
IJISCS | 164

STUDY AND IMPROVEMENT OF PERFORMANCE

OF NoSQL DATABASES: MongoDB, HBase and

OrientDB.

BILA KHONDE Noel1, BOLUMA MANGATA Bopatriciat2, MBUYI

MUKENDI Eugène3, BUKANGA CHRISTIAN Parfum4
1,2,3,4Faculty of Science and Technology, University of Kinshasa

1,2,3,4Kinshasa, Democratic Republic of the Congo.

*Corresponding author

Email :

noel.bila@unikin.ac.cd

Article history:

Received September 17, 2022

Revised November 27, 2022

Accepted December 10, 2022

Keywords:

NoSQL,

MongoDB,

HBase,

OrientDB,

YCSB.

Abstract

This dissertation adds to the various research works in the

field of NoSQL "Not only SQL" databases. These new

models propose a new way of organizing and storing data

designed mainly to remedy the constraints imposed by the

ACID properties on relational models. Our objective was to

develop a comparative performance study, between

three NoSQL solutions widely used in the market, namely:

MongoDB, HBase and OrientDB, to propose to decision

makers, elements of information for possible choices of the

best appropriate solution for their companies. The

Benchmark used to decide between these solutions is the

Yahoo Cloud Serving Benchmark

1.0 INTRODUCTION

Relational databases were developed as a technology for storing structured and

organized data in table form. Over the years they have become the essential element of

organizations and the reference model for data management in information systems, however

with the continuous increase of stored and analyzed data, relational databases are beginning

to present a variety of limitations. It is in this context that NoSQL databases were developed to

provide a set of new data management features while overcoming some of the limitations of

relational databases.

2.0 METHOD AND MATERIALS

 The analysis of the results obtained from the different experiments, in order to evaluate

the performance of the different database models in relation to the nature of the operations

performed on these databases. On the other hand, this study was carried out in a single-user

environment where all the tests were carried out in an HP laptop with a processor: Brand Intel

(R) Celeron (R) CPU N2830@ 2.16 Ghz, (2CPUs) with 4 GB of RAM running on an Ubuntu 12.1

operating system.

2.1. Presentation of the Comparison Tool

For the experimental analysis, we used YCSB (Yahoo Cloud Serving Benchmark) which is a

widely used open source Framework for evaluating and comparing different types of active

data systems (including NoSQL databases like HBase, Apache, Cassandra, Redis, MongoDB,

OrientDB, CouchBase, Voldemort, Tarantool, Elasticsearch). The benchmark consists of two

components: a data generator and a set of performance tests to evaluate the read and

update operations. Each of the test scenarios is called a workload.

A workload is defined by a set of features such as the number of records to be loaded, the

number of operations to be performed and the proportion of read, write and update

operations. The benchmark package provides a set of default, but configurable, workloads

that can be run, as follows:

Full Paper

eISSN 2598-246X

pISSN 2598-0793

IJISCS (International Journal of Information System and

Computer Science)

mailto:Email%20:%20noel.bila@unikin.ac.cd
mailto:Email%20:%20noel.bila@unikin.ac.cd

IJISCS | 165

✓ Workload A: 50% Read, 50% Update.

✓ Workload B: 95% Read, 5% Update.

✓ Workload C: 100% Read.

✓ Workload D: 5% Insert, 95% Read (inserts records, with readings of recently

inserted data).

✓ Workload D: 5% Insert, 95% Read (inserts records, with reads of recently inserted data).

✓ Workload E: 95% Scan, 5% Insert.

✓ Workload F: 50% Read, 50% Read-Modify-Write.

In order to better understand database optimization and operation update speed, we created

two additional workloads with the following characteristics:

✓ Workload G: 5% Read, 95% Update

✓ Workload H: 100% Update.

To evaluate the loading time, we generated 600,000 records, each with 10 fields of 100 bytes

randomly generated on the registry identification key, that is about the total of 1kb per record.

Each record is identified by a key consisting of the string "user" followed by several digits, for

example "user 3799004308120", which is the record key. Each field of the record is identified as

field0, field1, -- Field i respectively. The execution of the workloads consisted of running 1000

operations, which means that there were 1000 requests to the database under test each time.

In our study, graph-oriented databases were not evaluated. Because, as stated by Amstrong.

T, Ponnekanti. V, Dhruba. B and Callaghan. M, they should not be evaluated according to the

scenarios used in the analysis of other types of NoSQL databases (column-oriented, document-

oriented, and key-value) because the use of links between records requires a different

approach, so there are specific benchmarks developed to evaluate the performance of

graph databases such as, XGDbench.

2.2. PRESENTATION OF THE VERSIONS OF NOSQL Solutions

✓ The comparative study developed allowed us to distinguish between the following NoSQL

databases:

✓ MongoDB: version 2.6.11

✓ HBase: version 0.94.8

✓ OrientDB: version 2.1.3

2.3 IMPLEMENTATION OF YCSB

To set up YCSB, we first need to install Java, Maven and Git in our system.

a. Java

✓ The site used for downloading Oracle Java JDK and JRE binary archives:

http://www.oracle.com/technetwork/java/ja vase/downloads/index.html.

After accessing the directory /home/"username"/Downloads we copied the Oracle Java

binary archives.

b. Maven

The site used for the download of apache Maven:

https://maven.apache.org/download.cgi

c. Git

We have installed and configured Git with the following commands: sudo apt-get install git

git config global user.name"YOUR NAME".git config-global user.email "YOUR EMAIL ADDRESS

2.4. PRESENTATION AND ANALYSIS OF EXPERIMENTAL RESULTS

As a preamble, we emphasize that the results retained for each workload are the averages of

several tests performed on at least three different days.

2.4.1. LOADING DATA (LOADPROCESS)

a. MongoDB

The command is: ./bin.ycsb load mongodb-Pworkloads/worloada-p

Mongodb.url=mongodb://localhost: 27017/ycsb ?w=0 -s> mongoload.txt

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://maven.apache.org/download.cgi

IJISCS | 166

After launching the latter, the loading result obtained from the terminal is as follows:

Figure 1. Load Result Obtained from Terminal

On the other hand the loading log generated by YCSB for MongoDB is obtained in a text file

"mongoload.txt":

Figure 2. Loading Log Generated by YCXB

b. HBase

./bin.ycsb load hbase094 -P workloada -p columnfamily=family -s

Orient DB

./bin/ycsb load orientdb -P workloads/workloada -p orientdb.url=plocal:/tmp/ycsb -p

orientdb.user=admin -p orientdb.password=admin

3.0 RESULTS

The table below shows the average load of each database:

Table 1. Average Loading Time

DATABASES MongoDB HBase OrientDB

Time Min) 2,7 4 3,5

IJISCS | 167

 Figure 3 Average Loading Time Histogram

The figure shows the expired times for the 600,000 record load operation for each of the tested

databases. The document oriented databases performed better on average. We found that

during the loading of 600000 records, the best time is obtained by MongoDB with a loading

time of 2 minutes and 7 seconds. For the loading of 600000 records, the column-oriented

database (HBase) was less performing compared to the first one. Generally speaking, we can

say that the best result obtained among the three tested databases for the loading phase is

that of MongoDB, which can be justified by the fact that the latter offers high performance

due to its innovations that allow it to be the first to exploit an integrated RAM caching layer.

3.1 WORKLOADS EXECUTION

All workloads consist of a set of 1000 different operations performed on the 600000 records

already loaded in the databases.

3.2 WORKLOAD A (50% Read/ 50% Update)

a. MongoDB

./bin/ycsb run mongodb -s -P workloads/workloada> mongorunwka.txt

Figure 4 Workload Execution

b. HBase

./bin/ycsb run hbase094 -P workloads/workloada -p colunmfamily=family -s >

IJISCS | 168

c. OrientDB

./bin/ycsb run orientdb -P workloads/workloada -p orientdb.url=plocal:/tmp/ycsb -p

orientdb.user=admin -p orientdb.password=admin

The following table shows the average execution time of workload A for each of the

databases:

Table 2. Workload A Execution Time

DATABASES MongoDB HBase OrientDB

Time (Sec) 10 34 29

Figure 5. Workload A time histogram

The Figure shows the results obtained during the execution of Workload A composed of 50%

Read and 50% Update operations of 1000 operations, performed on 600000 records. After

reading the results obtained, we notice that the good performances are presented first by the

document oriented category where MongoDB was the fastest. In second place we find the

key value category with 29 seconds. The Hbase database is the least performing relative to the

previous ones. Indeed, we have to see the results of the M and O loads to favor a NoSQL

solution over the others.

3.3 Workload B (95% Read, 5% Update)

The table and figure below show the average execution time of workload B for each of the

databases:

Table 3. Workload B Execution Time

DATABASES MongoDB HBase OrientDB

Time (Sec) 10 39 14

 Figure 6 Workload B time histogram

IJISCS | 169

The results in the figure prove the ascendancy once again of document-oriented models for

loads composed mainly of read operations. On the other hand, the key-value ones proved

their performance over the column-oriented models. Let us also recall that MongoDB won

another time over the others with a duration of 10 seconds.

3. 4. Workload C (100% Read)

The table and figure show the average execution time of workload C, consisting only of read

operations, for each of the databases:

Table 4 Workload C Execution Time

DATABASES MongoDB HBase OrientDB

Time (Sec) 9 46 11

 Figure 7 Workload C Time Histogram

For purely reading operations, the results obtained confirm the previous ranking of the bases

when executing the B load.

3.5 Workload D (5% Insert, Insert, 95%)

The following table and figure display the average execution time of workload D for each of

the databases.
Table 5. Workload D Execution Time

DATABASES MongoDB HBase OrientDB

Time (Sec) 5 43 8

Figure 8 Workload D time histogram

IJISCS | 170

Workload D is composed mainly of read operations (95%) and 5% of insertion operations of new

records that are inserted and then read again. By running this workload, we once again

confirm the performance of document-oriented systems, especially MongoDB which was very

fast by running the task in 5 seconds, and the underperformance of column-oriented and

especially HBase with 43 seconds.

3. 6 Workload E (95% Scan, 5% Insert)

The table and figure below show the average execution time of workload E for each database:

Table 6 Workload E Execution Time

DATABASES MongoDB HBase OrientDB

Time (Min) 2,75 1,15 13,5

Figure 9. Workload E time histogram

This workload is mainly made up of 95% fast scan operations and 5% insertion of new records.

In this test, HBase performed the best by having the best execution time (1 minute and 15

seconds) compared to the other databases, this is explained by the fact that it uses views to

query the data. From an overall point of view, the column-oriented database HBase presented

the best performance, unlike the key-value database which had the lowest performance and

in particular was the slowest in running the workload in 13 minutes and more.

3. 7 Workload F (50% Read, 50% Read- Modify-Write)

The table below shows the average execution time of the F workload, half read and half write,

for each of the databases:

Table 7 Workload F Execution Time

DATABASES MongoDB HBase OrientDB

Time (Sec) 11 36 23

IJISCS | 171

Figure 10. Workload F time histogram

The Figure shows the results obtained after running Workload F composed of 50% read, for the

other 50%: records are read first, updated after and then saved. We have seen once again the

counter performance of column-oriented system namely HBase because of its read constraint

compared to the update. On the other hand the best performance is that of MongoDB which

is proving its efficiency for read operations.

3.8 Workload G (5% Read, 95% Update)

The following table and figure show the average execution time of the G workload for each

database:

Table 8 Workload G Execution Time

DATABASES MongoDB HBase OrientDB

Time (Sec) 12 7 21

Figure 11 Workload G time histogram

The results reveal that for a load composed mainly of updates, the column-oriented database

regained the ascendancy over the other architectures, while those of the key-value were

largely above.

3.9 Workload H (100% Update)

The table and figure below show the average execution time of the H workload for each of

the databases:

IJISCS | 172

Table 9 Workload H Execution Time

DATABASES MongoDB HBase OrientDB

Time (Sec) 10 6 21

Figure 12 Workload H time histogram

For purely update operations, the HBase column-oriented database confirms its performance

achieved during G-load execution compared to all other NoSQL systems.

3.10. Performance summary of all workloads

The table and figure summarize the results obtained by NoSQL databases for all workloads

(A + B+ C+ D+ E+ F+ G + H).

Table 10 Global execution time

DATABASES MongoDB HBase OrientDB

Time (Min) 4 5 15

Figure 13 Global Execution Time Histogram

From a global point of view, document-oriented and column-oriented models are largely more

efficient than key-value models. The best execution time is presented by MongoDB with 4

minutes followed by Hbase which is in second position with 5 minutes and OrientDB in last

position.

IJISCS | 173

4.0 Global evaluation of MongoDB, HBase, OrientDB

The experimental results of the different tests carried out allowed us to evaluate and compare

the three types of NoSQL databases: document-oriented, column-oriented and value-key,

based on the execution time of the different workloads. After reading the results, we can

conclude that the choice criteria depend on the application needs and the nature of the

operations performed on the data. For performance and optimization purposes, we can

specialize NoSQL databases according to the appropriate model and the context of use of

the latter. Among the NoSQL solutions studied, it is stated that there are those optimized for

reads, those for updates and others for scan operations:

✓ For purely read operations, it is necessary to turn to document-oriented architectures such

as MongoDB.

✓ For heavy update operations, it is very interesting to adopt column-oriented architectures.

✓ For scanning operations, MongoDB and HBase have proven their performance.

✓ For key-value architectures, a lot of effort remains to be made by designers to improve their

performance.

5.0 CONCLUSION

a. General Conclusion

Our end of studies project consisted in a comparative study of the performances between the

different families of NoSQL solutions: document oriented, column oriented and value key

oriented namely MongoDB, Hbase, and OrientDB. The objective of this study is to evaluate the

performance of these databases by first inserting 600,000 records, then launching a set of tests

in the form of workloads composed of 1000 operations each of different natures: read, scan or

update. The tool used to arbitrate the three systems is Yahoo! Cloud Serving Benchmark, which

is highly recommended for this kind of study in the NoSQL database domain. After reading and

analyzing the experimental results, we can say that there are databases that perform very well

for particular workloads, unlike others that were better in other workloads. In conclusion, we

can retain that the choice of using a DBMS depends on a set of parameters related to the

environment in which the data are exploited. Indeed, the type of data and the type of

processing carried out on this data are important indicators for defining the solution to adopt.

The estimated frequency of reading, writing and updating as well as the size of the data are

the essential factors determining the choice of an alternative among others. Currently, the

trend towards a specific NoSQL solution is far from being indisputable because of the large

number of existing systems. Several open source and paid solutions are presented to the

different actors concerned.

b. Perspectives

Finally, we can consider that the objective outlined beforehand has been largely achieved,

nevertheless this work could be completed and extended on several aspects, so we can

highlight a set of perspectives and research tracks to explore, let's quote:

Extend our study to other NoSQL solutions such as: Elasticsearch, Memcached, Amazon

Dynamo, CouchDB, Cassandra, Redis, Accumulo and others. Multiply the number of records

to reach or exceed one million. Diversify workloads by creating new ones.

REFERENCES

[1] Kaur, S., & Kaur, K. 2016. Visualizing class diagram using orientDB NOSQL data–

store. International Journal of Computer Applications, 145(10), 11-16.

[2] Diogo, M., Cabral, B., & Bernardino, J. 2019. Consistency models of NoSQL databases. Future

Internet, 11(2), 43.

[3] Solovko, I. S. 2020. System for development, ceaseless integration and configuration of

server software.

[4] Yildiz, G., & Wallström, F. 2019. Evaluation of Couchbase As a Tool to Solve a Scalability

Problem with Shared Geographical Objects.

[5] Laurent AUDIBERT, 2018. Database and SQL Language, Cours-BD, Institut Universitaire de

Technologie de Villetaneuse, Département Informatique.

IJISCS | 174

[6] Marie-France, 2017. LASALLE, Cours du Relationnel a l'objet: Limites du Relationnel.

[7] Mark WHITEHORN, 2016. When to consider using a NoSQL database (rather than a

relational database), University of Dundee. Availableat:

http://www.lemagit.fr/conseil/Quand- envisager-NoSQL.

[8] Matthieu ROGER, 2017. Bases NoSQL, synthesized studies and intersoftware projects,

octera [AT] octera [DOT] info.

[9] Meyer Léonard, 2014. L'avenir du NoSQL Quel avenir pour le NoSQL.

Availableat:http://leonardmever.com/wpcontenu/uploads/2014/06/avenirDuNoSQL.pdf.

[10] Rudi BRUCHEZ, 2017. NoSQL databases and BIGDATA understand and implement, 2nd

edition: EYROLLE EDITIONS, www.editions-eyrolles.com.

[11] Adriano Girolamo PIAZZA, 2019. NoSQL State of the Art and Benchmark; Bachelor's work

carried out with a view to obtaining the Bachelor's degree HES; Geneva, Haute École

de Gestion de Genève (HEG-GE).

[12] Kouedi Emmanuel, (May 2018). Relational database migration approach Towards a

column-oriented NoSQL database, Dissertation presented for the diploma of MASTER

II RESEARCH, Option: S.I & G.L; University of YAOUNDE I.

[13] Lionel Heinrich, 2012. NoSQL Architecture and answer to the CAP Theorem, Bachelor's

work carried out in view of obtaining the Bachelor HES in Business Informatics, Geneva,

Haute École de Gestion de Genève (HEG-GE).

http://www.lemagit.fr/conseil/Quand-envisager-NoSQL
http://www.lemagit.fr/conseil/Quand-envisager-NoSQL
http://leonardmever.com/wp-contenu/uploads/2014/06/avenirDuNoSQL.pdf
http://leonardmever.com/wp-contenu/uploads/2014/06/avenirDuNoSQL.pdf
http://www.editions-eyrolles.com./

