Full Paper eISSN : 2598-246X pISSN : 2598-0793

ACCURACY OPTIMIZATION OF KWH HIGH VOLTAGE CONSUMER TRANSACTIONS WITH SELECTION OF CURRENT TRANSFORMER (CT) RATIO IN ACCORDANCE WITH CONTRACTED POWER

*Corresponding author soetjipto@itpln.ac.id nananghadi40@gmail.com

Soetjipto Soewono¹, Nanang Hadi²

Institute Technology PLN, Jakarta, Indonesia JI. Duri Cengkareng Raya No.3, RT.1/RW.1, Duri Kosambi, West Jakarta City, DKI Jakarta 11750, Indonesia

	Abstract
	The greater growth of electricity consumption, especially for
Article history:	high voltage consumers, it is important for PLN to know the
Received: 08 August 2020	effect of the current transformer (CT) error ratio in the
Revised: 10 October 2020	accuracy of the kwh of electricity transactions, by
Accepted: 18 October 2020	researching the error ratio of CT 400/1 and 800/1 R, S, and T
	phase. When the contracted power of 120 MVA can be used
	CT class 0.2s ratio 400/1 and 800/1 ratio, when using CT class
	0.2s ratio 400/1 then the kwh meter can be set according to
	the CT ratio that is the ratio 400/1 because CT ratio 400/1 has
	a negative error ratio at loads below 73.59%, and positive
	error ratio at loads over 73.59% up to 100% load, and` when
Keywords:	using CT class 0.2s ratio 800/1 then the kwh meter can set a
Current transformer (CT):	CT ratio of 800 / 0.98 because CT ratio 800/1 has a positive
CT class:	error ratio of 0.02% from 1% load to 100% load, so that it does
CT CIUSS,	not harm the customer as a positive CT ratio error tolerance .
CI ratio error;	This needs to be done in order to create justice between PLN
	and high voltage consumers in the calculation of kwh
	transactions

1.0 INTRODUCTION

Measurement of high voltage consumer electricity consumption is an indirect measurement in which the load voltage and current are first converted into voltage and load current measurements by voltage transformers (CVT) and current transformers (CT) before entering into the transaction kwh. The accuracy of the transaction kwh is greatly influenced by the error rate on CT and CVT, in this study the author will discuss in more detail the effect of error on the CT ratio to the accuracy of the high voltage consumer kwh transaction by performing the CT test, with the CT analyzer. [1]

Therefore, the author would like to discuss about this contracted power condition, the effect of the installed CT ratio on the accuracy of the high voltage consumer transaction of PT.LSI. And simulation when the contracted power is 120 MVA with the current CT installed. This research is expected to be a input for PT. PLN management in determining the policy of whether the replacement of the installed CT ratio or the procurement of new CT with a greater CT ratio due to the addition contracted power of PT. LSI.

Current Transformer is an installation equipment that functions as a current meter in an electric power system by converting large currents into small currents accurately for measurement and protection. [2]. the function of the current transformer is as a measure of the current in the electric power system by converting large currents into small currents.

accurately for measurement and protection. The standard CT ratio error limits are shown in table 1 below: [3]

Test Parameters	Accuracy class	Current value of rated current							
		1%	5%	20%	100%	120%			
CT ratio error (%)	0.2s	±0,75	±0,35	±0,2	±0,2	±0,2			

Table 1. CT ratio error limits according to IEC 60044-1

2.0 METHODOLOGY

2.1. Determination of Thermal Relay Settings (Maximum Power Limitation)

Thermal relay is the maximum power limit that can be used by high voltage consumers according to contracted power. The settings are calculated based on the maximum current reached at a certain time. In determining the CT installed according to the contracted power based on the following equation:

$$I = \frac{S}{\sqrt{3} x V}$$

(1)

I = Nominal current (A); S = Contracted power (VA); V = Primary voltage (V) The calculation of the thermal relay setting limiting high voltage consumer load current is shown in the following equation: [4]

 $I setting = \frac{Imax}{Ip \ CT} x \ In \tag{2}$

I setting = Current setting relay thermal (A); Imax = customer's maximum load current (A) Ip CT = Primary current CT (A); In = Nominal thermal relay current (A)

2.2. Current Transformer Ratio Error Analysis

Current transformer ratio error is an error in the amount of current due to the difference between the rated ratio of the current transformer and the actual ratio. which is stated in the equation below: [5]

 $\varepsilon(\%) = \frac{(\kappa_n x \, I_s) - I_p}{I_p} x 100 \tag{3}$

 ϵ = current transformer error ratio (%); Kn = identifier ratio of CT

Is = the actual secondary current of CT (A); Ip = actual primary current of CT (A)

2.3. Analysis of Energy Consumption in Transaction Meters

Calculation of energy usage at PT. PLN can be determined based on the following equation: [6]

(4)

 $E = V_s x I_s x \cos \varphi x t x FKM$

E = energy used (kwh); Vs = secondary voltage (volt)

Is = secondary current (ampere); $\cos \phi$ = Power factor

t = Time (hour); FKM (meter times factor) = CT ratio x PT ratio

2.4. Research Framework

This research framework is a brief description of the research steps carried out from beginning to end shown in Figure 1 below:

Figure 1. Research Flow Diagram

3.0 RESULANTS AND DISCUSSION

3.1. General Description

In this research, to compare the error ratio of CT, data collection is done on the high voltage consumers of PT. LSI according to the data in table 2 below:

	Table 2. Customer Data
PLN	UID BANTEN
Consumer ID	546900470659
Consumer	PT. LAUTAN STEEL INDONESIA
Tarif	14
Power (VA)	120000000

3.2. Determination of Thermal Rele Settings (Maximum Power Limiting)

In terms of determining the CT installed on the 120 MVA contracted power based on equation (1) follows: For a 120 MVA contracted power then $S = 120 \times 10^6$ VA and high voltage 150 kV then V = 150 x 10³ volt, so the nominal current can be determined as follows

 $I = \frac{S}{\sqrt{3} x V} = \frac{120 \times 10^6 \text{ VA}}{\sqrt{3} x 150 \times 10^3} = 462 \text{ ampere}$

Based on equation (1) when the contracted power is 120 MVA, the maximum load current is 462 ampere. So if it is included in equation (2) then the setting current in the thermal relay can be determined as follows:

- When the CT ratio used is 400/1, the current setting in the thermal relay: $I \ setting = \frac{462 \ ampere}{400} x \ In = 1.155 \ x \ In$
- $\boldsymbol{\diamond}$ When the CT ratio used is 800/1, the current setting in the thermal relay :

 $I \text{ setting} = \frac{462 \text{ ampere}}{800} x \text{ In} = 0.5775 x \text{ In} = 0.58 x \text{ In}$

3.3. Comparison of CT Class 0.2s Error Ratio Analysis simulation Ratio 400/1 and Ratio 800/1 for 120 MVA Contracted Power Customers

1. Analysis of the error ratio of CT class 0.2s 400/1 in the simulation of 120 MVA contracted power customers

Table 2 Tast Davids Data with CT Class 0.00 Datis (00.1)

The results of the secondary current in the simulation of the customer's contracted power 120 MVA ratio CT 400/1 at 100% nominal burden are shown in table 3 below:

	Table 3. Test Results Data With CT Class 0.25 Ratio 400/1									
		Te	st Results Data	with CT Class	0.2s Ratio 400	/1				
% of	%	Rated	Contracted	Secondary	Secondary	Secondary	Average current			
rated	Contracted	current	primary	Current	Current	Current	(A)			
current	power	CT (A)	current	phase R	phase S	phase T				
CT			power (A)	(A)	(A)	(A)				
			() ()							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)=[(5)+(6)+(7)]/3			
115.50%	100%	462	462	1.1631	1.1827	1.1446	1.1635			
100%	86.58%	400	400	1.0030	1.0200	0.9860	1.0030			
95%	82.25%	380	380	0.9519	0.9681	0.9348	0.9516			
85%	73.59%	340	340	0.8500	0.8636	0.8364	0.8500			
75%	64.94%	300	300	0.7485	0.7605	0.7335	0.7475			
65%	56.28%	260	260	0.6474	0.6572	0.6338	0.6461			
57.75%	50%	231	231	0.5735	0.5815	0.5608	0.5719			
23.1%	20%	92.4	92.4	0.2280	0.2310	0.2222	0.2271			
20%	17.32%	80	80	0.1974	0.2000	0.1924	0.1966			
11.55%	10%	46.2	46.2	0.1135	0.1153	0.1106	0.1132			
5.78%	5%	23.1	23.1	0.0567	0.0575	0.0552	0.0564			
5%	4.33%	20	20	0.0491	0.0498	0.0478	0.0489			
2.89%	2.50%	11.56	11.56	0.0284	0.0288	0.0276	0.0282			
1.16%	1%	4.62	4.62	0.0113	0.0115	0.0110	0.0112			
1%	0.87%	4	4	0.0098	0.0099	0.0095	0.0097			

2. Analysis of the error ratio of CT class 0.2s 800/1 in the simulation of 120 MVA contracted power customers.

The results of the secondary current in the simulation of the customer's contracted power 120 MVA ratio CT 800/1 at 100% nominal burden are shown in table 4 below:

	Test Results Data with CT Class 0.2s Ratio 800/1									
% of	%	Rated	Contracte	Secondary	Secondary	Secondary	Average current (A)			
rated	Contracte	current	d primary	Current	Current	Current				
current	d power	CT (A)	current	phase R	phase S	phase T				
СТ			power	(A)	(A)	(A)				
			(A)	(* *)	()	()				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)=[(5)+(6)+(7)]/3			
115.50%	200%	924	924	1.1920	1.1943	1.1839	1.1900			
100%	173.16%	800	800	1.0310	1.0340	1.0240	1.0297			
95%	164.50%	760	760	0.9795	0.9823	0.9728	0.9782			
85%	147.19%	680	680	0.8764	0.8789	0.8704	0.8752			
75%	129.87%	600	600	0.7733	0.7755	0.7680	0.7723			
65%	112.55%	520	520	0.6702	0.6715	0.6650	0.6689			
57.75%	100%	462	462	0.5954	0.5966	0.5908	0.5943			
23.1%	40%	184.8	184.8	0.2379	0.2384	0.2361	0.2375			
20%	34.63%	160	160	0.2060	0.2064	0.2044	0.2056			

Table 4. Test Results Data with CT Class 0.2s Ratio 800/1

11.55%	20%	92.4	92.4	0.1188	0.1191	0.1179	0.1186
5.78%	10.01%	46.24	46.24	0.0595	0.0596	0.0590	0.0594
5%	8.66%	40	40	0.0515	0.0516	0.0510	0.0514
2.89%	5%	23.1	23.1	0.0297	0.0298	0.0295	0.0297
1.16%	2.01%	9.28	9.28	0.0119	0.0120	0.0118	0.0119
1%	1.73%	8	8	0.0103	0.0103	0.0102	0.0103

The results of the analysis of the error ratio of CT class 0.2s 400/1 and 800/1 in the simulation of 120 MVA contracted power customers by entering the average CT secondary currents phase R, S, T in table 3 and table 4 into equation (3) so that the results can be displayed in table 5 below:

Table 5. Comparison Data for CT Class 0.2s Ratio 400/1 and Ratio 800/1

CT accuracy clas	ss 0.2S		Percentage of rated CT current							
		1%	1.16%	2.89 %	5%	5.78%	11.55%	20%		
Percentage error	Ratio	-0.0260	-0.0260	-0.0227	-0.0227	-0.0227	-0.0203	-0.0170		
	400/1	0.00//7	0.0050/	0.007.40	0.00700	0.00710	0.00/04	0.00000		
	Ratio 800/1	0.02667	0.02586	0.02742	0.02733	0.02710	0.02684	0.02800		
Gap Error Curr	ent	0.05267	0.05186	0.05008	0.05000	0.04977	0.04717	0.04500		

CT accuracy	y class	Percentage of rated CT current							
0.2\$		23.10%	57.75%	65%	75%	85%	95%	100%	115.50%
Prosentase	Rasio	-0.0170	-0.0139	-0.0060	-0.0033	0.00000	0.00167	0.00300	0.00733
error rasio	400/1								
CT (%)	Rasio 800/1	0.02799	0.02903	0.02900	0.02967	0.02967	0.02967	0.02967	0.03033
Gap Error C	urrent	0.04499	0.04297	0.03500	0.03300	0.02967	0.02800	0.02667	0.02300

From table 5 above, it can be shown in Figure 2 below :

Figure 2. Graph of Comparison CT Class 0.2s Ratio 400/1 and Ratio 800/1 on a 120 MVA Contracted Power

In table 5 and figure 2 above it can be seen that when the contracted power is 120 MVA, CT class 0.2s ratio 400/1 has a negative error value at 1% up to 73.59% of load the contracted power, and a positive error ratio value at >73.59% up to 100% of load contracted power. While CT class 0.2s ratio 800/1 has a positive error value at 1% up to 100% of load contracted power, but has a value of error ratio that is greater than the CT class 0.2s ratio of 400/1 but still according to the IEC standard 60044-1.

3.4. Energy Consumption Simulation Analysis on 120 MVA Contracted Power Customers

1. The simulation of customer load usage on CT class 0.2s ratio 400/1 is shown in table 6 below .

Table 6. Duration and Secondary Current CT Class 0.2s Ratio 400/1 for Load Usage Simulation

Νο	Time	Duration (hour)	Load usage simulation	Secondary current (A)
1	00.00-05.00	5	1%	0,0112
2	05.00-08.00	3	20%	0,2271
3	08.00-12.00	4	100%	1,1585
4	12.00-13.00	1	20%	0,2271
5	13.00-18.00	5	100%	1,1585
6	18.00-22.00	4	5%	0,0564
7	22.00-00.00	2	1%	0,0112

The parameters in the kwh transaction analysis using CT class 0.2s ratio 400/1 as follows :

- Primary CT current = 462 A
- CT ratio = 400/1
- Primary voltage (Vp) = 150,000 Volt
- Power connected (contracted) = 120,000,000 VA

• Meter times factor (FKM) =
$$\left(\frac{400}{1}\right) x \left(\frac{150.000/\sqrt{3}}{100/\sqrt{3}}\right) = 600.000$$

- Secondary voltage (Vs) = 57.7 volt
- Power factor = 0.9
- Time = 24 hours
- Rates per KWH for WBP = Rp. 996,774
- Rates per KWH for LWBP = Rp. 996,774

By entering the above parameters into equation (4) the energy used in the customer load usage simulation on CT class 0.2s ratio 400/1 can be shown in table 7 below :

No	Secondary	Secondary	Power	Duration	FKM	Energy usage (kwh)
	current (A)	voltage (V)	factor	(hour)		
(1)	(2)	(3)	(4)	(5)	(6)	(7)= [(2)×(3)×(4)×(5)×(6)]/1000
1	0.01125	57.7	0.9	5	600000	1752.59
2	0.227073	57.7	0.9	3	600000	21225.42
3	1.158465	57.7	0.9	4	600000	144381.81
4	0.227073	57.7	0.9	1	600000	7075.14
5	1.158465	57.7	0.9	5	600000	180477.26
6	0.056441	57.7	0.9	4	600000	7034.35
7	0.01125	57.7	0.9	2	600000	701.04
		Total K	Wh			362647.62

Table 7. Energy Usage in the Simulation of Customer Load Usage on CT Class 0.2s Ratio 400/1

From the results of the analysis, it is known that the energy usage in the customer load simulation on CT class 0.2s ratio 400/1 for 24 hours is 362.647,62 kWh.

⁽Energy No. 6 is a WBP group)

Energy cost calculation is as follows:

LWBP energy costs = 355.613,26 kWh x Rp 996,774 = Rp 354.466.053 WBP energy costs = 7034,35 kWh x Rp 996,774 = Rp 7.011.662 The total cost of Energy = Rp 354.466.053 + Rp 7.011.662 = Rp 361.477.715

2. The simulation of customer load usage on CT class 0.2s ratio 800/1 is shown in table 8 below :

Table 8. Duration and Secondary Current CT Class 0.2s Ratio 800/1 for Load Usage Simulation

No	Time	Duration (hour)	Load usage simulation	Secondary current (A)
1	00.00-05.00	5	1%	0,0059
2	05.00-08.00	3	20%	0,1187
3	08.00-12.00	4	100%	0,5946
4	12.00-13.00	1	20%	0,1187
5	13.00-18.00	5	100%	0,5946
6	18.00-22.00	4	5%	0,0296
7	22.00-00.00	2	1%	0,0059

The parameters in the kwh transaction analysis using CT class 0.2s ratio 800/1 as follows :

- Primary CT current = 462 A
- ✤ CT ratio = 800/1
- Primary voltage (Vp) = 150,000 Volt
- Power connected (contracted) = 120,000,000 VA

• Meter times factor (FKM) =
$$\binom{800}{1} x \left(\frac{150.000}{100} / \sqrt{3} \right) = 1.200.000$$

- Secondary voltage (Vs) = 57.7 volt
- Power factor = 0.9
- Time = 24 hours
- Rates per KWH for WBP = Rp. 996,774
- Rates per KWH for LWBP = Rp. 996,774

By entering the above parameters into equation (4) the energy used in the customer load usage simulation on CT class 0.2s ratio 800/1 can be shown in table 9 below :

No	Secondary	Secondary	Power	Duration	FKM	Energy usage (kwh)
	current (A)	voltage (V)	factor	(hour)		
(1)	(2)	(3)	(4)	(5)	(6)	(7) = [(2)x(3)x(4)x(5)x(6)]/1000
1	0.0059	57.7	0.9	5	1200000	1848.56
2	0.1187	57.7	0.9	3	1200000	22197.08
3	0.5946	57.7	0.9	4	1200000	148220.48
4	0.1187	57.7	0.9	1	1200000	7399.03
5	0.5946	57.7	0.9	5	1200000	185275.59
6	0.0296	57.7	0.9	4	1200000	7389.43
7	0.0059	57.7	0.9	2	1200000	739.42
		Total	KWh			373069.59

Table 9. Energy Usage in the Simulation of Customer Load Usage on CT Class 0.2s Ratio 800/1

(Energy No. 6 is a WBP group)

From the results of the analysis, it is known that the energy usage in the customer load simulation on CT class 0.2s ratio 800/1 for 24 hours is 373.069,62 kWh.

Energy cost calculation is as follows:

LWBP energy costs = 365,680.16 kWh x Rp 996,774 = Rp 364.500.478 WBP energy costs = 7389,43 kWh x Rp 996,774 = Rp 7.365.593 The total cost of Energy = Rp 364.500.478 + Rp 7.365.593 = Rp 371.866.071

3. Comparison of energy comsumption simulation analysis for 120 MVA contracted power customers with the usage of CT class 0.2s ratio 400/1 and CT class 0.2s ratio 800/1.

Energy comsumption simulation analysis for 120 MVA contracted power customers with the usage of CT class 0.2s ratio 400/1 and CT class 0.2s ratio 800/1 can be shown in table 10 below :

No	Load usage simulation	Energy comsumption (kWh)		energy consumption
		CT class 0.2s ratio 800/1	CT class 0.2s ratio 400/1	difference (kWh)
2	20%	22197.08	21225.42	971.662
3	100%	148220.48	144381.81	3838.666
4	20%	7399.03	7075.14	323.887
5	100%	185275.59	180477.26	4798.332
6	5%	7389.43	7034.35	355.077
7	1%	739.42	701.04	38.387
Total kWh		373069.59	362647.62	10421.977

Table 10. Energy comsumption simulation analysis for 120 MVA contracted power customers with the usage of CT class 0.2s ratio 400/1 and CT class 0.2s ratio 800/1

Based on table 10 above, that CT class 0.2s ratio 800/1 has a greater current error ratio than CT class 0.2s ratio 400/1. However, if the possibility current ratio is positive on CT class 0.2s ratio 800/1 then the positive boundary range is greater so that the current measurement becomes greater, which results in a larger measurement in kwh.

4.0 CONCLUSION

When the high voltage consumer contracted power of PT. LSI 120 MVA, the CT core ratio 400/1 and CT ratio 800/1 can be used because it is still according to IEC 60044-1 standard, and when the CT 400/1 core is used then the CT ratio setting at kwh the transaction meter is 400/1, but when the core is changed to the CT ratio of 800/1, it is necessary to change the CT ratio setting on the kwh meter transaction which is 800 / 0.98, because the CT ratio of 800/1 has a positive CT ratio error of 0, 02%, so it does not harm the customer.

REFERENCES

- [1] C. Y. Kai Zhu, "Study on Hot-line Calibration for 10kV Watt-hour Metering Device," *IEEE*, 2019.
- [2] G. Bessolitsyn, "Experimental Study of Current Error of up to 50 Hz Current-measuring Transformer," International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2017.
- [3] IEC, "Instrument Transformer part 1: Current Transformer," IEC 60044-1 Edisi 1.2, 2003.
- [4] SPLN D3.015-2, "Alat Pengukur, Pembatas Dan Perlengkapannya," Standar PT.PLN (Persero), 2012.
- [5] M. Kaczmarek, "Measurement error of non-sinusoidal electrical power and energy caused by instrument transformers," *journals the institution of engineering and technology*, 2016.
- [6] SPLN D5.001, "Pedoman Pemilihan Meter Energi," Standar PT.PLN (Persero), 2008.
- [7] Omicron, "CT analyzer user manual," Austria, 2012.
- [8] Edmi, "Mk6 genius energy meter user manual," Singapore, 2004.

- [9] G. R. Enrico Mohns, "An AC Current Transformer Standard Measuring System for Power Frequencies," *IEEE Transactions on instrument and measurement,* 2017.
- [10] A. D. F. G. Crotti, "Calibration of Current Transformers in distorted conditions," XXII World Congress of the International Measurement Confederation (IMEKO 2018), 2018.
- [11] L. Z. iecheng Zhao, "Measurement Accuracy Limitation Analysis on Synchrophasors," *IEEE*, 2015.
- [12] A. L. ,. Katarina Grolinger, "Energy Forecasting for Event Venues: Big Data and Prediction Accuracy," 2016.
- [13] F. Kurniadi, "Pengembangan kWh Meter Elektronik untuk Pengecekan CT Konsumen Secara On Site," Jurnal Ilmiah Energi dan Kelistrikan Vol. 11, No. 2, Juli - Desember 2019, 2019.
- [14] D. P. Marjan Urekar, "Accuracy improvement of the stochastic digital electrical energy meter," 2016.
- [15] C. M. Stefan Siegenthaler., "A Computer-Controlled Calibrator for Instrument Transformer Test Sets," IEEE Transactions on instrument and measurement, 2017.
- [16] R. Syahputra, "Characteristic Test of Current Transformer Based EMTP Shoftware," *jTE-U, Vol.* 1, No. 1, , 2015.
- [17] L. K. Zhang Fuzhou, "Error Analysis of Capacitor Voltage Transformer in the Operation Environment," 2016.
- [18] D. F. A.J.Collin, "Compensation of Current Transformers' Non-Linearities by Means of Frequency Coupling Matrices," 2018.
- [19] G. P. Alessandro Mingotti, "Effect of Temperature on the Accuracy of Inductive Current Transformers," 2018.
- [20] T. Koerniawan and Hasanah, "Kajian Ketelitian Current Transformer (CT) Terhadap Kesalahan Rasio Arus pada Pelanggan 197 kVA," Jurnal Ilmiah Energi dan Kelistrikan Vol. 11, No. 1, Januari - Juni 2019,, 2019.
- [21] SPLN D3.014-1, "Trafo Instrument Untuk Sistem Distribusi (Trafo Arus)," Standar PT. PLN (Persero), 2009.