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Abstract

This paper is aimed to provide a quality and safety assessment of new cherry tomato cultivars (Solanum Lycoper-
sicum var. cerasiforme): Bamano, Dulcemiel, and Sugarland. Eight biogenic amines, total phenolics, total carot-
enoids, lycopene, and antioxidant activity (2,2-diphenyl-1-picrylhydrazyl [DPPH] and 2,2-azino-bis (3- ethylbenzo
thiazoline-6-sulfonic acid) diammonium salt [ABTS] assays) were determined. Comparison with control cultivars 
demonstrated lower pH values, and total contents of biogenic amines and antioxidant compounds while having 
higher soluble solid concentration. Moreover, multivariate statistical analyses (principal component analysis and 
cluster analysis) were applied to the results. Different results allowed for a successful differentiation of new culti-
vars. Therefore, the chosen compounds resulted in suitable markers for quality and safety assessment of tomatoes.
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Introduction

Tomato (Solanum Lycopersicum) is an annual plant 
whose berries are used widely, either processed or raw, 
for food and beverage. Tomato plants are native to South 
America, and their cultivation in the Mediterranean 
countries dates back to the 17th century (Peralta and 
Spooner, 2014). Italy is the first tomato-producing coun-
try in Europe and one of the top 10 producers in the 
world (Food and Agriculture Organization Corporate 
Statistical Database [FAOSTAT], 2019). Italy also tops 
the list for global export of processed tomatoes ahead 
of China (Istituto Servizi Mercato Agricolo Alimentare, 
2017). In Italy, tomatoes are cultivated especially in the 
central and southern regions, where small-size tomato 
varieties are much appreciated (Masetti et al., 2014; 
Carillo et al., 2019). Tomato is of great value in the global 
vegetable consumption, and recently, there has been an 
increase in the spread of new small-size tomato cultivars. 
Small-size tomatoes are preferred for fresh consumption 

than regular-size tomatoes, and consumers choose the 
same for their organoleptic proprieties (Liu et al., 2019). 
Tomato is one of the most studied crops, and their 
genetic improvement is constant. The breeding programs 
led to the offspring of new varieties that can meet the 
industry and/or consumer preferences.

Moreover, through new cultivars, disease resistance is 
achieved. Recently, new hybrid cultivars of tomatoes 
named Bamano, Dulcemiel, and Sugarland have been 
introduced in Central Italy. These cultivars are trying 
to expand the fresh agronomic market with products 
characterized by unique organoleptic and nutritional 
properties. Usually, seed companies evaluate prime prop-
erties (e.g., size, color, sugars, etc.) under different stress 
and environmental conditions, followed by researchers’ 
early characterization (Ingallina et al., 2020c). However, 
in order to valorize the final product, quality and safety 
assessment is highly recommended. Quality assessment 
is necessary to determine molecular markers, typical of 
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hydrophilic antioxidant fraction was tested by in vitro 
antioxidant activity through scavenging of DPPH- and 
ABTS-free radicals and total phenolic content by the 
Folin–Ciocâlteu method. Total contents of carotenoids 
and lycopene were analyzed in lipophilic fraction by 
UV-Vis methods.

Moreover, the profile of eight BAs was evaluated in 
tomato samples by high-performance liquid chromatog-
raphy with fluorescence detection (HPLC-FD) after dansyl 
chloride derivatization. The BAs studied were spermine 
(SPM), spermidine (SPD), putrescine (PUT), and cadav-
erine (CAD) for polyamines, whereas β-phenylethylamine 
(β-PEA), HIS, SER, and TYR were studied for monoamines. 
The above-mentioned analyses were also conducted on 
samples from two traditional cultivars of tomatoes used for 
fresh market and canning industry.

Finally, a multivariate statistical analysis (principal com-
ponent analysis [PCA] and cluster analysis [CA]) was 
conducted on the bioactive compound profiles of toma-
toes to highlight natural differentiation of samples com-
ing from the new cultivars. 

Materials and methods

Materials

Methanol (CH3OH), n-Hexane (C6H14), water (HPLC 
grade), acetonitrile (HPLC grade), Folin–Ciocâlteu 
reagent (H3[P(W3O10)4]/H3[P(Mo3O10)4]), ABTS, DPPH, 
potassium persulfate, sodium bicarbonate (NaHCO3), 
gallic acid (C7H6O5), perchloric acid (HClO4), sodium 
hydroxide (NaOH), sodium carbonate (Na2CO3), and 
ammonium hydroxide (NH4OH) were purchased from 
Sigma Aldrich Chemical Co. The eight BAs—HIS, SER, 
SPM, SPD, PUT, β-PEA, CAD, and TYR—were supplied 
by Supelco (Bellefonte, PA, USA) as well as the derivat-
izing agent, dansyl chloride, and the internal standard, 
1,7-diaminoheptane (IS).

Sampling 

Tomato samples were supplied by eight different farm-
ers with similar pedo-climatic conditions, located in the 
south of Lazio region (Italy), which were harvested in 
2016. Tomato seeds (Bamano and Dulcemiel) were sup-
plied by Syngenta, Basel, Switzerland and Rijk Zwaan, 
De Lier, The Netherlands (Sugarland). Two samplings 
per cultivar were prepared for each farm. A total of 48 
samples were collected (Bamano, n =16; Dulcemiel, n = 
16; and Sugarland, n = 16). Moreover, other 11 samples 
were collected from selected cultivars for fresh market 
and canning industry. After acquisition, samples were 

a sample, that can establish the sample’s origin or the 
good state of storage (Giuggioli et al., 2016). Antioxidant 
compounds are usually used to evaluate food quality 
(Armenta and de la Guardia, 2016). Phenolic compounds, 
secondary metabolites of many plants, are ubiquitous 
in the vegetable domain and they are one of the most 
extensively studied groups of natural compounds. Their 
dietary intake is highly recommended, and they have 
anti-microbial and anti-carcinogenic effects (Coyago-
Cruz et al., 2018). These compounds have already been 
detected in good quantity in commercial tomatoes, espe-
cially in small-size varieties (Selli et al., 2014). Tomatoes 
have a significant antioxidant activity afforded by phe-
nolic compounds and antioxidants such as carotenoids, 
lycopene, and vitamins (Szabo et al., 2018). Total pheno-
lic content, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 
2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) 
diammonium salt (ABTS) assays are established as quick 
and robust tools for characterizing antioxidants in the 
fractions of hydrophilic tomatoes. They are used widely 
in an explorative and preliminary assessment of vegeta-
bles and fruits (Fanasca et al., 2006; Preti et al., 2017). 
Besides, to characterize the antioxidants present in the 
lipophilic fraction, such as carotenoids (including lyco-
pene), Ultraviolet–Visible spectroscopy (UV-Vis) meth-
ods are used generally (Ingallina et al., 2020a).

Other metabolites present in small amounts in food are 
often used as markers of food safety. Among these com-
pounds, biogenic amines (BAs) are widely used as food 
safety markers because of their presence in food and 
their effect on the human body. BAs are the result of the 
decarboxylation of amino acids, but their presence in 
food can also be related to spoilage. In addition, BAs can 
induce several negative physiological reactions, and the 
investigation of their levels in food is important for con-
sumers’ health and the formulation of diets (Kalač, 2014). 
Some BAs, such as histamine (HIS) and tyramine (TYR), 
pose potential risks to human health, that is, ‘scombroid 
food poisoning’ and ‘cheese crisis’ (Al Bulushi et al., 
2009). However, not all BAs are dangerous for human 
health. For example, serotonin (SER) plays an essential 
role to regulate mood, sleep, body temperature, sexu-
ality, and appetite in the central nervous system (Hano 
et al., 2017). Therefore, its presence in food could be an 
exciting feature. Notwithstanding that presence of BAs is 
regulated in some foods and drinks, some authors have 
suggested BAs to be food quality markers (Silla Santos, 
1996). 

In this work, a quality and safety assessment of three 
new tomato cultivars is proposed. At first, soluble solid 
concentration (SSC) and pH were determined to evalu-
ate physicochemical characteristics of the tomato culti-
vars. Thereafter, an evaluation of antioxidants present in 
hydrophilic and lipophilic fractions was carried out. The 
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Table 1. Physical characteristics of new tomato cultivars.

Cultivar Color Size Fruit weight Picture

Bamano Bright orange Elongated shape 
(2.5 ± 0.5 × 4.5 ± 0.5 cm)

11 ± 1 g

Dulcemiel Green with honey shades Round shape
(2.5 ± 0.5 × 3.5 ± 0.5 cm)

15 ± 1 g

Sugarland Deep shiny red Round shape
(1.5 ± 0.5 × 2.5 ± 0.5 cm)

12 ± 1 g

homogenized by an Ultra-Turrax system and stored at 
–18°C. The physical characteristics of each cultivar are 
reported in Table 1.

Physicochemical parameters
The SSC was determined with a portable refractometer 
(RS PRO; Milan, Italy) at 20°C and expressed as °Brix. 
The pH was measured with a pH-meter (Hach Company; 
Loveland, CO, USA). 

Determination of  Biogenic Amines

Extraction
Biogenic amines were extracted according to a previ-
ously optimized tomato products method (Chiacchierini 
et al., 2006). About 8 g of sample, previously added with 
0.1 mL of IS (100 mg/L), was extracted with 10 mL of 
0.6 M HClO4, homogenized for 3 min, and centrifuged at 
2,700 g for 10 min. The supernatant was filtered through 
a 0.20-µm membrane Millipore filter and collected in a 
flask. The residue was added with 10 mL of 0.6 M HClO4, 
mixed, and again centrifuged for 10 min. Then the second 
extract was filtered and added to the first one. The final 
volume was adjusted to 25 mL with 0.6 M HClO4. 

Derivatization
An aliquot of 1 mL of the final extract was derivatized 
according to procedures reported by Ingallina et al. 
(2020b). About 200  µL of 2M NaOH, 300  µL of satu-
rated NaHCO3 solution, and 2  mL of dansyl chloride 
solution (10  mg/mL in acetone) were added in a tube. 
After shaking, the samples were left in dark for 60 min at 
45°C. About 100 µL of 25% NH4OH was added to stop 
the derivatizing reaction. The final volume was adjusted 

to 5  mL by adding acetonitrile. The dansylated extract 
was filtered using 0.22-µm filter (Polypro Acrodisc, Pall 
Gelman Laboratory, USA) and injected into the HPLC 
system (Ingallina et al., 2020b).

Chromatographic setup
Chromatographic separation was achieved by a sys-
tem consisting of a LC-10 ATVP binary HPLC pump, a 
Supelcosil LC-18 column (Supelco, 5-μm particle size, 
150 × 2.1-mm I.D.) equipped with a Supelguard LC-18 
guard column (Supelco Inc., Bellefonte, PA, USA), and 
an RF-10AXL fluorescence detector (Shimadzu, Kyoto, 
Japan). The injector was fitted with a 20-μL loop. The 
chromatographic data were collected and processed 
using Class-VP software (Shimadzu). The analysis was 
conducted as described in previous work. Fluorescence 
detection was set at 320  nm for excitation and 523  nm 
for emission. Identification of the BAs was based on their 
retention time and adding of standards. The quantifica-
tion was performed using the internal standard calibra-
tion method by linear regression analysis (R2 > 0.995).

Extraction of  hydrophilic antioxidant compounds
Sample extractions for antioxidant activity and total phe-
nolic content were prepared from 2 g of tomatoes in 20 
mL of methanol. Samples were homogenized in an Ultra-
Turrax for 3 min and centrifuged at 2,400 g for 5 min 
(Fratoddi et al., 2018).

Determination of  total phenolic content (Folin–Ciocâlteu)
Total Phenolic Content (TPC) was determined using the 
Folin–Ciocâlteu method (Fratoddi et al., 2018), modified 
for tomatoes as follows: 1 mL of methanolic extract was 
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where Abs is the absorbance reading, MW is the molec-
ular weight, 2.7 refers to the volume (in mL) of the 
hexane phase, w is the sample weight, and E is the 
molar extinction coefficient of lycopene in hexane 
(185.3 mM/cm). Results were expressed as mg/kg of lyco-
pene (fresh weight, FW) (Antolinos et al., 2020).

Statistical analysis
All the experiments were conducted in triplicate and 
expressed as mean ± standard deviation. T-test, cor-
relations, and chemometric data analyses (PCA and 
CA) were performed with JMP software (ver. 15.2, SAS 
Institute, Cary, NC, USA).

Results and discussion

Physicochemical properties

The presence of phytochemicals in tomatoes, such as 
carotenoids and phenolic compounds, mineral salts, and 
organic and fatty acids content is closely related to their 
health-promoting properties. Therefore, these are used in 
quality and safety assessment. These compounds are bio-
synthesized and accumulated in fruits, and their content 
is influenced by environmental factors, cultural practices, 
and genetic aspects, such as different cultivars (Antolinos 
et al., 2020). In this respect, pH and SSC were evaluated 
in the examined samples, and the results are reported 
in Figure 1. The new cultivar samples had significantly 
lower pH values (P < 0.01) compared to control cultivars, 
even if the difference was 8–10%. These results suggest a 
possible use of specific consumers satisfaction related to 
their organoleptic and sensorial features. Moreover, the 
highest SSC was found for Sugarland cultivar, followed 
by Bamano and Dulcemiel. The resulting SSC values of 
new cultivars were statistically different from that of the 
control, indicating greater soluble solid compounds. 

Biogenic amines

The evaluation of BAs in fresh vegetables has been 
recently explored in literature, tomatoes included 
(Sánchez-Pérez et al., 2018). According to Sánchez-
Pérez et al. (2018), the BAs found in tomatoes were HIS 
(n.d.–22 mg/kg FW); TYR (n.d.–6.38 mg/kg FW); PUT 
(5.3–35.5 mg/kg FW), and CAD (n.d.–2.33 mg/kg FW).

In this study, contents of eight BAs were determined in 
three new cultivars of cherry tomatoes; their profiles are 
shown in Figure 2.

The chromatograms exhibited different trends for the 
three cultivars. An appreciable peak resolution was 
achieved (Palomino-Vasco et al., 2019; Ramos et al., 

added to 0.25 mL of Folin–Ciocâlteu reagent and 0.5 mL 
of Na2CO3 water solution (7.5% w/v) in a 10-mL volumet-
ric flask. The final volume was reached with purified water. 
Spectrophotometric analysis was performed at λ = 750 nm 
after 45 min of incubation in dark at room temperature. 
TPC was expressed as milligrams of gallic acid equivalent 
(GAE) per kg. The final results were obtained through a cal-
ibration curve ranging from 15 to 500 mg/L (R2 = 0.9925). 

Determination of  antioxidant activity
The DPPH and ABTS assays were based on the same 
mode of action, and they are common in vitro antioxi-
dant tests (Tonolo et al., 2019). The disappearance of 
radical was determined by measuring absorbance at 515 
nm (DPPH) and 734 nm (ABTS) as described previously 
(Preti et al. 2017); the absorbance was measured in 1-cm 
path length cuvettes, using a UV-Vis spectrophotometer 
(Jenway, Stone, UK).

Results were expressed as inhibition rate and were calcu-
lated based on Equation 1:

 −
= ×0 f

0

A AI% 100,
A

 (1)

where A0 is the radical cation’s initial absorbance, and Af 
is the absorbance after the addition of sample extract.

Lipophilic antioxidant extraction
Briefly, 7 mL of ethanol:hexane mixture (4:3 v:v) was 
added to 0.1-g homogenized sample in a glass tube (pro-
tected from light). The lycopene extraction was con-
ducted by agitating the mixture for 1 h (darkness) at 200 
rpm. Thereafter, 1 mL of distilled water was added to the 
mixture and stirred by inversion. The hexane fraction 
was then collected in an amber vial.

Total carotenoids
The total carotenoid content was determined at 449 nm 
(Ingallina et al., 2020a). The results were compared with a 
standard solution of β-carotene in n-hexane, and the quan-
tification of total carotenoids was achieved by the linear 
regression (r2 = 0.9962) and expressed as milligram of β-car-
otene (mg BCE).

Lycopene determination
The lycopene determination was performed by measur-
ing the hexane phase absorbance at 472 nm in a spectro-
photometer. The lycopene content was calculated with 
the Lambert–Beer Law as described in Equation 2:

 Abs MW 2.7Lycopene (mg / kg) ,
w E
× ×

=
×

 (2)
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Figure 1. Determination of physicochemical properties of different tomato cultivars: pH and soluble solid concentration (SSC) 
(°Brix). Samples not connected by the same letter are significantly different.

2020). The quantification of BAs in new cultivars and 
control tomatoes is summarized in Table 2. Table 2 also 
describes the T-test results (α = 0.95) of each variable for 
the five categories of the sample analyzed. 

Among new cultivars, the highest total BA contents in 
tomatoes was determined in Sugarland (275.2 ± 11.10 mg/
kg), followed by Dulcemiel (201.01 ± 1.71 mg/kg) and 
Bamano (137.36 ± 1.98 mg/kg). These contents were 
comparable with the control canning cultivar, in spite 

of the fact that the fresh control had a higher total BA 
values. 

The amount of HIS, PUT, and CAD of the new cultivars 
(<LOQ: 0.57 mg/kg, 0.16–5.75 mg/kg, and 1.15–2.41 mg/
kg, respectively) was in agreement with results from lit-
erature, while TYR was below the limit of quantification 
for all the samples. Compared with the control cultivars, 
the HIS values were comparable with that of the canning 
cultivar and were lower than that of the fresh cultivar 
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Figure 2. Chromatographic profiles of biogenic amines determined in tomato samples: Sugarland (red trace), Bamano (green 
trace), and Dulcemiel (dark yellow trace). β-PEA: β-phenylethylamine; PUT: putrescine; CAD: cadaverine; HIS: histamine; IS: 
internal standard; SER: serotonin; TYR: tyramine; SPD: spermidine; and SPM: spermine.
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Table 2. Quantitative results of biogenic amines in tomato samples (mg/kg). Samples not connected by the same letter are 
significantly different.

Bamano Dulcemiel Sugarland Control fresh Control canning

β-PEA 1.16b ± 0.05 0.17c ± 0.001 0.17c ± 0.01 1.47a ± 0.12 1.13b ± 0.10

PUT 0.16c ± 0.01 0.56c ± 0.03 5.75b ± 0.14 11.17a ± 4.17 4.98b ± 0.21

CAD 2.41a ± 0.09 1.15b ± 0.01 1.22b ± 0.02 0.94c ± 0.15 0.70d ±0.03

HIS <LOQc 0.57a,b± 0.02 0.33b,c ± 0.01 1.01a ± 0.41 0.10b,c ± 0.06

SER 132.47d ± 2.05 197.27c ± 1.71 266.87b ± 11.16 379.51a ± 4.06 146.81c,d ± 8.67

TYR <LOQc <LOQc <LOQc 1.29a ± 0.09 0.67b ± 0.08

SPD 0.29b ± 0.01 0.37b ± 0.02 0.33b ± 0.01 8.32a ±0.40 8.32a ± 0.85

SPM 0.87b ± 0.04 0.91b ± 0.06 0.53c ± 0.02 0.80b,c ± 0.03 1.16a ± 0.47

Total BAs 137.36d ± 1.98 201.01c ± 1.71 275.2b ± 11.10 404.53a ± 9.45 164.67c,d ± 10.53

β-PEA: β-phenylethylamine; PUT: putrescine; CAD: cadaverine; HIS: histamine; SER: serotonin; TYR: tyramine; SPD: spermidine; SPM: 
spermine; total BAs: total biogenic amines; LOQ: limit of  quantification.

(1.01 ± 0.41 mg/kg). Besides, in the control cultivar, TYR 
was also observed (0.67 – 1.29 mg/kg). It is essential to 
underline BAs’ shallow levels such as HIS and TYR, fre-
quently reported as dangerous in the human diet (Linares 
et al., 2016). Although, the HIS and TYR contents were 
not dangerous, a lower concentration in new cultivars 
allowed products with lesser contamination at the pro-
cessing stage.

Polyamines, such as SPD and SPM, play a role in increas-
ing shelf life of tomatoes. The gene expression related 
to SPD and SPM would reduce the post-harvest senes-
cence and decay (Handa and Mattoo, 2010; Nambeesan 
et al., 2010). Thereafter, the low amount of SPD 
(0.29–0.37 mg/kg) and SPM (0.53–0.91 mg/kg) found in 
all new cultivars could be a desirable feature. They could 
be related to a natural over expression of some metabolic 
pathways in these cherry tomato varieties, contributing 
to the elongation of shelf life. Also, the lowest concentra-
tions in new cultivars, compared to the control, suggest 
these tomato cultivars’ eligibility in the supply chain. 

Finally, an interesting remark should be made about the 
SER content. The SER content was the major contributor 
to the total contents of BAs established in the samples, 
starting from 132.47 ± 2.05 mg/kg (96%) for Bamano to 
197.27 ± 1.71 mg/kg (98%) for Dulcemiel and 266.87 ± 
11.16 mg/kg (97%) for Sugarland. These results were in 
agreement with already published results (Riga et al., 
2016). A similar trend in SER content was also found in 
control cultivars (90–93%), although in slightly lower 
proportions. However, the excellent SER content in 
tomato fruits is related to its several physiological func-
tions in plants (e.g., growth regulator, protection against 
pathogens, etc.). In plants, SER is produced from tryp-
tophan, and demonstrates some positive effects on the 
human body. Daily assumption of SER-rich vegetable 

varieties has demonstrated, inter alia, useful anti-obesity 
and anxiety control effects (Islam et al., 2016). Moreover, 
it has been proved that the SER content tends to decrease 
in processed tomato products. Therefore, tomato cul-
tivars relatively rich in SER could be of interest for the 
tomato industry (Hano et al., 2017).

Antioxidants evaluation

Nowadays, several features, such as being rich in nutri-
ents or having physiological benefits, are searched in 
foods. Among these, antioxidant compounds are the 
most interesting nutrients for human health, and are 
considerably present in fruits and vegetables (Dudonné 
et al., 2009). Moreover, these compounds are widely used 
to evaluate food quality. The hydrophilic and lipophilic 
fractions were examined to evaluate antioxidants in new 
tomato cultivars.

TPC assay was chosen to quantify phenolics’ content in 
hydrophilic fraction, essential components of antioxi-
dant compounds in tomatoes (Fanasca et al., 2006). The 
antioxidant activity was also tested by two different in 
vitro anti-radical assays—ABTS and DPPH (Campestrini 
et al., 2019). Moreover, these two radicals are sensitive to 
different types of antioxidants. Consequently, their com-
bined use consented to an effective evaluation of antiox-
idant activity.

The results and significant differences are shown in 
Table 3. For TPC, Sugarland had the highest results with 
303.15 ± 21.62 mg GAE/kg, followed by Dulcemiel and 
Bamano (256.39 ± 6.63 and 242.18 ± 6.6 mg GAE/kg, 
respectively). TPC results were in accordance with pre-
viously reported tomato results, especially for cherry 
tomatoes (Raffo et al., 2002; Riga et al., 2016).
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marker of the tomato variety was investigated (Bajoub 
et al., 2016). For this purpose, PCA and CA were used 
to explore data matrices in order to highlight a natu-
ral grouping among samples (Marengo et al., 2017). 
Autoscaling pretreatment was conducted in the data 
matrix composed of experimental results (Nur Azira 
et al., 2014). The PCA results are reported in Figure 3: 
Sugarland is represented by circles, Bamano by squares, 
Dulcemiel by crosses, control fresh by stars, and con-
trol canning by triangles. In PCA, the first two princi-
pal components (PC1 and PC2) accounted for 82.9% of 
the total variability (Liu et al., 2013). In the scores plot, 
all cultivars were clearly separated (Šamec et al., 2016). 
New cultivars are located in the left part of the dia-
gram, Sugarland and Dulcemiel in the upper part, while 
Bamano in the lower one. Control cultivars were located 
on the right, fresh cultivar samples on the top, and the 
canning ones on the lower part. As highlighted by the 
scores plot, PC1 differentiated new cultivars (Sugarland, 
Bamano, and Dulcemiel) from the control. This PC was 
highly influenced by physicochemical properties (pH and 
SSC), carotenoids (including lycopene), phenolic com-
pounds, and SPD and TYR for BAs. Separation among 
each cultivar was enabled by PC2, whereby BAs (SER, 
BAI, HIS, and β-PEA) and DPPH anti-radical assays were 
the major contributors.

To characterize new cultivars, PCA was recalculated by 
excluding control cultivars. The scores and loadings’ plot 
of this analysis are given in Figure 4. 

The loadings’ plot pointed out for Dulcemiel samples 
was positively correlated with DPPH, SPD, and HIS vari-
ables. It is clear in Tables 2 and 3 that Dulcemiel cultivar 
had the highest content in these compounds. Sugarland 
demonstrated a positive correlation with SER, BAI, PUT, 
TPC, SSC, total carotenoids, and lycopene. Moreover, 
Sugarland had a high negative correlation with SPM. 
Samples of the Bamano cultivar were positively correlated 
with CAD, β-PEA, pH, and ABTS content. Therefore, 

The trend of TPC results agreed with DPPH radical scav-
enging assay for antioxidant activity, proving a high rad-
ical inhibition by the three cultivars. The lowest result 
was achieved by Bamano cultivar (88.61, I%). A similar 
result was reported by Lu et al. (2020), who established 
that TPC values could be positively correlated with the 
DPPH values (Lu et al., 2020). However, Bamano variety 
had demonstrated the highest ABTS scavenging activity 
results (60.34, I%), followed by Sugarland (32.50, I%) and 
Dulcemiel  variety (26.63, I%). In Bamano samples, these 
results could be explained by a more significant presence 
of other chemical compounds with antioxidant activity not 
included in the phenolic compounds, such as vitamin C or 
anthocyanins (Pataro et al., 2015; Marengo et al., 2017).

Total carotenoids and lycopene contents were evalu-
ated in the lipophilic fraction of antioxidants by UV-Vis 
methods. Among new cultivars, Sugarland had the high-
est content of carotenoids (54.12 ± 1.36 mg BCE/kg) 
and lycopene (48.88 ± 2.95 mg/kg), followed by Bamano 
(40.12 ± 2.69 mg BCE/kg, 29.25 ± 7.48 mg/kg) and 
Dulcemiel (33.12 ± 0.99 mg BCE/kg, 12.12 ± 1.25 mg/kg). 
These values of compounds in new tomato cultivars were 
compared with the literature data (D’Evoli et al., 2013). It 
is also appropriate to highlight that lycopene is the major 
carotenoid in cherry tomatoes, representing 40–90% of 
the total carotenoid contents in new cultivars.

The values obtained were significantly lower than that of 
control, except for DPPH assay results for Sugarland and 
Dulcemiel cultivars. 

Multivariate analysis

Different profiles of bioactive compounds found in 
tomatoes had suggested the hypothesis that some of the 
compounds detected for quality and safety assessment 
could also be typical of a cultivar (Uarrota et al., 2014). 
Therefore, their presence as a potential authenticity 

Table 3. Quantitative results of evaluation of antioxidants in tomato samples. Samples not connected by the same letter are 
significantly different.

 Bamano Dulcemiel Sugarland Control 
fresh

Control 
canning

TPC (mg GAE/kg) 242.18d± 6.60 256.39d± 6.63 303.15c ± 21.62 369.98b ± 12.37 458.97a ± 3.11

DPPH (I%) 88.61b± 3.42 93.38a± 3.47 91.25a ± 1.36 93.46a ± 1.34 92.04a ± 0.74

ABTS (I%) 60.34b± 1.92 26.63d ± 1.54 32.50c± 2.49 96.82a ± 0.29 98.64a ± 0.38

TCC (mg BCE/kg) 40.12c ± 2.69 33.12d ± 0.99 54.12b ± 1.36 142.00a ± 5.05 143.17a ± 4.99

Lycopene (mg/kg) 29.25c ± 7.48 12.12d ± 1.25 48.88b ± 2.95 127.80a ± 1.79 128.50 a ± 1.38

TPC: total phenolic content; TCC: total carotenoids content; DPPH: 2,2-diphenyl-1-picrylhydrazyl; ABTS: diammonium salt; GAE: gallic acid 
equivalent.
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Figure 3. (A) Principal components analysis (PCA) scores and (B) loading plots of tomato samples: Sugarland (circles), Bam-
ano (squares), Dulcemiel (crosses), control fresh (stars), control canning (triangles).
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Figure 4. (A) Principal components analysis (PCA) scores and (B) loading plots of tomato samples: Sugarland (circles), 
 Bamano (squares), and Dulcemiel (crosses).

results of the PC explorative analysis were in accordance 
with the experimental ones (Guerreiro et al., 2013). 

The good results of PCA analysis were also confirmed by 
CA, reported in Figure 5. This analysis pointed out gen-
eral similarities or differences in the profile of bioactive 
compounds of the investigated cultivars. The first level 
of dendrogram demonstrates two clusters: the first one 
comprises control cultivars, and the second one by three 
new cultivars (Bamano, Dulcemiel, and Sugarland). At 

the lower level of dendrogram, the first cluster is divided 
in two parts by separating control cultivars as the samples 
used for fresh market and that for canning industry. The 
second cluster (three new cultivars) was also divided into 
two parts: the first part consisting of Bamano samples, 
and the other one comprising Dulcemiel and Sugarland 
samples. Therefore, these two cultivars exhibited similar 
contents to the compounds examined herein. CA and 
PCA results demonstrated differentiation among new 
cultivars and the control. 
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