
Paper—Optimizing Android Malware Detection Via Ensemble Learning

Optimizing Android Malware Detection

Via Ensemble Learning

https://doi.org/10.3991/ijim.v14i09.11548

Abikoye Oluwakemi Christiana, Benjamin Aruwa Gyunka
University of Ilorin, Ilorin, Nigeria

Akande Noah Oluwatobi ()
Landmark University, Omu-Aran, Nigeria

akande.noah@lmu.edu.ng

Abstract—Android operating system has become very popular having the

highest market share amongst all other mobile operating systems. However, the

popularity of Android based mobile applications have opened it up to several

attacks and malwares. Traditional signature-based malware detection techniques

have been proven to be less effective in detecting new and unknown malware,

therefore, machine learning techniques are taking the lead for timely zero-day

anomaly detections. Therefore, this study presents an optimized android malware

detection model using ensemble learning technique. Random Forest, Support

Vector Machine, and k-Nearest Neighbours were used to develop three distinct

base models and their predictive results were further combined using majority

vote combination function to produce an ensemble model. Reverse engineering

procedure was employed to extract static features from large repository of mal-

ware samples and benign applications. WEKA 3.8.2 data mining suite was used

to perform all the learning experiments. The results obtained revealed that Ran-

dom Forest had a better sensitivity of 97.9% and a classification accuracy of

98.00% among the other base classifiers connoting that it is a strong base model.

However, the ensemble model achieved a sensitivity of 98.1% and a classifica-

tion accuracy of 98.16%. The finding shows that, although the base learners had

good detection results, the ensemble learner produced a better optimized detec-

tion model compared with the performances of those of the base learners.

Keywords—Android Malware Detection, Machine Learning Models, Base

Learners, Ensemble Learner, Reverse Engineering

1 Introduction

Hand held devices have become very critical part of human lives and they play very

crucial part in the economy. Table 1 shows that the most popular of these are the smart

devices, in the form of Smartphones or Tablets, that runs the Android Operating System

[1]. The rapid increase of the Android systems in the economy is also supported by the

open source nature of the platform. This has drawn lots of attentions to the platform

from both legitimate (innocent) and illegitimate (malicious) users. Malware developers

iJIM ‒ Vol. 14, No. 9, 2020 61

mailto:https://doi.org/10.3991/ijim.v14i09.11548

Paper—Optimizing Android Malware Detection Via Ensemble Learning

have especially seen this as an opportunity to exploit the users of these devices through

cyber thefts and other devastating attacks [2]. These mischievous developers are releas-

ing Android malware into the economy at an exponential rate [3] and research has

shown that, in the second quarter of 2018, a new malicious Android application was

introduced every 7 seconds into the wild [4]. The continuous growth rate of Android

malware, both in overall volume and in number of existing variants, is so rapid that it

has become very difficult to deploy signature-based detection systems to combat the

new trend [5,6].

Table 1. Worldwide Smartphone OS Market Share Forecast [7]

Year Android (%) iOS (%) Others (%) Total (%)

2017 85.10 14.70 0.20 100.00

2018 85.10 14.90 0.00 100.00

2019 86.70 13.30 0.00 100.00

2020 86.60 13.40 0.00 100.00

2021 86.90 13.10 0.00 100.00

2022 87.00 13.00 0.00 100.00

2023 87.10 12.90 0.00 100.00

Malware as an application carries out functions completely contrary from its legiti-

mate intent. This poses serious questions of trust on the developers of application soft-

ware and also on the rigidity ability of applications against tampering by malicious at-

tackers. Android malware can be propagated via different attack vectors and channels

such as Bluetooth connections, memory cards, wireless networks, Universal Serial Bus

(USB) connections, third party Apps providers, as well as Google Play Store [8]. Most

of these media provide entry-level defense and detection mechanisms such as authenti-

cations and scans, but the USB channel does not provide any verification or authenti-

cation for apps or devices during installation and are thus found to be a critical infection

vector especially in the case of cross platform malware [8, 9, 10]. Cloud based applica-

tions are not exempted from malware attacks. This was explored in [11]. Authors in

[12] observed that most malwares are in portable executable files, therefore, a technique

to scan these files using Hadoop and Boyer–Moore-Horspool Search algorithm was

proposed.

The sophistication of techniques employed by these emerging Android malwares

have continued to generate a growing challenge for most traditional detection and anal-

ysis systems which are unable to handle the subtlety and behavioural dynamism of these

malware [5]. This challenge has created gap for the need of a detection system that does

not employ the techniques and signatures-based methods of most existing detection

systems. Predictive models that are based on single classifiers are not easily scalable

from one context to another context [13] as there does not exist any single classifier

that is considered dominant for all data distributions or can do discriminative well

enough in cases where the number of classes is large [14, 15, 16]. Therefore, the fusing

of many different classifiers to form a composite model, also known as ensemble learn-

ing shown in Fig. 1 has become very pertinent in tackling situations or challenges of

62 http://www.i-jim.org

Paper—Optimizing Android Malware Detection Via Ensemble Learning

dealing with numerous complicated patterns [17]. The technique of classifiers combi-

nation helps to eradicate the tendencies of selecting the worse classifier and it has also

shown to enhance the performance of the best individual base models for a wider range

of classification problems [18,19,20]. Research has shown that ensemble learning is

also an effective approach for resolving the problems of class imbalances, at the algo-

rithm level [21] and it also reduces generalization error.

The effectiveness of ensemble methods is largely due to the observable fact that var-

ious types of classifiers have different inductive biases [22]. Ensemble methods can

effectively make use of the inductive biases of the different classifiers to reduce the

variance-error without increasing the bias-error [23, 24]. Authors in [25] noted that en-

semble learning, which is based on the aggregation of the results from multiple models,

is an approach that is more sophisticated for increasing the accuracy of models com-

pared to the traditional practice of parameter tuning on a single model. Ensemble learn-

ing is able to obtain increased accuracy because of the simple but very powerful process

of group averaging or majority vote which enables the reduction of base model vari-

ance, and to a lesser extent bias reduction [26].

Two main elements that influence the performance of ensemble models are the di-

versity and strength of the base classifiers. This is because when the base classifiers

have high level of diversity and more strength, the ensemble model will then have lower

generalization error – that is, the combination of the outputs of multiple classifiers re-

duces the generalization error [27].

Fig. 1. Generalized Ensemble Method [28]

Other terms used to describe ensemble methods include hybrid methods, committee

of classifiers, opinion of pool, cooperative agents and aggregation [29, 30]. The main

goal of classifier combination study is to be able to identify the conditions under which

an ensemble of classifiers will yield the greatest gain in performance compared to the

individual classifiers [18, 31]. This study thus deployed machine learning techniques to

develop an ensemble learning classification model, that is based on static permission

features, for Android malware detection.

iJIM ‒ Vol. 14, No. 9, 2020 63

Paper—Optimizing Android Malware Detection Via Ensemble Learning

2 Classification Algorithms

Machine learning algorithms have one main goal which is to look for patterns, sim-

ilarities, regularities, trends, and redundancies in a given data and any model produced

using the given data sample has the ability to predict the properties of observation pro-

vided in the future from the same data source [32, 33]. A classification algorithm (also

known as a method or classifier) is a systematic approach used for building classifica-

tion models from data set given as an input [34, 35]. Three main classification algo-

rithms deployed in this work are Random Forest, Support Vector Machine, and k-Near-

est Neighbours.

2.1. Tree-based: Random Forest (RF)

This is a Tree-based classification algorithm that combines the power of random

Decision Trees with that of Bagging in order to obtain very high accuracy in classifica-

tion [36, 37]. This technique makes RF to work differently from the traditional Decision

Tree by applying a test on a number of features that are randomly given focusing on the

individual node of the tree and does not do any pruning. RF makes use of Bagging

(bootstrap aggregation) in order to produce a diverse ensemble of classifiers by the in-

troduction of randomness into the input of the learning algorithm [38].

2.2. Function-based: Support Vector Machine (SVM)

Support Vector Machines (SVM), also known as binary classifiers, are non-proba-

bilistic supervised machine learning classification algorithm that are applied widely in

the analysis and anomaly detection of malware [20, 39]. The algorithm makes use of a

hypothesis space of linear functions in a high dimensional feature space, in which it

strives to achieve linear separability. For it to do that, it deploys margin maximization

and kernels [40]. Two main versions of SVM exist in WEKA and they are Sequential

Minimal Optimization (SMO) (with Puk kernel) and LibSVM (with linear kernel).

SVMs have the ability to deal with data that are highly-dimensional and sparse. It makes

use of hyper-planes to separate various instances into their respective classes. For it to

work with non-linearly separable data, SVM depends on kernel methods. By default,

SVM are normally bundled with three kernel functions namely; polynomial, sigmoid,

and radial basis function [39]. SMO, which is an optimization algorithm, was deployed

in this work for the training of the SVM.

2.1 Lazy-based: k-Nearest Neighbours (k-NN)

KNN is known typically as lazy learner. It is so called not because it’s obvious sim-

plicity but for the reason that it does not learn a discriminative function from the data

provided for training but it rather memorizes the given dataset for training, thus KNN

does not have any training time. What it does is to just store the data meant for training

and then wait until data for testing is provided and the classification is performed based

64 http://www.i-jim.org

Paper—Optimizing Android Malware Detection Via Ensemble Learning

on the most related data in the training data that was stored [41]. It doesn’t use the

training data points to do any generalization (i.e., it keeps all the training data). The

training phase for K-NN is extremely fast because it does not really have a training

phase. For K-NN to make prediction, it searches for the nearest neighbours in the entire

training dataset. In this work, K-NN was implemented in the WEKA environment using

IBK classification filter on the given dataset. Unlike eager learners, the lazy learner

takes less time in the training phase but more time in predicting.

3 Methodology

The research methodology employed in this study is discussed in this section.

3.1 Data collection

Data used in this study were extracted primarily from Android Application Packages

files (APKs). The APKs are of two distinct types: benign and malicious. The Android

malware application packages were downloaded from the Android Malware Genome

Project [42, 43]. The Benign APK files were downloaded primarily from Google Play

Store. Furthermore, Evozi APK downloader as shown in Figure and apkpure web tools

were used to download the APKs and details such as package name, file size, QR Code,

MD5 file hash, date last fetched and app version were retrieved from the downloaded

APKs.

Fig. 2. Evozi APK Downloader Downloading First Bank MobileApp

Afterwards, Virus Total application which is an online malware scanner, was used

to properly screen the downloaded APKs so as to ascertain their true state, either benign

or malicious, before being put to use.

iJIM ‒ Vol. 14, No. 9, 2020 65

Paper—Optimizing Android Malware Detection Via Ensemble Learning

3.2 The ensemble model framework

The proposed detection model is shown in Fig. 4 which is a combination of three

heterogeneous base-classifiers; Random Forest, Support vector machine, and k-Nearest

Neighbours. The different stages include feature extraction, feature vectors matrix for-

mulation, base-learners training and the ensemble model creation through a combina-

tion function and a metal combiner.

Fig. 3. The Ensemble Model Framework

3.3 Feature extraction

Permission features were extracted from 1904 applications, 952 benign and 952 ma-

licious, through the process of reversed engineering. Reverse engineering is a process

of studying and analyzing the underlying source codes of any application or software

in order to understand its functionalities and behaviours and to come up with a new or

an improved version [44]. According to [45], software or Applications reverse engi-

neering integrates several arts: code breaking, puzzle solving, programming, and logi-

cal analysis. The two distinct tools used in this study for reverse engineering APKs are

Androguard and Sublime Text 2. Fig. 4 shows each stage of the apk reverse engineering

and features extraction processes.

66 http://www.i-jim.org

Paper—Optimizing Android Malware Detection Via Ensemble Learning

Fig. 4. Reverse Engineering Stages for APK Files

3.4 Base-classifiers training and classification phase

The three classification algorithms used are heterogeneous and each one of them was

trained through WEKA using the same dataset to generate the first-level base prediction

models (classifiers) as shown in Fig. 5.

iJIM ‒ Vol. 14, No. 9, 2020 67

Paper—Optimizing Android Malware Detection Via Ensemble Learning

Fig. 5. Pseudocode for Classification with Base-Algorithm

3.5 Ensemble learning training and classification phase

The combination of classifiers is a technique that has been extensively and widely

used in data mining because it has been shown to immensely reduce the error rate in

classification problems compared to single classifiers and it also enables the production

of a system that has a robust performance against the difficulties that individual classi-

fiers may be having on individual data set [46].

𝑉 (𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑛 ∑ 𝑤𝑗𝐼(𝑀𝑗(𝑥) = 𝑛)𝑡
𝑗=1 (1)

However, it is not a fixed rule for an ensemble method to always outperform the

base-classifiers; factors like selection of classifiers and the combination scheme used

in fusing together the predictions can affect the stack performance of the Ensemble

system [47]. The results of the base learners were fused using fixed combination func-

tion shown in equation (1) and vote metal combiner as illustrated in Fig. 6.

Fig. 6. Vote Ensemble Learning Workflow

3.6 Model testing and performance evaluations

Performance evaluation is critical to any data mining task. [48,49] identified True

Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR), False Neg-

ative Rate (FNR), Precision, F-Measure, Accuracy (ACC), and Error Rate (ERR) as

standard data mining performance evaluation metrics. As listed in equations (2) - (9),

68 http://www.i-jim.org

Paper—Optimizing Android Malware Detection Via Ensemble Learning

they were employed to evaluate the performance of the models. TPR measures the ratio

of correctly classified malicious apps to the total number of malicious apps in the da-

taset while TNR measures the ratio of correctly classified benign apps to the total num-

ber of benign apps in the dataset. FPR measures the ratio of incorrectly classified benign

apps to the total number of benign apps in the dataset while FNR determines the ratio

of incorrectly classified malicious apps to the total number of malicious apps in the

dataset. The total accuracy of the classifier is measured by the ACC while ERR

measures the error rate. The ratio of the malicious application that have been correctly

classified/ predicted to the total number of predictions as malicious was measured by

precision which is also the positive predictive value. The predictive strength of the clas-

sifier is measured by the receiver operating characteristic curve. It is a graphical plot

that shows the diagnostic ability of a classifier system as its discrimination threshold is

varied.

𝑇𝑃𝑅 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁⁄ (2)

𝑇𝑁𝑅 (𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃⁄ (3)

 𝐹𝑃𝑅 = 𝐹𝑃
𝑇𝑃 + 𝐹𝑃 ⁄ (4)

 𝐹𝑁𝑅 = 𝐹𝑁
𝐹𝑁 + 𝑇𝑁 ⁄ (5)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 ⁄ (6)

 𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
 (7)

 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8)

 𝐸𝑅𝑅 = 1 − 𝐴𝐶𝐶 (9)

4 Results and Discussion

The results obtained from the three base classifiers and the ensemble model is pre-

sented in this section. Their performance was measured using metrics such as: true pos-

itive, false positive and error rate, F-Measure, precision, ROC Area, modelling time,

kappa statistics and classification accuracy.

4.1 Random forest results analysis

As presented in Table 2, Random Forest had a sensitivity of 97.9% with a F-Measure

and ROC Area of 98.7% and 99.8% respectively. The model however recorded a very

low false alarm rate of 1.9%. The F-Measure result shows that the model correctly clas-

sified 98.7% of test instances in 10-fold cross validation as malware.

iJIM ‒ Vol. 14, No. 9, 2020 69

Paper—Optimizing Android Malware Detection Via Ensemble Learning

Table 2. Prediction Accuracy Results for Random Forest Classifier

Class
Evaluation Metrics

TP Rate FP Rate Precision F Measure ROC Area

Benign 0.981 0.021 0.979 0.980 0.998

Malicious 0.979 0.019 0.981 0.980 0.998

Weighted Avg. 0.980 0.020 0.980 0.980 0.998

The Confusion Matrix, Table 3, shows that Random Forest was able to correctly

classify 932 instances as malicious and 934 as benign. 18 instances are incorrectly clas-

sified as malicious while 20 are incorrectly classified as benign.

Table 3. Confusion Matrix Result for Random Forest Classifier

Predicted class

Malicious Benign

Actual Class
Malicious

Benign

The time taken by Random Forest (RF) to build the model was 1.49 seconds as

shown on Table 4. A commutative total of 1866 instances were correctly classified, that

is 98.0042% of the total number. The Random Forest Model has Kappa statistics of

0.9601 (96.01%), indicating excellent detection performance.

Table 4. Statistics Result for Random Forest

Time taken to build model 1.49 seconds

Correctly Classified Instances 1866 (98.0042%)

Incorrectly Classified Instances 38 (1.9958%)

Kappa statistic 0.9601

4.2 Support Vector Machine (SVM) results analysis

SVM recorded a total of 96.3% detection rate for malicious application as indicated

on Table 5. An F-Measure and a ROC Area of 97.6%. It has very good classification

strength with these metrics with a low false detection alarm rate of 1.2%. The classifi-

cation was done using Pearson VII kernel function (PUK) for optimal performance of

the SVM algorithm.

Table 5. Prediction Accuracy Results for SVM Classifier

Evaluation Metrics

Class TP Rate FP Rate Precision F-Measure ROC Area

Benign 0.988 0.037 0.964 0.976 0.976

Malicious 0.963 0.012 0.988 0.976 0.976

Weighted Avg. 0.976 0.024 0.976 0.976 0.976

70 http://www.i-jim.org

Paper—Optimizing Android Malware Detection Via Ensemble Learning

The SVM Confusion Matrix, Table 6, showed that the classifier correctly classified

917 instances as malicious and 941 instances as benign, while 11 instances are incor-

rectly classified as malicious and 35 instances incorrectly classified as benign. The

model was able to detect more instances as benign with very low false positive.

Table 6. Confusion Matrix Result for Support Vector Machine

Predicted class

Malicious Benign

Actual Class
Malicious TP = 917 FN = 35

Benign FP = 11 TN = 941

Cumulatively, the Classifier correctly predicted 1858 (97.584%) instances while 46

(2.416%) were incorrectly classified. The model took 4.36 seconds to build and a Kappa

statistic of 95.17% was obtained as shown in Table 7.

Table 7. Statistics Result for Support Vector Machine

Time taken to build model 4.36 seconds

Correctly Classified Instances 1858 (97.584%)

Incorrectly Classified Instances 46 (2.416%)

Kappa statistic 0.9517

4.3 k-nearest neighbours (k-NN) results analysis

kNN has a detection rate of 97% as presented in Table 8. The values of the F-Meas-

ure, Precision and ROC Area for k-NN are 98%, 99.1% and 98.8% respectively. How-

ever, the model recorded one of the lowest false positive detection rate of 0.8%.

Table 8. Prediction Accuracy Results for k-NN Classifier

Evaluation Metrics

TP Rate FP Rate Precision F-Measure ROC Area

Class

Benign 0.992 0.030 0.970 0.981 0.988

Malicious 0.970 0.008 0.991 0.980 0.988

Weighted Avg. 0.981 0.019 0.981 0.981 0.988

Table 9 shows that k-NN was able to correctly classify 923 instances as malicious

and 944 instances are classified correctly as benign, while 8 instances are incorrectly

classified as malicious and 29 incorrectly classified as benign.

Table 9. Confusion Matrix Result for k-Nearest Neighbours (k-NN)

Predicted class

Malicious Benign

Actual class
Malicious TP= 923 FN=29

Benign FP=8 TN = 944

iJIM ‒ Vol. 14, No. 9, 2020 71

Paper—Optimizing Android Malware Detection Via Ensemble Learning

k-Nearest Neighbours built the model in 0 seconds, implying that the algorithm does

not really learn on the given training set but stores them for application during testing.

A total cumulative of 1867 instances were correctly classified; 98.0567% percent of the

total instances. 37 (1.9433%) instances on the other hand were wrongly classified. The

Classifier has a Kappa statistic of 96.11% as shown on Table 10.

Table 10. Statistics Result for k-Nearest Neighbours (k-NN)

Time taken to build model 0 seconds

Correctly Classified Instances 1867 (97.0567%)

Incorrectly Classified Instances 37 (1.9433%)

Kappa statistic 0.9611

4.4 Comparisons of base classifiers performance results

Table 11 summarizes the results for each individual classifier. The tabular compari-

son of the results show that Random Forest turns out as the best performing base-learner

given that it has a very low false positive rate of 1.9% and an error rate of 0.2% and has

the highest ROC Area of 99.8%. k-NN recorded a very strong competitive performance

with Random Forest. k-NN has the lowest FPR of 0.8% and a highest precision of

99.1%. SVM also performed relatively well with very strong TPR, Accuracy, and error

rates.

Table 11. Comparison of the Base-Classifiers Results

Metrics
Base Classifiers (Models)

RF SVM k-NN

TP Rate 0.979 0.963 0.970

FP Rate 0.019 0.012 0.008

Precision 0.981 0.988 0.991

Accuracy 0.980 0.976 0.981

F-Measure 0.980 0.976 0.980

Error Rate 0.02 0.024 0.019

ROC Area 0.998 0.976 0.988

Correctly classified Instances 1866 (98%) 1858 (97.58%) 1867 (98.06%)

Kappa Statistic 0.960 0.952 0.961

Model time 1.49 4.36 0

All the six different heterogeneous classifiers maintain very minimal time for model

building thus having generally low computational overheads when performing classifi-

cation on new instances.

4.5 Ensemble learning results analysis

To form the composite ensemble model, Vote (a meta learner) was used to combine

all the base learners in a parallel form using Majority vote fixed combination function.

72 http://www.i-jim.org

Paper—Optimizing Android Malware Detection Via Ensemble Learning

Ensemble models are slower to build compared to the single models, due to the reason

that more time is needed to combine all the classifiers to post-process the results.

4.6 Majority vote results analysis

Table 12 displays the results for majority vote combination rule recorded a TPR for

malicious instances as 98.1% and a false positive rate of 1.8%. The Precision and F-

Measure for the malicious class are 98.2% and 98.1% which all show great strength in

the prediction capacity of the Ensemble model. The F-Measure result indicated that the

Majority Voting rule enabled the classifiers to correctly classify 98.1% of test instances

in 10-fold cross validation.

Table 12. Prediction Results for Majority Voting Combination Rule

 Evaluation Metrics

Class TP Rate FP Rate Precision F-Measure ROC Area

Benign 0.982 0.019 0.981 0.982 0.982

Malicious 0.981 0.018 0.982 0.981 0.982

Weighted Avg. 0.982 0.018 0.982 0.982 0.982

The confusion matrix, shown in Table 13, provides the parameter values for calcu-

lating the actual performance of the Majority Voting combination rule. It shows that

the actual instances classified by the algorithms as malicious are 934 while 935 in-

stances were classified as Benign. 17 instances were misclassified as malicious while

18 instances were misclassified as benign.

Table 13. Confusion Matrix for Majority Voting

Predicted Class

Malicious Benign

Actual class
Malicious TP = 934 FN = 18

Benign FP = 17 TN= 935

Table 14 shows that the time taken to build the model was 9.23 seconds and the

Kappa statistic was 96.32% which indicate prediction strength of the Model. 1869

(98.1618%) instances were correctly classified while 35 (1.8382%) were misclassified.

Table 14. Statistics Result for Majority Voting

Time taken to build model 9.23 seconds

Correctly Classified Instances 1869 (98.1618%)

Incorrectly Classified Instances 35 (1.8382%)

Kappa statistic 0.9632

iJIM ‒ Vol. 14, No. 9, 2020 73

Paper—Optimizing Android Malware Detection Via Ensemble Learning

4.7 Comparison of best base model and best ensemble model

The Accuracy and Error Rate are great measures that provide sound identifications

on the performance result of a classification model. However, a very high detection

accuracy value does not indicate that a model is doing well when the false positive

detection rate of the model is also high. Table 15 shows the comparison between the

best base-model and the ensemble model. The Majority Vote combination rule pro-

duced a true positive detection rate of 98.1% which is relatively an improvement in the

detection accuracy compared to 97.9% detection rate obtained by the best single clas-

sifier, Random Forest.

Table 15. Comparison of Best Base Model and Best Ensemble Model

S/N Metrics Majority Voting Random Forest

1. TP Rate 0.981 0.979

2. FP Rate 0.018 0.019

3. Precision 0.982 0.981

4. Accuracy 0.982 0.980

5. F-Measure 0.982 0.980

6. Error Rate 0.018 0.02

7. ROC Area 0.982 0.998

8. Correctly classified Instances 1869 (98.16%) 1866 (98%)

9. Kappa Statistic 0.9632 0.960

10. Model time 9.23 1.49

The Ensemble model obtained best performance results in false positive, accuracy,

error rate and Kappa Statistics as 1.8%, 98.2%, 1.8% and 96.32%. The base model only

has best performance in ROC Area as 99.8% against 99.7% for the Ensemble model.

5 Conclusion

Random Forest produced the best base detection model, having a true positive de-

tection rate of 97.9%, false positive detection rate of 0.19%, accuracy of 98%, and a

detection error rate of 0.2%. The Majority Vote combination rule produced an ensemble

model with a true positive malware detection rate of 98.1%, false positive detection rate

of 0.18%, a detection accuracy of 98.2%, and a detection error rate of 0.18%. The en-

semble Model outperformed the single model with a relative difference of 0.2% on the

true positive detection rate. The ensemble model has a very low false alarm rate of

0.18% and the lowest error rate of 0.18%. The study therefore concludes that a super-

vised ensemble model is an effective approach for the anomaly detection of Android

malware.

74 http://www.i-jim.org

Paper—Optimizing Android Malware Detection Via Ensemble Learning

6 References

[1] Statista. (2018). Smartphone OS global market share 2009-2018 | Statistic. Retrieved June

26, 2018, from https://www.statista.com/statistics/266136/global-market-share-held-by-

smartphone-operating-systems/

[2] Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. (2016). Evaluation of machine

learning classifiers for mobile malware detection. Soft Computing, 20(1), 343–

357.https://doi.org/10.1007/s00500-014-1511-6

[3] Feng, Y., Anand, S., Dillig, I., & Aiken, A. (2014). Apposcopy: Semantics-Based Detection

of Android Malware Through Static Analysis. In Proceedings of the ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering (FSE’14) (pp. 16–

22).https://doi.org/10.1145/2635868.2635869

[4] Lueg, C. (2018). Malware figures for Android rise rapidly. Retrieved August 24, 2018,

from https://www.gdatasoftware.com/blog/2018/07/30937-malware-figures-for-android-

rise-rapidly

[5] Richter, L. (2015). Common Weaknesses of Android Malware Analysis Frameworks. In IT

Security Conference, University of Erlangen-Nuremberg during summer term 2015 (pp. 1–

10). Erlangen.

[6] Vidas, T., Tan, J., Nahata, J., Tan, C. L., Christin, N., & Tague, P. (2014). A5: Automated

Analysis of Adversarial Android Applications. SPSM ’14: Proceedings of the 4th ACM

Workshop on Security and Privacy in Smartphones & Mobile Devices, 39–50.

https://doi.org/10.1145/2666620.2666630

[7] IDC. (2019). Smartphone Market Share. Retrieved June 18, 2019, from

https://www.idc.com/promo/smartphone-market-share/os

[8] Aquilina, N. (2015). Cross-Platform Malware Contamination Cross ‐ Platform Malware

Contamination (Master’s Thesis). Royal Holloway, University of London, London.

[9] Dunham, K., Hartman, S., Morales, J. A., Quintans, M., & Strazzere, T. (2014). Android

malware and analysis (1st ed.). New York: Auerbach Publications. https://doi.org/10.

1201/b17598

[10] Zhauniarovich, Y. (2014). Android TM Security (and Not) Internals (ASANI Book) (1.01).

Trento: asani.

[11] Mahmoud M. El-Khouly, M. Samir Abou El-Seoud (2017). Malware Detection in Cloud

Environment (MDCE). International Journal of Interactive Mobile Technologies (iJIM),

11(2), 139-145. https://doi.org/10.3991/ijim.v11i2.6575

[12] Eman Ahmed, Amin Sorrour, Mohammed Sobh, Ayman Bahaa-Eldin (2017). A Cloud-

based Malware Detection Framework. International Journal of Interactive Mobile Technol-

ogies (iJIM), 11(2), 113-127. https://doi.org/10.3991/ijim.v11i2.6577

[13] Pandey, M., & Taruna, S. (2016). Towards the integration of multiple classifier pertaining

to the Student’s performance prediction. Perspectives in Science, 8, 364–366.

https://doi.org/10.1016/j.pisc.2016.04.076

[14] Amancio, D. R., Comin, C. H., Casanova, D., Travieso, G., Bruno, O. M., Rodrigues, F.

A., & Da Fontoura Costa, L. (2014). A systematic comparison of supervised classifiers.

PLoS ONE, 9(4). https://doi.org/10.1371/journal.pone.0094137

[15] Kuncheva, L. I. (2004). Combining Pattern Classifiers: Methods and Algorithms (2nd ed.).

Hoboken, New Jersey: John Wiley & Sons, Inc.

[16] Pappa, G. L., & Freitas, A. (2010). Automating the Design of Data Mining Algorithms: an

evolutionary computation approach. Verlag Berlin Heidelberg: Springer Science & Busi-

ness Media.

iJIM ‒ Vol. 14, No. 9, 2020 75

https://doi.org/10.1007/s00500-014-1511-6
https://doi.org/10.1145/2635868.2635869
https://doi.org/10.1145/2666620.2666630
https://www.idc.com/promo/smartphone-market-share/os
https://doi.org/10.1201/b17598
https://doi.org/10.1201/b17598
https://doi.org/10.3991/ijim.v11i2.6575
https://doi.org/10.3991/ijim.v11i2.6577
https://doi.org/10.1016/j.pisc.2016.04.076
https://doi.org/10.1371/journal.pone.0094137

Paper—Optimizing Android Malware Detection Via Ensemble Learning

[17] Benmokhtar, R., & Huet, B. (2006). Classifier Fusion: Combination Methods For Semantic

Indexing in Video Content. In International conference on artificial neural networks (pp.

65–74). Berlin, Heidelberg: Springer. https://doi.org/10.1007/11840930_7

[18] Bilmes, J. A., & Kirchhoff, K. (2003). Generalized rules for combination and joint training

of classifiers. Pattern Analysis and Applications, 6(3), 201–211. https://doi.org/10.

1007/s10044-002-0188-0

[19] Shahzad, R. K. (Blekinge I. of T., & Lavesson, N. (Blekinge I. of T. (2012). Comparative

Analysis of Voting Schemes for Ensemble-based Malware Detection. Proc. of the 7th In-

ternational Conference on Availability, Reliability, and Security, (August), 98–117.

[20] Milosevic, N., Dehghantanha, A., & Choo, K. K. R. (2017). Machine learning aided An-

droid malware classification. Computers and Electrical Engineering, 61, 266–274.

https://doi.org/10.1016/j.compeleceng.2017.02.013

[21] Phung, S. L., Bouzerdoum, A., & Nguyen, G. H. (2009). Learning Pattern Classification

Tasks with Imbalanced Data Sets. In Pattern Recognition (pp. 193–208).

https://doi.org/10.5772/7544

[22] Mitchell, T. M. (1997). Machine Learning (1st ed.). New York: McGraw-Hill, Inc.

[23] Ali, K. M., & Pazzani, M. J. (1996). Error Reduction through Learning Multiple Descrip-

tions. Machine Learning, 24(3), 173–202.https://doi.org/10.1007/bf00058611

[24] Bartlett, P., & Shawe-Taylor, J. (1998). Generalization performance of support vector ma-

chines and other pattern classifiers. Cambridge: MIT Press Cambridge, USA.

[25] Seni, G., & Elder, J. F. (2010). Ensemble Methods in Data Mining: Improving Accuracy

Through Combining Predictions. (R. G. (University of Illinois), Ed.) (1st ed.). San Rafael:

Morgan and Claypool.

[26] Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural Networks and the Bias/Variance

Dilemma. Neural Computation, 4(1), 1–58. https://doi.org/10.1162/neco.1992.4.1.1

[27] Wei, H., Lin, X., Xu, X., Li, L., Zhang, W., & Wang, X. (2014). A novel ensemble classifier

based on multiple diverse classification methods. In 2014 11th International Conference on

Fuzzy Systems and Knowledge Discovery, FSKD 2014 (pp. 301–305). Xiamen, China:

IEEE. https://doi.org/10.1109/fskd.2014.6980850

[28] King, M. A. (2015). Ensemble Learning Techniques for Structured and Unstructured Data

(PhD Thesis). Virginia Polytechnic Institute and State University.

[29] Duin, R. P. W., & Tax, D. M. J. (2000). Experiments with Classifier Combining Rules. In

MCS 2000 Proceedings of the First International Workshop on Multiple Classifier Systems

(Vol. 31, pp. 16–29). Cagliari, Italy. https://doi.org/10.1007/3-540-45014-9_2

[30] Stefanowski, J. (2009). Multiple classifiers. Retrieved June 24, 2018, from

http://www.cs.put.poznan.pl/jstefanowski/aed/DMmultipleclassifiers.pdf

[31] Vidhya, A. (2017). How to handle Imbalanced Classification Problems in machine learn-

ing? Retrieved August 29, 2018, from https://www.analyticsvidhya.com/blog/2017/03/im-

balanced-classification-problem/

[32] Gama, J. M. P. da. (1999). Combining Classification Algorithms (Doctoral Thesis). Fac-

uldade de Ci^encias da Universidade do Porto.

[33] Komal, A. (2016). A Survey on malicious detection technique using data mining and ana-

lyzing in web security. 2016 IJEDR, 4(2), 319–322.

[34] Duch, W., & Grudzinski, K. (2001). Meta-learning: searching in the model space. In In

Proceedings of the International Conference on Neural Information Processing (ICONIP)

(pp. 235–240). Shanghai, China.

[35] Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Classification : Basic Concepts , Decision

Trees , and Model Evaluation Classification. Introduction to Data Mining, 1, 145–205.

[36] Breiman, L. (2001). RANDOM FORESTS. Machine Learning, 45(1), 5–32.

76 http://www.i-jim.org

https://doi.org/10.1007/11840930_7
https://doi.org/10.1007/s10044-002-0188-0
https://doi.org/10.1007/s10044-002-0188-0
https://doi.org/10.1016/j.compeleceng.2017.02.013
https://doi.org/10.5772/7544
https://doi.org/10.1007/bf00058611
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1109/fskd.2014.6980850
https://doi.org/10.1007/3-540-45014-9_2
http://www.cs.put.poznan.pl/jstefanowski/aed/DMmultipleclassifiers.pdf
https://www.analyticsvidhya.com/blog/2017/03/imbalanced-classification-problem/
https://www.analyticsvidhya.com/blog/2017/03/imbalanced-classification-problem/

Paper—Optimizing Android Malware Detection Via Ensemble Learning

[37] Yerima, S. Y., & Sezer, S. (2018). DroidFusion: A Novel Multilevel Classifier Fusion Ap-

proach for Android Malware Detection. In IEEE Transactions on Cybernetics (pp. 1–14).

IEEE. https://doi.org/10.1109/tcyb.2017.2777960

[38] Witten, I. H., & Frank, E. (2011). Data Mining: Practical Machine Learning Tools and

Techniques (2nd ed.). AMSTERDAM: Elsevier.

[39] Ucci, D., Aniello, L., & Baldoni, R. (2018). Survey on the Usage of Machine Learning

Techniques for Malware Analysis. Computers and Security, 1(1), 1–67.

https://doi.org/10.1109/tcyb.2017.2777960

[40] Masud, M., Khan, L., & Thuraisingham, B. (2011). Data Mining Tools for Malware Detec-

tion (1st ed.). Boston: Auerbach Publications.

[41] Asiri, S. (2018). Machine Learning Classifiers. Retrieved January 4, 2019, from https://to-

wardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623

[42] Yajin, Z., & Xuxian, J. (2015). Android Malware Genome Project. Retrieved March 8,

2017, from http://www.malgenomeproject.org/policy.html

[43] Contagio, M. (2016). Pokemon GO with Droidjack - Android sample. Retrieved from

http://contagiominidump.blogspot.com.ng/

[44] Whelan, R. J., Leek, T. R., Hodosh, J. E., Hulin, P. A., & Dolan-gavitt, B. (2016). Repeat-

able Reverse Engineering with the Platform for Architecture-Neutral Dynamic Analysis.

MIT Lincoln Laboratory Lexington, 22(1), 90–99.

[45] Eilam, E. (2005). REVERSING Secret of Reverse Engineering (1st ed.). Indianapolis:

Wiley Publishing, Inc.

[46] Moreno-Seco, F., Iñesta, J., León, P. De, & Micó, L. (2006). Comparison of classifier fu-

sion methods for classification in pattern recognition tasks. Lecture Notes in Computer Sci-

ence, 4109, 705–713. https://doi.org/10.1007/11815921_77

[47] Dˇzeroski, S., & Zenko, B. (2004). Is Combining Classifiers Better than Selecting the Best

One? Machine Learning, 54(3), 255–273. https://doi.org/10.1023/b:mach.0000015881.

36452.6e

[48] Fawcett, T. (2006). An introduction to ROC analysis. Journal of Pattern Recognition Let-

ters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010

[49] Powers, D. M. W. (2011). Evaluation: From Precision, Recall and F-Measure to Roc, In-

formedness, Markedness & Correlation. Journal of Machine Learning Technologies, 2(1),

37–63.

7 Authors

Oluwakemi Christiana Abikoye received a National Diploma (ND) in Computer

Science from Kwara State Polytechnic, Ilorin in 1996, a B.Sc degree in Computer Sci-

ence from University of Ilorin in 2001, M.Sc degree in Computer Science from Uni-

versity of Ibadan, Ibadan in 2006 and Ph.D. degree in Computer Science in 2013.. She

began her academic career at University of Ilorin, Department of Computer Science in

2004 as a Graduate Assistant and rose through the ranks. She is presently a Senior Lec-

turer. Oluwakemi is known for her innovative work in Computer/Communication Net-

work Security, particularly on issues involving Security in computer, networks and

Cash dispenser machines and transaction authentication system. Her research interests

include Cryptography, Biometrics, Human-Computer Interaction, and Cybersecurity.

iJIM ‒ Vol. 14, No. 9, 2020 77

https://doi.org/10.1109/tcyb.2017.2777960
https://doi.org/10.1109/tcyb.2017.2777960
https://doi.org/10.1007/11815921_77
https://doi.org/10.1023/b:mach.0000015881.36452.6e
https://doi.org/10.1023/b:mach.0000015881.36452.6e
https://doi.org/10.1016/j.patrec.2005.10.010

Paper—Optimizing Android Malware Detection Via Ensemble Learning

She is also involved in the supervision of postgraduate (Masters/Ph.D.) students' re-

search work in specialized areas of Computer (Information Security). She has several

publications in Local, national and international journals.

Benjamin Aruwa Gyunka graduated with a Doctor of Philosophy degree (Ph.D.)

in Computer Science from the University of Ilorin, Nigeria. He also holds a Bachelor

of Science degree in Mathematics from the University of Jos and a Master of Science

degree in Information Systems Security from Sheffield Hallam University, United

Kingdom. Prior to this time, he had extensive experience as a Network Administrator

while working with the National Open University of Nigeria (NOUN). His research

interest lies mostly in Information Security, Cybersecurity, data mining, Android secu-

rity, digital forensics, and machine learning.

Akande Noah Oluwatobi had B. Sc. and M. Sc. degrees in Computer Science from

Ladoke Akintola University of Technology. He presently lectures in the Department of

Computer Science, Landmark University, Omu-Aran, Nigeria. He is a member of Com-

puter Professional (Registration Council) of Nigeria (MCPN), Member, Nigeria Com-

puter Society (MNCS), and IAENG Society of Computer Science. His research areas

include Data and Information Security and Pattern Recognition (Medical Image Anal-

ysis). Email: akande.noah@lmu.edu.ng

Article submitted 2019-08-20. Resubmitted 2019-11-07. Final acceptance 2019-11-07. Final version pub-
lished as submitted by the authors.

78 http://www.i-jim.org

mailto:akande.noah@lmu.edu.ng

