
A SOFTWARE TOOL TO VISUALIZE VERBAL PROTOCOLS TO ENHANCE STRATEGIC AND METACOGNITIVE ABILITIES IN

BASIC PROGRAMMING

A Software Tool to Visualize Verbal Protocols to

Enhance Strategic and Metacognitive Abilities in

Basic Programming
doi:10.3991/ijim.v5i3.1668

Carlos Argelio Arévalo Mercado, Estela Lizbeth Muñoz Andrade and Juan Manuel Gómez Reynoso

Universidad Autónoma de Aguascalientes, Aguascalientes, México

Abstract—Learning to program is difficult for many first

year undergraduate students. Instructional strategies of

traditional programming courses tend to focus on syntactic

issues and assigning practice exercises using the presenta-

tion-examples-practice formula and by showing the verbal

and visual explanation of a teacher during the “step by

step” process of writing a computer program. Cognitive

literature regarding the mental processes involved in pro-

gramming suggests that the explicit teaching of certain

aspects such as mental models, strategic knowledge and

metacognitive abilities, are critical issues of how to write

and assemble the pieces of a computer program. Verbal

protocols are often used in software engineering as a tech-

nique to record the short term cognitive process of a user or

expert in evaluation or problem solving scenarios. We argue

that verbal protocols can be used as a mechanism to explicit-

ly show the strategic and metacognitive process of an in-

structor when writing a program. In this paper we present

an Information System Prototype developed to store and

visualize worked examples derived from transcribed verbal

protocols during the process of writing introductory level

programs. Empirical data comparing the grades obtained

by two groups of novice programming students, using

ANOVA, indicates a statistically positive difference in per-

formance in the group using the tool, even though these

results still cannot be extrapolated to general population,

given the reported limitations of this study.

Index Terms—Basic programming, Verbal Protocols, Dual

Coding, e-learning.

I. INTRODUCTION

A. The programming context

The difficulties many undergraduate students face when
learning programming are still a common topic in cogni-
tive, educational and technological research literature. The
problem has been approached from many angles, such as
the study of the cognitive behavior of novices and experts
[1-3] some creative pedagogical strategies [4-6], the cul-
tural environment of the student [7],[8], and of course the
use of software tools [9-12].

In developing countries such as Mexico, programming
skills are relevant for undergraduate students, given the
increasing trends of first world economies to outsource
programming, information technology and software relat-
ed jobs [13-15].

But the most visible aspect of the problem is the almost
universal pattern of high failure rates among first year
computer science programming students. Depending on

the source, it can be found that this failure rates range
from 30% to 60% [16-19]

B. The traditional teaching model

Teaching programming is often based on the pedagogi-

cal pattern of: 1) presenting the topic, 2) showing a few
examples, and 3) assigning practice exercises; that is, the
presentation-examples-practice formula [20]. And so, a
traditional programming course is mainly based on theo-
retical lecture sessions and practical work on computer
laboratories, where most of the content is focused on the
characteristics of the computer language being taught
[21]. Refs. [22-24] agree that most introductory program-
ming courses are reasonably good to emphasize syntax
comprehension of programs, but that they do not reinforce
the strategic kind of knowledge required to write pro-
grams.

A common perception of computer programming edu-
cators is the assumption that this strategic knowledge will
develop itself as a byproduct of curricular design [25],
while literature suggests that a more effective approach is
that this knowledge has to be explicitly taught [21],[26].

C. Software tools

During the last four decades, researchers and designers
have been trying to make programming more appealing to
students and to the public. They have developed a wide
variety of software applications, to make programming
skills easier to acquire. From Logo [27], to Alice [11] a
diversity of learning goals have been pursued: to develop
problem resolution abilities, to develop logical thinking
through games, or to facilitate the transition to general
purpose programming languages by way of alternative and
easier to use interfaces, among other goals. Ref. [28] did a
survey of approximately 80 software tools designed to
teach programming or to foster the interest in program-
ming by way of games, animations or puzzles.

Other recent types of software tools designed to be an
aid in teaching programming are: a) program visualiza-
tion; by using graphics that enable the student to visualize
the behavior of algorithms and data structures [29], b)
learning objects, small instructional components that can
be reused in several contexts [10], c) concept maps, that
work like big knowledge “scaffolds” to represent the main
concepts of programming, and to combine them with other
teaching strategies and tools [30],[31], and d) cognitive
tutors, that use declarative and procedural knowledge in

12 http://www.i-jim.org

http://dx.doi.org/10.3991/ijim.v5i3.1668

A SOFTWARE TOOL TO VISUALIZE VERBAL PROTOCOLS TO ENHANCE STRATEGIC AND METACOGNITIVE ABILITIES IN

BASIC PROGRAMMING

the form of rules, to give guided feedback to the student
[32],[33].

All these types of tools have reported positive results,
and have had various degrees of success in the goal of
teaching programming, but we argue that while some of
them have been adopted by programming educators, most
of them have focused only on a limited subset of the cog-
nitive aspects (e.g. the transfer of mental models through
graphics or interactive feedback) that cognitive literature
report as critical.

D. Critical cognitive aspects

The act of programming is essentially a cognitive pro-
cess of problem resolution that involves writing abstract
structures of an algorithmical process. In other words,
programming is a way to mentally create a solution to a
problem, simultaneously combining a limited and prede-
fined set of syntactic structures and statements, by way of
a computer language.

Cognitive literature regarding the acquisition of pro-
gramming skills is vast and complex. The subject was of
special interest in the 1980s [34-36], and in recent years it
has still been explored, so that other facets of the problem
have been identified and more alternative solutions ex-
plored [25],[37],[38]. The most recurring topics found in
relevant cognitive literature are: a) comparative studies of
mental models of novices and experts, b) the development
of programming strategies (also called, plans, schemas or
clichés) for common types of problems, and more recent-
ly, c) the cognitive process called Metacognition.

1) Mental models

Ref. [3] defines a mental model as an internal represen-
tation of a system or complex task, whose construction
enables the learner to comprehend and predict the behav-
ior of that system or task.

Ref. [39] also tells that a mental model develops and re-
fines through time, as a result of interaction between the
subject and the target system, and that this mental model
does not have to be very precise, as long as it is “function-
al”.

In programming, a mental model refers to the image the
programmer has about the invisible processing that occurs
inside the computer, in the interval between an input and
an output [35]. Ref. [40] clarifies that to write a program a
person has to have many and very diverse mental models,
referring, for example, as to how a loop, a data structure or
decision structure behaves. Ref. [41] notes that the exist-
ence of a wide range of valid mental models is critical for
the novice to acquire the ability to write programs, and if
these mental models are not explicitly taught, the student
will anyway create its own, of dubious quality and effec-
tiveness.

2) Strategies

It has been found that, even though a student is in fact
able to acquire valid mental models, and knows the cor-
rect syntax of a programming language, a key cognitive
element is still necessary for him to write effective pro-
grams. This component is called “strategy” [42] (also
known as schema, plan or cliché). Strategies are prede-
fined solutions to stereotyped kinds of problems. The lack
of a minimum amount of these strategies restricts the
student ability to recognize certain types of problems, and
therefore their solution. Ref. [43] indicates that an im-
portant aspect of strategies is that they cannot be deducted

from the final form of the program. This means that a
novice can study the final shape of a program, but unless
explicitly taught by a teacher, he or she cannot see the
process and strategies involved in its writing. The final
form of a program can give the student information about
the concepts and syntactic structures used, but not about
the strategies and decisions applied during the writing
process. These strategies are a lot more difficult to teach
in the classroom and laboratories, but Ref. [44] notes that
“in programming, there is considerable empirical evidence
that suggests that strategies are the main basic cognitive
component used in design and program comprehension.”

Finally, Ref. [45] argues that the process of writing a
program does not have to be understood as a “literal tran-
scription” of a previously stored and typified solution, but
rather as an iterative, exploratory, and incremental process
determined by minor episodes of problem solving and
constant re-evaluation of the effectiveness of applied
strategies. That is, the effectiveness of a set of strategies is
constantly monitored and evaluated by the programmer, in
the process of writing the program.

This finding leads to another important aspect of pro-
gramming (and of problem solving in general) called
Metacognition.

3) Metacognition

Ref [46] described Metacognition as “awareness of a
person’s own cognitive process”. While strategies allow a
programmer to solve problems, Metacognition allows him
to monitor its progress, apply his knowledge to new situa-
tions, and identify its own limitations. Ref. [47] indicates
that through Metacognition a student can define the nature
of a problem or task, select a useful mental representation,
use the most pertinent strategy to implement it and put
attention to feedback as to how he or she is making pro-
gress towards the solution.

In this context, favorable results have been reported
through the use of instructional strategies such as “pair
programming” [48] (that is, a pair of novice programmers
monitor each other’s progress, with constant feedback),
and with the use of “think-alouds” [49], (instructing the
students to verbally reproduce their thought process when
writing a program, thus explicitly making such students
aware of the decisions, and problem solving strategies
they are applying). These are clear examples of Metacog-
nition in the programming context.

Given that empirical evidence in cognitive literature
suggests that these three cognitive components (valid
Mental Models, Strategies and Metacognition) are critical
to acquire the ability to program, we argue that a software
tool designed to help students to learn to program, has to
include some form of these elements.

II. DEVELOPMENT OF A VERBAL PROTOCOL

VISUALIZER TOOL.

A. Verbal protocols

Verbal protocols, as a method of representation and
analysis of a person’s thought processes, have a solid
tradition in the context of cognitive psychology [50-52]

As a technique, verbal protocols were initially devel-
oped to study a person’s short term memory processes (to
what things he or she pays attention to, and in what order,
when given a certain task?), but in time, they have been
extensively used in other disciplines such as software

iJIM – Volume 5, Issue 3, July 2011 13

A SOFTWARE TOOL TO VISUALIZE VERBAL PROTOCOLS TO ENHANCE STRATEGIC AND METACOGNITIVE ABILITIES IN

BASIC PROGRAMMING

engineering (e.g. usability studies [53],[54], software task
analysis [55]), and even in programming teaching [49].

To develop our tool, we selected the method of verbal
protocols, as a way to elicit (and later explicitly show to
students) an expert programmer’s series of decisions when
given a certain basic programming type of problem: that
is, a verbal protocol can show a student what elements of
a problem the expert is paying attention to, how and in
what form the programmer applies the basic programming
structures (loops, decisions, data structures), and how does
the programmer identifies when he or she made a mistake
and has to backtrack and correct it.

To analyze a verbal protocol, a researcher has to rely on
some kind of recording device (in the old days, a tape
recorder) to be able to transcribe, apply a coding scheme
and compare the verbalizations of a given set of subjects.
At this point we opted for a different kind of recording
method, using video capture software, to be able not only
to record the verbal data, but also the visual behavior of
the expert programmer.

For example, in our study, a recording session would
consist of asking an expert programmer to write a program
to solve a simple programming problem, such as the fol-
lowing, while verbalizing his or her thought process:

Write a program in C Language that, when given a
quantity N of integers, gives the sum of all pair numbers,
and the average of all uneven numbers.

Then, we used the video capture software to record au-
dio and video activity taking place in the computer. The
resulting product was a video file with visual and audio
information that was later transcribed and edited to a data-
base (Figure 1)

It has to be noted that, in all cases, video editing was
needed to re-record the video segments of the protocols,
because correspondence between the verbalizations of the
programmer, and the visual information (the actual writ-
ing of the code) where very rarely synchronized (Figure 2)

For our experimental test, four edited protocols where
produced, representing four types of problems with
different levels of difficulty (Figure 3).

Once the tool was in its final form, students could
access and visualize the protocols using a web based
interface, typing a keyword, an specific phrase or an
author’s (programmer) name (Figure 4).

B. Dual coding

Dual coding theory (DCT) describes that to process
sensorial stimuli from the environment, the human mind
has two independent but connected memory subsystems:
one for visual and one for verbal information. The visual
subsystem handles concrete images and sounds. The ver-
bal subsystem records language and abstract information.
According to the theory, both systems function inde-
pendently but are intimately connected: when a verbal
representation is created as a response to a visual image,
or when an image is created as a result of seeing or hear-
ing a word, it is said that a referential connection has been
made, and thus, dually coded. [56-58].

Empirical data of DCT studies [56],[57],[59] shows that
the brain can retrieve information better when it is dually
coded.

Figure 1. Data Model used to store and retrieve verbal protocols

Figure 2. Video editing of verbalization segments of protocols

Figure 3. List of protocols available in the tool

Figure 4. Searching interface

14 http://www.i-jim.org

A SOFTWARE TOOL TO VISUALIZE VERBAL PROTOCOLS TO ENHANCE STRATEGIC AND METACOGNITIVE ABILITIES IN

BASIC PROGRAMMING

In our study, we tried to apply this principle to the de-
sign of the user interface of the tool, by allowing the stu-
dent to browse the verbal and visual information of the
protocols (Figure 5). The protocols were divided in seg-
ments that students could study and analyze by reading the
verbalizations, and watching the video segment corre-
sponding to the writing of the code.

The interface was subject to several tests to further re-
fine its usability. For example a feature was added to
allow a student to “jump” directly to a specific step of the
protocol (Figure 6).

C. Experimental conditions

To measure the tool’s capability to transfer strategic
knowledge to novice undergraduate programmers, we
designed a standard test, consisting of three basic pro-
gramming problems, to assess the student’s skills. The test
was written to evaluate the following specific abilities:

a) Recognize types of problems that involved combined
structures of repetition (loops) and selection (if).

b) Effectively write repetition and decision structures.

c) Recognize and effectively apply problems that in-
volve counters.

d) Make calculations involving exponents.

It has to be noticed that the test was designed using pre-
viously applied questions and problems, taken from our
internal programming academy quiz repository. This re-
pository of tests dates back to the year 2008. The specific
sample of the three test questions was randomly selected
to design the measurement instrument, but taking into
account their similarity to the desired specific abilities to
be measured. 15 historical undergraduate student’s results
of both computer science and electronic engineering were
selected.

Figure 5. Dual coding user interface.

Figure 6. Usability modifications to user interface

These previous results were analyzed to verify if the in-
strument’s behavior was normal and without significant
bias. We used a grading scale of 0 to 10.

Descriptive statistics (Table I), normality tests (Table
IIFehler! Verweisquelle konnte nicht gefunden
werden.), the corresponding histogram of the instrument
data (Figure 7), and a Q-Q Plot (Figure 8) are shown.

Given the small size of the sample we look at the
Shapiro-Wilk test for normality asumption. In this case,
the Sig. value is greater than 0.05, wich indicates that the
data is normal.

Also, in Figure 8, we can see that the data obtained with
the instrument (that is, the grades obtained) also behave
normally, except for one observed value.

TABLE I.
MEASUREMENT INSTRUMENT DESCRIPTIVE STATISTICS

 Grade

N Valid 15

Mean 5.7340

Median 5.8300

Mode 8.83

Std. Deviation 2.27753

Variance 5.187

Skewness -0.679

Std. error of Skewness 0.580

Kurtosis 0.879

Std. error of kurtosis 1.121

Range 8.50

Minimum 0.33

Maximum 8.83

TABLE II.
NORMALITY TESTS

Instrument
Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Grade .129 15 .200* .939 15 .370

*. This is a lowerbound of true significance.
a Lilliefors Significance Correction.

Figure 7. Measurement instrument histogram

iJIM – Volume 5, Issue 3, July 2011 15

A SOFTWARE TOOL TO VISUALIZE VERBAL PROTOCOLS TO ENHANCE STRATEGIC AND METACOGNITIVE ABILITIES IN

BASIC PROGRAMMING

Figure 8. Q-Q Plot of grades obtained with instrument

To test the effectiveness of our tool, a semi-
experimental setting was designed, using two groups of
programming students: one from 2nd semester Computer
Science students and another from 2nd semester Electronic
Engineering students, both from Autonomous University
of Aguascalientes (UAA), México. Selection of
participants was not random. Complete groups were
invited, given that the experiment was conducted during a
period of normal classes.

The Electronic Engineering group (n=20) was selected
as the control group (TRAD). The computer science group
(n=18) was to serve as the experimental group (EXP).
55% of the (TRAD) group had previous programming
experience from highschool, while 41% of the (EXP)
group had previous programming experience.

Two days before the application of the test, four
excersices were given to both groups for them to study
and practice. This excersices were the same ones loaded in
the Protocol Visualizer Tool.

Our research model had as independent variable the
“teaching method”, so that the control group (TRAD) had
a teacher giving a traditional lecture using blackboard and
laboratory computers to explain the solving procedure of
the given practice excersices, and the experimental group
(EXP) used the Protocol Visualizer Tool to study the
solving procedure of those same excersices. Our
dependent variable was “performance”: that is, the grade
obtained through the instrument.

Controlled conditions for both groups were:

 Explanatory lecture sessions had a one hour duration
for both groups.

 The given time to answer the instrument was limited
to an hour for both groups.

 A “motivation” factor was introduced for both groups
in form of “extra points”.

 Characteristics of the lab computers used from both
groups were the same.

 Previous programming experience was similar in
both groups (55% for TRAD and 41% for EXP).

 At the time of the experiment, the instructional
content given (during normal classes) to both groups
was the same. Both groups where studying basic data
structures in C Language.

Uncontrolled conditions were:

 Teachers from both groups were different, but they
came from the same programming academy, taught
the same content, and had the same experience in
teaching.

 It was not possible to record the individual answering
time of the test participants.

 Selection of participants was not random. In both
cases, complete groups where invited to participate in
the study.

III. RESULTS

A. Descriptive statistics

The test was graded by professors of our internal pro-
gramming academy staff.

Table III shows the results of the descriptive statistics
of both groups. Mean results for EXP group was 6.33 and
3.79 for TRAD group. The Median value for EXP group
was 7.5, and 3.7 for the TRAD group. Mode for the EXP
group was 3.30 and 2.30 for the TRAD group. Mean val-
ues indicate that the experimental had performed 25%
better than the control group; but Modes results suggests
that both groups had bad performers. Standard deviation
of the EXP group was 2.99, which indicates bigger disper-
sion of data than the TRAD group (2.35). This result indi-
cates that the TRAD group performed “uniformly bad”,
and that the EXP group had more “better than average”
performers.

Comparative histograms of both groups’ results are
shown in Figures 8 and 9 . It can be seen that EXP group
is negatively skewed to the left, meaning that the majority
of its frequencies are grouped towards the upper values of
the scale. TRAD group frequencies shown in Figure 9
show the opposite behavior.

B. ANOVA

Given the descriptive statistics results, it can be inferred
that the EXP group had better performance than the
TRAD group. To see if this performance was statistically
significant, we ran an ANOVA test with the results shown
in Table IV.

These results indicate that there was a statistically sig-
nificant different performance (p<=.006) between the two
groups.

TABLE III.
COMPARATIVE DESCRIPTIVE STATISTICS OF GROUP PERFORMANCE

 Grade (EXP group) Grade (TRAD

group)

N Valid 18 20

Mean 6.3389 3.7900

Median 7.5000 3.7000

Mode 3.30(a) 2.30

Std. Deviation 2.99257 2.35683

Variance 8.955 5.555

Skewness -.499 0.689

Std. error of skew-

ness
0.536 0.512

Kurtosis -1.412 0.443

Std. error of kurtosis 1.038 0.992

16 http://www.i-jim.org

A SOFTWARE TOOL TO VISUALIZE VERBAL PROTOCOLS TO ENHANCE STRATEGIC AND METACOGNITIVE ABILITIES IN

BASIC PROGRAMMING

Figure 9. Test results of EXP group

Figure 10. Test results of TRAD group.

TABLE IV.
ANOVA TEST OF "PERFORMANCE" VARIABLE FOR TRAD AND EXP

GROUP

Sum of

squares
df

Mean

square
F Sig

Between groups 61.549 1| 61.549 8.596 0.006

Within groups 257.781 36 7.161

Total 319.330 37

C. Correlations

Programming literature suggests that there is a positive
correlation between previous experience and performance
in the first undergraduate programming course
[37],[60],[61]. We ran a correlation test to see if a correla-
tion could exist between previous experience of these
participants and the results obtained in the test. As men-
tioned earlier 55% of TRAD group participants have had
previous experience in programming, and 41% of EXP
participants had studied programming in high school.
Pearson correlation results are shown in V and Table VI.

TABLE V.
EXP GROUP PEARSON CORRELATION.

 Previous

experience

Grade

Previous

experience
Pearson correlation 1.000 0.334

 Sig. (2-tailed) 0.175

 N 18 18

Grade Pearson correlation 0.334 1.000

 Sig. (2-tailed) 0.175

 N 18 18

TABLE VI.
TRAD GROUP PEARSON CORRELATION.

 Previous

experience

Grade

Previous

experience
Pearson correlation 1.000 -0.139

 Sig. (2-tailed) 0.558

 N 20 20

Grade Pearson correlation -0.139 1.000

 Sig. (2-tailed) 0.558

 N 20 20

Pearson results show that, for both groups, there is no

significant correlation between their previous program-
ming experience, and their performance in the study.

IV. CONCLUTIONS

A. Explicit strategy learning

These positive results are promising in the sense that,
under the conditions of the study, a significant improve-
ment (25%) in performance was obtained.

It can be interpreted that when students where using the
tool and explicitly studied (by reading and seeing) the
problem solving procedure, they learned a small set of
strategies that where effective to those kinds of problems.

Also, the verbalization feature of the protocols, allowed
the students to understand why the expert programmer
was using a specific kind of programming structure.

In the protocols, a metacognitive element was implicitly
present during some “backtracking” episodes. For exam-
ple: in one case, a programmer identified that she had
omitted the declaration of a variable, and that was causing
a syntax error in the program. In other case, (in the final
steps of the protocol) the programmer noted that she need-
ed a counter variable to obtain the average of the uneven
numbers. These incidents showed the students that the
process of writing a program is not linear, but incremental
and constantly monitored.

Our results also seem to support previous studies relat-
ed to some instructional strategies in the context of cogni-
tive load theory [62]. That is, that showing a “worked
example” [63-65] can be an effective instructional strate-
gy, given the reduced “memory load” that the student is
submitted to.

B. Benefits

We argue that the tool can be helpful in decreasing high
failure rates, if the amount of protocols loaded in the tool
is sufficiently big to cover a significant range of problem
categories. That is, if students are given a wider range of
problem solving strategies, the transit between the initial
states of learning [66] and towards an automation of strat-
egies can be made more efficiently.

iJIM – Volume 5, Issue 3, July 2011 17

A SOFTWARE TOOL TO VISUALIZE VERBAL PROTOCOLS TO ENHANCE STRATEGIC AND METACOGNITIVE ABILITIES IN

BASIC PROGRAMMING

Also, programming teachers can share their knowledge
with a wider range of students, whom, in turn, can con-
structively compare different kinds of solutions for one
same type of problem.

It is important to note that the tool was designed as an
aid and complement to programming teachers, and not as
a substitute to them.

C. Limitations.

Given the uncontrolled conditions reported in previous
sections of this paper, the positive results obtained by the
EXP group using the Protocol Visualizer Tool, cannot be
generalized to be valid for all the population of first year
undergraduate programming students.

An uncontrolled variable was teaching style: that is,
even though both teachers were part of the same academy
and had similar background and experience, the two
groups having different teachers could have had an un-
measured effect on the final results.

Also, duration of the actual study was limited to three
days, given the limited availability of the students who
voluntarily participated.

D. Future studies

Future studies need to be longitudinal in nature, so that
the effect of a longer exposure of the students to the tool
can be measured.

A randomly selected sample of participants is desirable,
but this kind of scenario is not always possible (or practi-
cal) given the nature of every day lectures.

It is also possible to load the tool with protocols that in-
volve problems related to other programming languages or
paradigms such as Java, C#.

Also, the graphical user interface can still be improved
through usability test, in order to use within other Web-
enabled platforms (such as mobile devices).

Lastly, it is planned to extend the functionality of the
tool, by adding pedagogical features such as completion
problems, in selected segments of the protocols, to be in
accordance to suggestions given by Refs [67],[68].

REFERENCES

[1] V. Fixx, S. Wiedenbeck, y J. Scholtz, “Mental Representations of
Programs by Novices and Experts,” Amsterdam, The Nether-
lands: ACM Press New York, NY, USA, 1993, pp. 74-79.

[2] L. Ma, J. Ferguson, M. Roper, y M. Wood, “Investigating the
viability of mental models held by novice programmers,” ACM
SIGCSE Bulletin, vol. 39, 2007, pp. 499-503. doi:10.1145/
1227504.1227481

[3] C.E. George, “Experiences with Novices: The Importance of
Graphical Representations in Supporting Mental Models,” A.F.
Blackwell & E. Bilotta, 2000.

[4] V. Dagdilelis, “Introducing Secondary Education Students to
Algorithms and Programming,” Education and Information Tech-
nologies, vol. 9, 2004, pp. 159–173. doi:10.1023/
B:EAIT.0000027928.94039.7b

[5] D. Hagan, “The value of discussion classes for teaching introduc-
tory programming,” Dublin City Univ., Ireland: ACM Press New
York, NY, USA, 1998, pp. 108 - 111.

[6] T. Jenkins, “A participative approach to teaching programming,”
Dublin City Univ., Ireland: ACM Press New York, NY, USA,
1998, pp. 125 - 129.

[7] C. Bruce, “Ways of experiencing the act of learning to program: A
phenomenographic study of introductory programming students at
university,” Journal of Information Technology Education, vol. 3,
2004, pág. 144.

[8] S. Booth, “Learning to program as entering the datalogical culture:
a phenomenographic exploration,” Fribourg Switzerland, August
2001: 2001.

[9] L. McIver, “GRAIL: A Zeroth Programming Language,” Chiba,
Japan: 1999, pp. 43-50.

[10] E. Kujansuu, “Using program visualisation learning objects with
non-major students with different study background,” Tampere,
Finland: 2006, pp. 21-26.

[11] M.J. Conway, “Alice:Easy-to-Learn 3D Scripting for Novices,”
PhD. Thesis, University of Virginia, 1997.

[12] J. McKeown, “The use of a multimedia lesson to increase novice
programmers' understanding of programming array concepts,”
Journal of Computing Sciences in Colleges, vol. Volume 19, Abr.
2004, pp. 39 - 50.

[13] M. de Raadt, R. Watson, y M. Toleman, “Language tug-of-war:
industry demand and academic choice,” Adelaide, Australia:
2003, pp. 137 - 142.

[14] K.S. Koong, L.C. Liu, y X. Liu, “A Study of the Demand for
Information TechnologyProfessionals in Selected Internet Job Por-
tals,” Journal of Information Systems Education, vol. 13, 2002,
pp. 21-28.

[15] C. Litecky, B. Prabhakatar, y K. Arnett, “The IT/IS job market: a
longitudinal perspective,” Claremont, California, USA: 2006, pp.
50-52.

[16] T. Boyle, “Improved success rates for students studying Program-
ming,” Investigations in university teaching and learning, vol. 1,
2003, pp. 52-54.

[17] M. Guzdial, “Teaching the Nintendo generation how to program,”
Communications of the ACM, vol. 45, Abr. 2002, pp. 17-21.
doi:10.1145/505248.505261

[18] V. Aleven y K. Koedinger, “An effective metacognitive strategy:
learning by doing and explaining with a computer-based Cognitive
Tutor,” Cognitive Science, vol. 26, 2002, pp. 147–179.
doi:10.1207/s15516709cog2602_1

[19] D.D.E.I. UAA, Porcentajes de reprobación en la materia de
Programación I, en las carreras de LI-LTI/ISC durante los años
2004 y 2007, Aguascalientes: Universidad Autónoma de
Aguascalientes, 2007.

[20] S. Shaffer, “Ludwig: An online programming tutoring and asses-
ment system,” Inroads - The SIGCSE Bulletin, vol. 37, 2005, pp.
56-60. doi:10.1145/1083431.1083464

[21] A. Robins, J. Rountree, y N. Rountree, “Learning and Teaching
Programming: A Review,” Computer Science Education, vol. 13,
2003, pp. 137–172. doi:10.1076/csed.13.2.137.14200

[22] M. Linn y M. Clancy, “The Case for Case Studies of Programming
Problems,” Communications of the ACM, vol. 35, 1992.

[23] M. Linn, “The Cognitive Consequences of Programming Instruc-
tion in Classrooms,” Educational Researcher, vol. 14, 1985.

[24] T. McGill y S. Volet, “A Conceptual Framework for Analyzing
Students’ Knowledge of Programming,” Journal of Research on
Computing in Education, vol. 29, 1997.

[25] J. Mead, S. Gray, J. Hamer, R. James, J. Sorva, C. St.Clair, y L.
Thomas, “A cognitive approach to identifying measurable mile-
stones for programming skill acquisition,” Bologna, Italy: ACM
New York, NY, USA, 2006, pp. 182 - 194.

[26] S. Volet y C. Lund, “Metacognitive instruction in introductory
computer programming: A better explanatory construct for per-
formance than traditional factors,” Journal of educational compu-
ting research, vol. 10, 1994.

[27] S. Papert, Mindstorms, children, computers and powerful ideas,
Basic Books, New York., 1980.

[28] C. Kelleher y R. Pausch, “Lowering the Barriers to Programming:
a survey of programming environments and languages for novice
programmers,” ACM Computing surveys (CSUR), vol. 37, 2005,
pp. 83 - 137.

[29] S. Pollack, “Selecting a Visualization System,” Warwick, UK:
2004.

[30] A. Maries y A. Kumar, “Concept maps in intelligent tutors for
programming,” Journal of Computing Sciences in Colleges, vol.
22, 2007, pág. 54.

[31] A.N. Kumar, “Using Enhanced Concept Map for Student Model-
ing in Programming Tutors,” Melbourne Beach, Florida: 2006,
pp. 527-532.

18 http://www.i-jim.org

http://dx.doi.org/10.1145/1227504.1227481
http://dx.doi.org/10.1145/1227504.1227481
http://dx.doi.org/10.1023/B:EAIT.0000027928.94039.7b
http://dx.doi.org/10.1023/B:EAIT.0000027928.94039.7b
http://dx.doi.org/10.1145/505248.505261
http://dx.doi.org/10.1207/s15516709cog2602_1
http://dx.doi.org/10.1145/1083431.1083464
http://dx.doi.org/10.1076/csed.13.2.137.14200

A SOFTWARE TOOL TO VISUALIZE VERBAL PROTOCOLS TO ENHANCE STRATEGIC AND METACOGNITIVE ABILITIES IN

BASIC PROGRAMMING

[32] J.R. Anderson, A. Corbet, y K.R. Koedinger, “Cognitive Tutors,
Lessons Learned,” The Journal of Learning Sciences, vol. 4,
1995, pp. 167-207. doi:10.1207/s15327809jls0402_2

[33] V. Aleven, B. McLaren, J. Sewall, y K. Koedinger, “The Cogni-
tive Tutor Authoring Tools (CTAT): Preliminary evaluation of ef-
ficiency gains,” Maceio, Brazil: 2006.

[34] J.R. Anderson, F. Conrad, y A. Corbett, “Skill Aquisition and the
Lisp Tutor,” Cognitive Science, vol. 13, 1989, pp. 467-505.
doi:10.1207/s15516709cog1304_1

[35] P. Bayman, “A diagnosis of beginning programmers’ misconcep-
tions of BASIC programming statements,” Communications of the
ACM, vol. 26, Sep. 1983, pp. 677 - 679.
doi:10.1145/358172.358408

[36] J. Larkin y H. Simon, “Why a diagram is (sometimes) worth ten
thousand words,” Cognitive Science, vol. 11, 1987, pp. 65-99.
doi:10.1111/j.1551-6708.1987.tb00863.x

[37] V. Ramalingam, “Self-Efficacy and mental models in learning to
program,” Leeds, United Kingdom: ACM Press New York, NY,
USA, 2004, pp. 171 - 175.

[38] S. Wiedenbeck, D. LaBelle, y V. Kain, “Factors affecting course
outcomes in introductory programming,” Institute of Technology,
Carlow, Ireland: 2004.

[39] D. Norman, Some observations on mental models., Erlbaum,
Hillsdale, NJ., 1983.

[40] P. Johnson-Laird, Mental Models, Cambridge University Press,
1983.

[41] L. Winslow, “Programming Pedagogy - A psychological Over-
view,” SIGCSE Bulletin, vol. 28, 1996, pp. 17-22.
doi:10.1145/234867.234872

[42] R. Rist, “Learning to program: schema creation, application and
evaluation,” Computer Science Education and Research, Nether-
lands: Taylor & Francis Group, 2004, pp. 175-197.

[43] R. Brooks, “Categories of programming knowledge and their
application,” International Journal of Man-Machine Studies, vol.
18, 1990, pp. 543-554. doi:10.1016/S0020-7373(83)80031-5

[44] R. Rist, “Program Structure and Design,” Cognitive Science, vol.
19, 1995, pp. 507-562. doi:10.1207/s15516709cog1904_3

[45] S. Davies, “Models and Theories of programming strategy,”
International Journal of Man-Machine Studies, vol. 39, 1993, pp.
237-267. doi:10.1006/imms.1993.1061

[46] J. Flavell, “Metacognition and cognitive monitoring: A new area
of cognitive developmental inquiry,” American Psychologist, vol.
34, 1979, pp. 906–911. doi:10.1037/0003-066X.34.10.906

[47] A.F. Gourgey, “Metacognition in basic skills instruction,” Instruc-
tional Science, vol. 26, 1998, pp. 81-96. doi:10.1023/
A:1003092414893

[48] L. Williams y R.L. Upchurch, “In support of student pair-
programming,” ACM SIGCSE Bulletin, vol. 33, 2001, pp. 327 -
331. doi:10.1145/366413.364614

[49] N. Arshad, “Teaching Programming and Problem Solving to CS2
Students using Think-Alouds,” ACM SIGCSE Bulletin, vol. 41,
2009, pp. 372-376. doi:10.1145/1539024.1508998

[50] K. Ericsson y H. Simon, Protocol Analysis. Verbal reports as
data, Cambridge Massachusets.: MIT Press, 1993.

[51] A. Newell y H. Simon, Human Problem Solving, Englewood
Cliffs, NJ: Prentice Hall, 1972.

[52] J. Russo, E. Jonson, y D. Stephens, “The validity of verbal meth-
ods,” Memory Cognition, vol. 17, 1989, pp. 759-769.
doi:10.3758/BF03202637

[53] S. Knox, W. Bailey, y E. Lynch, “Directed dialogue protocols:
verbal data for user interface design,” ACM New York, NY,
USA, 1989, pp. 283 - 287.

[54] J. Nielsen, T. Clemmensen, y Y. Carsten, “Getting access to what
goes on in people's heads?: reflections on the think-aloud tech-
nique,” Aarhus, Denmark: ACM New York, NY, USA, 2002, pp.
101 - 110.

[55] I. Vessey y S. Conger, “Requirements Specification: Learning
Object, Process, and Data Methodologies,” Communications of the
ACM, vol. 37, 1994.

[56] M.A. Kuo y S. Hooper, “The Effects of Visual and Verbal Coding
Mnemonics on Learning Chinese Characters in Computer-Based
Instruction,” Educational Technology Research and Development,
vol. 52, 2004, pp. 23-34. doi:10.1007/BF02504673

[57] R.E. Meyer y V.K. Sims, “For Whom Is a Picture Worth a Thou-
sand Words? Extensions of a Dual-Coding Theory of Multimedia
Learning,” Journal of Educational Psychology, vol. 86, 1994, pp.
389-401. doi:10.1037/0022-0663.86.3.389

[58] M. Sadoski y A. Paivio, “A Dual Coding Theoretical Model of
Reading,” Theoretical models and processes of reading, Newark,
DE: International Reading Association, 2004.

[59] J. Kounios y P. Holcomb, “Concreteness effects in semantic
processing: ERP evidence supporting dual-coding theory.,” Jour-
nal of Experimental Psychology: Learning, Memory and Cogni-
tion, vol. 20, 1994, pp. 804-823. doi:10.1037/0278-7393.20.4.804

[60] D. Hagan y S. Markham, “¿Does it help to have some program-
ming experience before beginning of a computer degree pro-
gram?,” Helsinki, Finland: 2000, pp. 25 - 28.

[61] A.F. Blackwell, “First Steps in Programming: A Rationale for
AttentionInvestment Models,” Arlington, VA: 2002, pp. 2-10.

[62] J. Sweller, J. van Merrienboer, y F. Paas, “Cognitive Architecture
and Instructional Design,” Educational Psychology Review, vol.
10, 1998, pp. 251-295. doi:10.1023/A:1022193728205

[63] M. Ward y J. Sweller, “Structuring effective worked examples,”
Cognition and Instruction, vol. 7, 1990, pp. 1-39.
doi:10.1207/s1532690xci0701_1

[64] J. Sweller y G. Cooper, “The use of worked examples as a substi-
tute for problemsolving in learning algebra,” Cognition and In-
struction, vol. 2, 1985, pp. 59-89. doi:10.1207/s1532690x
ci0201_3

[65] M.E. Caspersen y J. Bennedsen, “Instructional design of a pro-
gramming course: a learning theoretic approach,” Atlanta, Geor-
gia, USA: ACM New York, NY, USA, 2007, pp. 111 - 122.

[66] J.R. Anderson, J. Fincham, y S. Douglass, “The role of examples
and rules in the acquisition of a cognitive skill,” Journal of Exper-
imental Psychology: Learning, Memory, and Cognition, vol. 23,
1997, pp. 932-945. doi:10.1037/0278-7393.23.4.932

[67] J. van Merrienboer y H. Krammer, “The "completion strategy" in
programming instruction: Theoretical and empirical support,” Re-
search on Instruction, Englewood Cliffs, NJ: Educational Tech-
nology Publications, 1990, pp. 45-61.

[68] J. van Merrienboer, “Strategies for programming instruction in
high school: Program completion vs. program generation,” Educ.
Comput. Res., vol. 6, 1990, pp. 265-287. doi:10.2190/4NK5-17L7-
TWQV-1EHL

AUTHORS

Carlos A. Arévalo, Ph.D., is a full time research pro-
fessor at the Department of Information Systems within
the Autonomous University of Aguascalientes, México.
He earned his Doctoral degree in Software Engineering in
the same University, and specializes in e-learning tech-
nologies (e-mail: carevalo@correo.uaa.mx).

Estela L. Muñoz, Ph.D., is a full time research profes-
sor at the Department of Electronic Systems within the
Autonomous University of Aguascalientes, México. She is
an experienced teacher of programming and data struc-
tures. (e-mail: elmunoz@correo.uaa.mx).

Juan M. Gómez, Ph.D., is a full time research profes-
sor, at the Department of Electronic Systems within the
Autonomous University of Aguascalientes, México. He
has made contributions in the field of design research (e-
mail: jmgr@correo.uaa.mx).

The work presented in this paper will be extended and continued with
support and as part of a three year European Commission ALFA III
project grant (DCI-ALA/19.09.01/21526/245-315/ALFAHI(2010)/123),
IGUAL “Innovation for Equality in Latin American University”
beginning December 2010.

This article is an extended version of a paper presented at the Interdisci-
plinary Conference of AHLiST 2010 Conference, June 2010, Madrid,
Spain. Received May 10th, 2011. Published as resubmitted by the authors
on June 9th, 2011.

iJIM – Volume 5, Issue 3, July 2011 19

http://dx.doi.org/10.1207/s15327809jls0402_2
http://dx.doi.org/10.1207/s15516709cog1304_1
http://dx.doi.org/10.1145/358172.358408
http://dx.doi.org/10.1111/j.1551-6708.1987.tb00863.x
http://dx.doi.org/10.1145/234867.234872
http://dx.doi.org/10.1016/S0020-7373%2883%2980031-5
http://dx.doi.org/10.1207/s15516709cog1904_3
http://dx.doi.org/10.1006/imms.1993.1061
http://dx.doi.org/10.1037/0003-066X.34.10.906
http://dx.doi.org/10.1023/A:1003092414893
http://dx.doi.org/10.1023/A:1003092414893
http://dx.doi.org/10.1145/366413.364614
http://dx.doi.org/10.1145/1539024.1508998
http://dx.doi.org/10.3758/BF03202637
http://dx.doi.org/10.1007/BF02504673
http://dx.doi.org/10.1037/0022-0663.86.3.389
http://dx.doi.org/10.1037/0278-7393.20.4.804
http://dx.doi.org/10.1023/A:1022193728205
http://dx.doi.org/10.1207/s1532690xci0701_1
http://dx.doi.org/10.1207/s1532690xci0201_3
http://dx.doi.org/10.1207/s1532690xci0201_3
http://dx.doi.org/10.1037/0278-7393.23.4.932
http://dx.doi.org/10.2190/4NK5-17L7-TWQV-1EHL
http://dx.doi.org/10.2190/4NK5-17L7-TWQV-1EHL

	CfPart_ICL2011_0531mea.pdf

