanishi HES 510 milling spindle was clamped. The HES 510 is capable of speeds 

up to 50,000 rpm continuously variable from 6,000 upwards. The speed control is the NSK controller Nakanishi 

Astro E500Z. Maximum tool run-out error was 2.0 µm. 

Tools used were all flat-ended micro mill, solid carbide, two fluted type MS2MS D0050, diameter 500 µm (Figure 

1A), multilayer coating of TiAlN (Figure 1B and 1C) and micro-grain cemented carbide substrate (grain size <0.6 µm), 

edge radius rε of 2.2 µm (figure 1E and 1F) measured in the OLS 4100 Olympus confocal microscope. For each test a 

new tool was used and its cutting-edge aspect, rake and clearance face were examined under the confocal and SEM 

(Figures 1D and 1E). 
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Figure 1: Characterization of the micro tool. A) Tip of the micro end mill. B) Higher magnification of the cutting edge 

for EDS analysis. C) Result of the EDS chemical analysis. D) Edge view by SEM. E) Confocal view to measure the edge 

radius. F) Measurement of the edge radius. 

 

 

Initially, the machining centre went through warm up for 30 minutes before each test. The milling operations 

produced full slots (channels) in one-step cutting (Figure 2A). Each slot (channel) was cut on the Y-axis direction 

(Figure 2A) and twenty-six of them were produced, along the X-axis with 1000 µm of pitch (p) (Figure 2B). All 

channels were set for 50 µm depth of cut (DOC) and resulted in 500 µm wide. Values of feed per tooth (fz) used 

were: 3, 6, 12 and 15 µm. The cutting speed was set at 44 m/min and the speed set on the Nakanishi HES 501 fixed 

at 28,000 revolutions per minute (Figure 2A). 

 

 

 

Figure 2: Configuration for slot cutting. A) General view and cutting parameters. B) Geometry of the channels in the 

front view and C) Top view. 
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2.2 Wettability 

The contact angle (θ) between the liquid and solid phase is an essential parameter for inferring surface energy and 

evaluating the surface wettability [17]. At the present investigation, the Attension Biolin™ tensiometer, depositing 3 

µl of deionized (DI) water on the surface, was the elected technique. Before the test, all samples were cleaned in an 

ultrasonic acetone bath. The calculation of the contact angle (θ) uses the Young-Laplace equation and was measured 

over 10 seconds. The baseline and vector lines between the external surface of the DI water drop and the solid surface 

were determined using one Attension™ software. Three measurements in different regions were performed on each 

sample (first channels, central ones and final ones) with an average measurement between the left and right angles 

(referred to as θL and θR, respectively). Images taken from the front and side of the channels served to evaluate the 

cases presented in Figure 3A e 3B.  

The shape of the droplet and its spreading enabled the qualitative assessment of wettability in both directions, 

i.e., along channel direction and perpendicular to it. Some significant anisotropy in wettability was found [13]. 

Anisotropy of wettability is a phenomenon that is correlated to the non-uniform spreading of the drop deposited on 

the surface [11]. Thus, the creation of specific micro textures has a strong influence on wettability and may require 

analysis in different directions (Figure 3B).  

 

  

 

Figure 3: Analysis of wettability for smooth surfaces and with directional micro textures. A) Uniform wetting 

behaviour, the front and side views of wettability have similar contact angles. B) Directional micro textures with a 

difference in the contact angle as a function of direction. In this case, the contact angles in the front view will be 

different from the side view. 

 

2.3 Superficial Characterization 

Three-dimensional surface topography and area roughness (Sa) inside the channels were measured by confocal 

microscopy OLS 4100. Roughness measurements were taken in channels 1, 14 and 26 of all pieces manufactured in 

relation to the X direction at the tool entrance, middle length and at tool exit of each specific channel. Burr height 

measurements were performed using the Olympus LEXT 4100 software. The measurements made in the regions of 

interest used the ROI (Region of Interest) tool of the LEXT software (confocal microscopy), where it is possible to 

delimit an area. In our case we used a squared region with 200 µm of side. Scanning electron microscopy (SEM) was 

also performed on the LEO 440 microscope for selected cutting condition, in order to evaluate the burr formation 

in up and down milling locations. 

 

3 RESULTS AND DISCUSSION 

Figure 4 shows general aspects of channels obtained with different value of feed per tooth (fz) at increasing 

magnifications. The lowest fz value (3 µm) produced the most severe burrs on both sides of the channel, the up and 

down milling. It can also be noted protruding burrs inside and outside the channels. Increasing fz to 6 µm, Figure 4B, 

there is a considerable reduction of burrs, however they continue to protrude inside and outside the channels. When 
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using fz = 12 µm and 15 µm, shown in Figures 4C and 4D, burrs are at the same magnitude, but are clearly pushed 

outside the channels.  

 

 

 

Figure 4: Scanning electron microscopy fz = 3, 6, 12 and 15 µm. A) Severe burr formation for fz = 3 µm. B) Lower 

burr formation for fz = 6 µm. C) Lower burrs pushed outside of the channels for fz = 12 µm. D) Lower burrs and 

pronounced feed marks for fz = 15 µm. 

 

 

Confocal microscopy was used to evaluate 3D images of the channels e their cross sections, also assessing burrs 

on the walls. Figure 5A shows one channel produced with fz = 3 µm where it can be seen aspects of the burrs, such 

as their height. In comparison, Figure 5B, used fz = 6 µm, shows some lower burrs. On the other hand, Figures 5C 

and 5D show burrs bending on both sides of the walls. Figure 5E shows average heights on both walls, up and down 

A) 

B) 

C) 

D) 
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milling. It is noted that fz = 6 and 12 µm produced the lowest burr heights simultaneously on both walls, similarly 

to Thepsonthi & Özel, 2014 [19]. 

 

 

 

Figure 5: 3D topographies for channels manufactured with different feeds per tooth. A) fz = 3 µm. B) fz = 6 µm. C) 

fz = 12 µm. D) fz = 15 µm. E) Graph of burr height as a function of feed per tooth. 

 

 

Figure 6 shows values of surface roughness, Sa, as a function of fz. It can be noted that roughness has a direct 

relation with fz, being Sa = 55 nm, the lowest value using fz = 3 µm, similar to results found by Ziberov et al.,2020 

[23]. In contrast, the channel machined with fz = 15 µm reached a maximum of Sa = 321 µm, combined with a 

relatively high value of burr height. 

 

 

 

Figure 6: A) Values of surface roughness, Sa, as a function of feed per tooth. B) Machined surfaces images. 
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Figure 7 shows results of wettability measuring the contact angle as a function of fz, initially perpendicular to the 

channel direction. The drops of water were landed on the first channels, on the last ones and on the centrals. That 

intended to assess wettability all over the produced texture on the same surface. 

 

 

 

Figure 7: Contact angle depending on fz and the position of the channels. The displayed direction is perpendicular 

to the channel direction (front view). 

 

 

Looking only on the first channels of all fz values, it can be noted an increase on contact angle (hydrophobic 

surfaces). That behaviour seems to follow surface roughness, which also increases with similar tendency. High values 

of surface roughness seem to create obstacles for water to spread and aggravated by high walls due to burr heights, 

especially when fz = 3 µm. Looking now at central channels only, fz = 3, 6 e 12 µm, are all hydrophobics. However, 

fz = 15 µm shows lower contact angle, slightly lower than 90° going to the hydrophilic direction. That cutting 

condition combined lower burr height and burrs pushed outside, which allowed water to spread over the channels 

easier than when burrs were higher. Lateral burrs, result smooth when cutting forces are higher, due to unavoidable 

edge wear during micro milling [5]. Although tool wear was negligible after each experiment, some edge rounding 

was observed, which could have been the cause for burr shape observed.  

Figure 8 shows contact angle measured on the channel direction. All angles were well below 90°, resulting in 

hydrophilic surfaces [13]. However, contact angles moderately increase with fz, up to 12 µm. Such phenomenon is 

related with roughness and the surface shape left by the tool edge (see Figure 4), which creates higher obstacles for 

water spreading [10]. The super hydrophilic results for fz = 3 µm can be attributed to a combination of low surface 

roughness at the bottom of the channels, with higher walls (due to burrs heights) making easy for the water to spread 

along the channel and difficult to overcome the walls. Similar results were found by Yanling, Jian, & Huadong, 2018 

[22] for the micro-milling of Al6061, this work showed the influence of burrs in preventing the spread of the drop 

deposited on the surface, generating hydrophobic surfaces in the front and side views. Such tendency did not continue 

with fz = 15 µm, because surface roughness at the bottom of the channels reached certain values that impeded water 

to spread further inside, allowing it to overflow the channels. The direction of the burrs, pushed outside for fz = 15 

µm, also facilitated overflow. 
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Figure 8: Contact angle as a function of fz and channel position. 

 

 

Comparing contact angles measured in perpendicular directions (Figures 7 and 8), there is a notable anisotropy 

regarding wettability, due to the selected texture made by micro channels. Along the channels results indicate 

hydrophilic behaviour and perpendicular hydrophobic one [14]. Internally water molecules are attracted to each 

other, due to cohesion, and at the contact with air, or with a solid, they can be attracted due to adhesion. When the 

drop of water first touches the Ti6Al4V surface, it will search for the shape with minimum surface area possible, due 

to surface tension effect. The final shape of the water will result from the equilibrium of those attractions, minimizing 

the surface tension. Firstly, the water fills the micro channels starting from the bottom. It is easy to run on the bottom 

because it has to adhere to the metal and only overcome the surface roughness on the bottom and on the walls. As 

expected, the droplet stretches more within the micro channels.  

That spreading stops when the adhesion between water molecules with air, and with metal, reaches the 

equilibrium with the cohesion between them internally. Such equilibrium happens at the bottom and on the walls. 

Simultaneously, the same equilibrium has to be achieved perpendicularly, over the micro channels, because the 

volume of water allows overflow. To overflow, however, enough potential energy has to be spent to reach the top 

of the burrs and run on the space between channels. That path seems to require much more energy because all 

droplets spread much less across the channels. For low roughness on the bottom and walls, when peaks and valleys 

are smooth, and circular in shape, water spreads easily. For roughness with the same shape, but with higher peaks 

and deeper valleys more energy has to be spent and water does not spread as far, before starts overflowing. If the 

height of the walls is lower, due to lower burrs, the water can now spread further. The shape of the burrs has also 

significant role to play and the spreading can be easier if burrs are pushed outside the channels, keeping the walls 

smoother. Therefore, anisotropy in wettability can be explained based on these considerations, according to the 

results found at the present work. Further investigations will also be needed, especially on the chemical compositions 

of the oxide layers present on the Ti6Al4V surface, after micro milling, since different oxides can have different 

adhesion forces on water molecules. 

 

4 CONCLUSIONS 

The study performed to investigate the influence of different values of feed per tooth (fz) on the wettability of 

Ti6Al4V, texturized by micro end milling, allowed the following conclusions: 

1. Values of fz between 6 and 12 µm minimized burrs on the top of the walls. Those seems to be the best 

conditions for texturizing surfaces of medical implant. Surfaces created inside the micro channels, on bottom 

and walls, indicate hydrophilic behaviour, which is a good indication for biological integration; 

2. Lower and higher values of fz, 3 µm and 15 µm, respectively, still produced hydrophilic surfaces inside the 

channels, but with excessive burrs at the top of walls, being less suitable for implants.  
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3. The selected texture with micro channels 50 x 500 µm, having a pitch of 1000 µm proved to be hydrophobic 

on the direction perpendicular to the channels. However, such texture may be useful only for specific 

applications on medical implants, for example in regions where directional wettability is required; 

4. Modifications on the selected texture, for example, reduction of pitch, may improve the wettability and 

reduce anisotropy, using 6 and 12 µm to minimize burr formation. 
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