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AbstrAct
Background: Immunotherapies including PD-1/PD-L1 antibodies have been approved for the treatment of 

Muscle-invasive Bladder Cancer (MIBC) patients. However, immunotherapies could only be beneficial for about 
20% MIBC patients. Thus, identification of the immune subtype is becoming increasingly important. This study 
aimed to explore the immune subtype by analyzing the gene expression profiles. Methods: A total of 6 datasets 
including (GSE13507, GSE31684, GSE32548, GSE32894, GSE69795, and TCGA-BLCA) were downloaded. 
The gene expression profiles from different datasets were combined since the batch effects were removed. We 
performed unsupervised clustering analysis to identify the immune subtype by the combined gene expression 
profiles. The tumor-infiltration levels of 22 immune cells, immune scores, and tumor purity were calculated, 
and the survival analysis was performed to investigate the prognosis difference between immune subtypes. The 
enriched pathways for each immune subtype were obtained. Results: We identified four novel immune subtypes 
(referred to S1, S2, S3, and S4) among MIBC patients. We found that S1 was enriched in immune scores had 
the best prognosis. In contrast, S3 was poor in immune scores and had the worst prognosis. Subtype S1, S2, 
S3, and S4 were enriched in immune-related pathways, extracellular matrix-related pathways, metabolism-
related pathways, and cancer-related pathways, respectively. Conclusion: The current study suggests that the 
immune subtypes based on gene expression profiles could contribute to select the appropriate MIBC patient 
for immunotherapies.
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INTRODUCTION 
Bladder cancer (BC) is the most common 

genitourinary cancer of the urinary tract.1,2.  
A quarter of BLCA patients have muscle-
invasive bladder cancer (MIBC), which has 
a higher risk of metastasis, or cancer cells 
migrating to regional pelvic lymph nodes and/or 
visceral regions, making the disease incurable.3 
Muscle-invasive bladder cancer (NMIBC) and 
non-muscle-invasive bladder cancer (NIBC) are 
the two kinds of BC (MIBC). Around a quarter 
of BC patients will develop MIBC, and more 
than half of MIBC patients will experience 
relapse and metastasis.4 Radial cystectomy (RC) 
plus neoadjuvant cisplatin-based chemotherapy 
(NAC) is the standard first-line multimodal 
treatment for MIBC patients, however roughly 
60% of MIBC patients do not exhibit a significant 
therapeutic response.5 Furthermore, because of 
its toxicity, many people are unable or unwilling 
to accept cisplatin treatment.6 The five-year 
survival rate for MIBC patients is as low as 50%.7 
There is also an urgent need for new treatment 
drugs. Immunotherapies, particularly immune 
checkpoint blockade (PD-1/PD-L1), have 
recently been licensed, improving the prognosis 
of MIBC patients significantly.8 The practical 
use of immunotherapy, however, may be limited 
because only 20% of MIBC patients respond to 
treatment.9 Tumor-infiltrating T cells.10 PD-L1/
PD-1 levels,11 highly microsatellite instability 
(MSI-H),12 tumor mutational burden (TMB),13 
and intestinal microbiota.14 have all been found 
to be good indicators of immunotherapy efficacy. 
These potential markers were frequently unstable 
because numerous genes and pathways were 
involved in tumor immune evasion.15 In the 
Checkmate025 research, for example, responses 
to Nivolumab (PD-1 antibody) exhibited no 
correlation with PD-L1 level, and patients with 
a high level of PD-L1 had a worse prognosis.15 
As a result, immunological subtypes established 
by clustering samples based on big genes from 
many datasets could be a good predictor of 
immunotherapy success. 

According to multiple research,16 patients 
with high tumor PD-L1 levels had better 
treatment response rates and lived longer. 
TIL density, especially CD8+ T cells, is a 

strong positive prognostic indicator, and 
immunotherapy works in part by reactivating 
a preexisting tumor immune response.17 TMB 
stands for the amount of somatic mutations per 
million bases,18 and tumor cells with a high TMB 
are more likely to generate neoantigens, which 
can be identified by T cells and trigger an anti-
tumor response.19 In 22 different tumor types, 
attempts to identify PD-1 antibody responders 
by combining TMB and tumor-infiltrating T 
cells have recently been published.20 Apart from 
these biomarkers, other studies have advocated 
molecular subtype as a distinct technique for 
identifying immunotherapy candidates.21–23 

Based on RNA expression profiling, individuals 
with MIBC can be categorized into luminal and 
basal subtypes, with the basal subtype being 
more connected with the epithelial-mesenchymal 
transition (EMT), immune-related pathways, and 
worse prognosis than the luminal subtype.24–26 
However, more study is needed to confirm 
the role of molecular subtypes in predicting 
the therapeutic response of MIBC patients to 
immunotherapy. 

In the age of precision immunotherapy, it’s 
crucial to create an immunotype model that 
can predict immunotherapy response rates and 
identify mediators that are key determinants. 
Models and biomarkers could be utilized to 
influence immunotherapy response, adapt cancer 
treatment, cut costs, and avoid immune-related 
side effects. 

In the current study, 683 samples from 
six separate cohorts were used to generate 
immunological subgroups. S1 was shown to have 
the best prognosis of the four immunological 
subtypes studied. Subtypes S1, S2, S3, and S4 
were all enriched in immune-related, extracellular 
matrix-related, metabolism-related, and cancer-
related pathways. Overall, our findings may aid 
researchers in better understanding the diversity 
of MIBC patients and identifying those who will 
benefit from immunotherapy. 

METHODS
The expression matrix and clinical 

information of 6 bladder cancer datasets 
including GSE13507 (62 MIBC and 103 NMIBC 
samples),27 GSE31684 (66 MIBC and 27 NMIBC 
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samples),28 GSE32548 (38 MIBC samples and 
93 NMIBC samples),29 GSE32894 (93 MIBC 
and 215 NMIBC samples),30 GSE69795 (20 
MIBC samples and 18 NMIBC samples),31 
and TCGA-BLCA (404 MIBC and 4 NMIBC 
samples)32 were downloaded. By using the SVA 
software33 on the information from NMIBC and 
MIBC, these 6 datasets were merged into a single 
dataset, and batch effects were removed. Batch 
effects in datasets were detected using principal 
component analysis (PCA).

Identification of Immune Subtypes 
The gene list and 736 immune-related 

genes were obtained from the Gene Expression 
Omnibus (GEO) under the entry ‘GPL25507’. 
The ‘ConsensusClusterPlus’ program34 used 
MIBC expression profiles of immune-related 
genes to identify the immunological subtype. 
The K-means technique was used to produce 
consensus clustering with 1,000 re-samplings.

Survival Analysis and Calculation of Immune 
Cell Proportions 

To estimate survival distributions for each 
subtype, the overall survival data from these 
six datasets were merged, and Kaplan–Meier 
survival curves were displayed. Using the 
survival package in R, we did a log-rank test 
to see if differences between immune subtypes 
were significant. The CIBERSORT algorithm 
was used with 1000 permutations to compute 
immune cell proportions (such as B cells, 
dendritic cells, macrophages, neutrophils, NK 
cells, CD4+ T cells, and CD8+ T cells) against 
each sample. Using the estimate package, the 
ESTIMATE method36 was used to determine 
immune scores, stromal scores, and tumor 
purity, and the Kruskal–Wallis test was chosen 
to compare the differences.

Functional Enrichment Analysis of Immune 
Subtypes 

Subtype-specific pathways were discovered 
for each subtype by comparing samples from 
that subtype to the remaining samples using 
the GSEA approach. False discovery rate 
(FDR) 0.05 was used as the limit for subtype-
specific pathways. The ‘fGSEA’ program was 
used to analyze differentially expressed genes 
among diffuse glioma subtypes using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 
database.

RESULTS

Removing the Batch Effects among Datasets
The “sva” program was used to normalize 

and remove batch effects from six datasets: 
GSE13507, GSE31684, GSE32548, GSE32894, 
GSE69795, and TCGA-BLCA. Before the batch 
effect was abolished, MIBC samples were mixed 
with NMIBC samples, and samples from other 
datasets were clearly segregated (Figures 1A-B). 
On the other hand, the PCA plot demonstrated 
that MIBC samples were segregated from 
NMIBC samples, and samples from different 
datasets were mixed (Figures 1C-D). The batch 
effects in six datasets were removed as a result of 
these findings. After batch effects were removed, 
the “sva” software produced the combined 
expression profiles of these six datasets. MIBC 
samples from the integrated expression profiles 
(a total of 683 samples) were kept for further 
study.

Identification of the MIBC Immune Subtypes
MIBC immune subtypes were identified 

using an expression matrix of 736 immune-
related genes derived from merged expression 
data. To identify the distinct subtypes (K = 2, 3, 4, 
5, and 6) among 683 MIBC samples, we used the 
‘ConsensusClusterPlus’ program. Based on the 
CDF curves and Delta plots, the optimal division 
(k = 4) was chosen as the optimal number of 
clusters (Figure 2A-B). The heatmap’s boundary 
remained pretty clear-cut at K = 4 (Figure 2C), 
indicating that the sample cluster was stable and 
robust. Table 1 summarizes the distribution of 
immune subtypes among datasets. 

We discovered substantial prognostic 
differences among the identified immunological 
subtypes using the previously described 
classification (log-rank test, p= 0.012, Figure 
2D). Subtype 1 (S1) patients had a longer median 
survival time (67.3 months) than subtype 2 (S2) 
patients (35.9 months), subtype 3 (S3) patients 
(30.9 months), and subtype 4 (S4) patients 
(median survival: 30.9 months) (median survival: 
16.9 months). Overall, we discovered four MIBC 
immunological subgroups that were linked to 
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clinical outcomes based on gene expression 
profiles. 

Correlation of MIBC Immune Subtypes with 
Tumor-infiltrating Immune Cells

The CIBERSORT technique was used to 
calculate tumor-infiltrating immune cells, and 
it revealed variances in immune cells among 
MIBC immune subtypes (Figure 3). (1) CD8 
T cells, M1 macrophages, M2 macrophages, 
Monocytes, and Memory CD4 T cells were all 
greater in S1 samples. (2) In naive B cells and 

M0 macrophages, S2 samples were greater. (3) 
Resting NK cells, naive T cells, and Eosinophils 
were all greater in S3 samples. (4) In resting 
dendritic cells, active Mast cells, and neutrophils, 
S4 samples were greater.

Correlation of MIBC Immune Subtypes with 
Immune Scores and Molecular Subtypes

The immune subtypes’ immunological 
scores, stromal scores, and tumor purity were 
calculated using the ESTIMATE technique. 
Immune and stromal scores were found to be 

Figure 1. The normalization and batch effect removal from six datasets. (a) PCA plot illustrated the cluster of the samples 
by NMIBC/MIBC before batch effect removal. (b) PCA plot illustrated the cluster of the samples by datasets before batch 
effect removal. (c) PCA plot illustrated the cluster of the samples by NMIBC/MIBC after batch effect removal. (d) PCA 
plot illustrated the cluster of the samples by datasets after batch effect removal.

Dataset
S1

N=149
S2

N=198
S3

N=195
S4

N=141
GSE13507 3 (2.01%) 20 (10.1%) 31 (15.9%) 8 (5.67%)
GSE31684 12 (8.05%) 18 (9.09%) 24 (12.3%) 12 (8.51%)
GSE32548 6 (4.03%) 13 (6.57%) 14 (7.18%) 5 (3.55%)
GSE32894 28 (18.8%) 21 (10.6%) 15 (7.69%) 29 (20.6%)
GSE69795 0 (0.00%) 8 (4.04%) 9 (4.62%) 3 (2.13%)
TCGA-BLCA 100 (67.1%) 118 (59.6%) 102 (52.3%) 84 (59.6%)

Subtype

Table 1. The distribution of immune subtypes among datasets.
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Figure 2. Identification of MIBC immune subtypes. (a) The cumulative distribution function 
(CDF) curves in consensus cluster analysis. (b) delta area plots in in consensus cluster 
analysis. Consensus scores for different subtype numbers (k = 2 to 6) are presented. (c) The 
heatmap illustrating the consensus matrix at k = 4. (d) Survival analysis of MIBC immune 
subtypes. The log-rank test was conducted to determine the significance of the differences. 

Figure 3. Immune characteristics of four MIBC immune subtypes. The heatmap showing 
the abundance of immune-cell populations calculated by CEBERSORT.
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highest in S1, and lowest in S4 (immune scores: 
S1 > S4 > S2 > S3; stromal scores: S1 > S2 > S4 
> S3). However, these immunological subtypes’ 
tumor purity was in reverse order: (S3 > S4 > 
S2 > S1) (Figure 4A-C). S1 (Basal, N:80, P:82 
percent ; Luminal, N:17, P:18 percent ) and S4 
(Basal, N:70, P:83 percent ; Luminal, N:14, P:17 
percent ) had different distributions of Basal and 
Luminal subtypes than S2 (Basal, N:43, P:36 
percent ; Luminal, N:75, P:64 percent ) and S3 
(Basal (Figure 4D). It’s worth noting that the 
Basal and Luminal subtype information was 
only accessible in the MINC samples from the 
TCGA-BLCA dataset. 

Subtype-Specific Signaling Pathways among 
Immune Subtypes 

GSEA analysis were used to uncover 
signaling pathways unique to the immunological 
subtypes observed (Figures 5A, B). Immune-
related pathways including Cytokine-cytokine 

Receptor Interaction and Antigen Processing and 
Presentation were found to be overrepresented 
in subtype S1. Subtype S2 was shown to be 
particularly rich in extracellular matrix-related 
pathways such as Cell Adhesion Molecules 
(CAMs) and Vascular Smooth Muscle 
Contraction. Subtypes S3 and S4 were found to 
be associated with metabolism-related pathways 
(Metabolism of Xenobiotics by Cytochrome 
P450, Linoleic Acid Metabolism, and Fatty 
Acid Metabolism) and cancer-related pathways 
(Pathways in Cancer and Cell Cycle). Overall, 
we were effective in identifying immunological 
subtype characteristic signaling pathways.

DISCUSSION
There are two major molecular subgroups 

among MIBC patients, namely the Basal and 
Luminal subtypes, according to studies.37,38 

Because it is associated with a more aggressive 

Figure 4. The correlation of stromal scores, immune scores, tumor purity, and molecular subtypes 
with the identified immune subtype. (a-c) Evaluation of stromal scores, immune scores, and tumor 
purity for the four immune subtypes by Kruskal-wallis test. (d) The distribution of molecular subtypes 
(Basal and Luminal subtype) in the four immune subtypes.
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phenotype and a higher risk of distant metastasis 
than the Luminal subtype, the Basal subtype 
has gotten a lot of attention.38 Although 
significant progress has been made in the 
MIBC molecular subtype, more study into the 
MIBC immunological subtype is required. The 
identification of immunological subtypes is 
becoming increasingly important since it may 
aid in the selection of suitable candidates for 
immunotherapies. 

TMB, which is independent of PD-L1 
expression, is a powerful predictor of tumor 
behavior and immunotherapy response in 
patients with small-cell lung cancer.39 On 
the other hand, TMB criteria for predicting 
response in a variety of different malignancies 
aren’t well established.40 Apart from limited 
correlation research, the mechanism by which 
TMB predicts immunotherapy sensitivity is 
mainly unknown.34 Furthermore, molecular 
subtypes may provide additional information for 
predicting immunotherapy response. The basal 
and luminal subtypes are derived from separate 
progenitor cells, according to various studies, 
and the basal subtype has a higher ORR in 
immunotherapy treatment.09,41,42 Immunotype A 
patients exhibited the best ORR and had the most 
immunological checkpoints, TMB, and CD8+ T 
cells, indicating that immunotherapy was highly 

recommended for them. It’s because immunotype 
A corresponds to previously identified “hot 
tumors”.43 Patients with Immunotype B exhibited 
a lower ORR, a lower level of immunological 
checkpoints and CD8+ T cells, and a moderate 
number of TMB.  More research is needed to 
establish if this tendency is analogous to “cold 
tumors,” which are characterized by insufficient 
T cell priming (low tumor mutational load, poor 
antigen presentation, and intrinsic T cell death 
insensitivity).43–45 To increase T cell responses 
and turn cold tumors into “hot tumors,” treatment 
techniques include cancer stem cell (CSC) 
vaccination or adoptive T cell transfer.43, 46 
Immunotype C patients, on the other hand, had 
the lowest ORR. They had strong immunological 
checkpoints, intermediate CD8+ T cells, and 
low TMB, implying that immunotherapy may 
not be suited for this patient population. TTN, 
TP53, KMT2D, MUC16, ARID1A, KDM6A, 
and SYNE1) were identified as cancer risk 
genes after they were found to be changed 
often among three immunotypes. Seven more 
genes are as important: PIK3CA, RB1, FGFR3, 
KMT2C, MACF1, RYR2, and EP300. Three 
immunotypes have varied mutation rates for 
these genes, allowing for a more thorough 
and comprehensive understanding of MIBC 
immunotype mutation rates. Individual genes 

Figure 5. Bubble plots for 5 enriched KEGG pathways with the lowest p.value in each immune subtype. (a) The plot of 
KEGG pathways. (b) The annotation of KEGG pathways.
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in a co-expression network are less stable 
than modules because the overall function of 
a module can be maintained when individual 
gene expression can be replaced by other genes 
with similar redundant functions [02]. Network 
analysis revealed eight hub genes for the 
MIBC immunotype-related module (ACTA2, 
ACTA1, COL1A1, COL1A2, COL5A1, DCN, 
SPARC, VIM). The disease stage-related hub 
gene involvement of COL1A1, COL1A2, 
and COL5A1 was previously discovered by 
another group,47 which is compatible with our 
findings. Multiple datasets should be used to 
find the robust immune subtype among MIBC 
patients. When merging disparate datasets, the 
batch effect will be a key stumbling block for 
researchers. Fortunately, ‘sva’ package33 has been 
shown the ability to remove the batch effect in 
studies.48,49 According to the PCA results, the 
batch effect was successfully removed. Because 
we analyzed 683 samples from six separate 
cohorts, the four immunological subgroups we 
discovered may be more robust than a single 
dataset. Among the four immune subtypes, S1 
received the highest immunological and stromal 
evaluations, whereas S3 had the lowest. The 
ESTIMATE approach did not produce the same 
findings as the CIBERSORT approach. S1 has 
a lot of CD8 T cells, M1 macrophages, M2 
macrophages, Monocytes, and Memory CD4 
T cells. As a result, S1 patients should receive 
immunotherapy, but S3 patients should not. 
Based on the distribution of immunological 
scores and molecular subtypes in these four 
immune subtypes, we could determine that 1) S1 
was the Basal subtype with more immune cells 
and S4 was the Basal subtype with fewer immune 
cells. 2) Tumor cells were lower and higher in 
the Luminal subtypes S2 and S3, respectively. 

CONCLUSION 
Finally, the findings of this study improved 

immunological subtype research in MIBC 
samples by identifying four immune subtypes 
with varying immunological scores. Immune 
subsets revealed may aid doctors in deciding 
on treatment for MIBC patients. These findings 
will pave the way for new immunotherapy 
approaches in the future. 
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