

International Journal of Applied Biology

International Journal of Applied Biology is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ISSN : 2580-2410 eISSN : 2580-2119

Performance evaluation of maize in Jumla district of Nepal: from yielding perspective

Jiban Shrestha^{1*}, Dil Bahadur Gurung², Keshab Babu Koirala², & Tirtha Raj Rijal³

¹Nepal Agricultural Research Council, Agriculture Botany Division, Khumaltar, Lalitpur, Nepal

²Nepal Agricultural Research Council, Kathmandu, Nepal

³National Maize Research Program, Rampur, Chitwan, Nepal

Abstract

The performance evaluation of maize genotypes at a specific growing region is a key to crop improvement. The objectives of this study were to evaluate grain yield of maize genotypes at Bijayanagar (Mahatgaun VDC) and Tallo Lorpa (Dillichaur VDC), Jumla District of Nepal during spring seasons of 2012 and 2013. The maize genotypes were significant (P< 0.05) for grain yield, days to tasseling and silking and disease scoring where as anthesis-silking interval, plant height and ear height were non significant. The pooled analysis of the results showed that the highest grain yield was produced by Ganesh-1 (4830 kg/ha) followed by KKT-POP (4408 kg/ha), KKT-14 (3952 kg/ha) and MGU-08 (3913 kg/ha, respectively. From this study, Ganesh-1, KKT-POP, KKT-14 and MGU-08 could be preferable choice for cultivation in Jumla district of Nepal

Article History Received 28 October 2019

Accepted 29 December 2019

Keyword Agronomic, performance, Grain yield, Maize.

Introduction

Maize (*Zea mays* L.) is one of the most important cereal crops in the world after wheat and rice (Golbashy et al., 2010). It is cultivated in a wider range of environments than wheat and rice because of its greater adaptability (Koutsika-Sotiriou, 1999). Maize is second major crop after rice in term of area and production in Nepal (MoALD, 2017). The farm level yield of maize (2.55 t/ha) is not satisfactory as compared to attainable yield (5.7 t/ha) in Nepal (MOAD, 2017; Karki et al., 2015). Maize production in the area suffers much from low fertility, low management, lack of improved varieties, and very severe infections of foliar diseases like turcicum leaf blight, high infestations of striga and stalk borers (Assefa, 1998). As a result, evaluating the performance of hybrid maize genotypes in specific agro ecology on different traits is very crucial.The environmental conditions affect the performance of maize genotypes which requires a breeding program that needs to take into account the consequences of environment and genotype interaction in the selection and release of improved varieties.The karnali region is rich diversity for local maize germplasm. The need of local germplasm collection, their evaluation and utilization for the development of Pools Populations and varieties is only the means to develop the new OPVs for higher grain yield production as well as to fit in the existing cropping systems. Jumla, 2,531 square kilometer (sq.km) area with altitude ranging from 915 to 4,679 meters from amsl, is a unique district located in the far north-western part of Nepal. The plane lands in Jumla district are located at the altitude of about 2,350 meters (Shrestha, 2002). The area under maize cultivation in karnali zone represents only 1.16% of the total maize cultivated area and its maize production represents only 0.78% of the total maize production in Nepal. The average maize productivity in karnali zone was 1.66 t/ha which was 15% lower as compared to average national productivity of maize (MoAD, 2012). There is no single maize variety released for karnali zone up to now. Therefore, this study was carried out to identify high yielding maize varieties suitable for karnali zone of Nepal.

Materials and Methods

Plant materials

The maize genotypes used in this study were DLP-01, DLP-14, DLP-16, DLP- Pop (DLP-01, DLP-14, DLP-16 and DLP-18), HML-04, HML-08, HML-28, HML-Pop (HML-04, HML-08, HML-28 and HML-05), JML-27, JML-30, JML-32, JML-Pop (JML-27, JML-30 and JML- 32), KKT-02, KKT-03, KKT-14, KKT-Pop (KKT-02, KKT-03 and KKT-14), MGU-03, MGU-08, MGU-15, MGU-PoP (MGU-03, MGU-08 and MGU-15), Dolmu Pop (DLP-01, DLP-14 MGU-03 and MGU-14), Jumka Pop (JML-14, JML-26, KKT-02 and KKT-03), Karnali Pool Yellow (HML-25, KKT-18 and HML-18), Karnali Pool White (DLP-05, DLP- 17, HML-11, MGU-14 and MGU-30), Ganesh-1 and Pool-17 (check variety). All these genotypes were received from National Maize Research Program, Rampur, Chitwan, Nepal.

Experimental site, crop husbandry and experimental design

Twenty six maize genotypes (including Ganesh-1 and Pool-17) during spring seasons of 2012 and 2013 at Bijayanagar (Mahatgaun VDC) and Tallo Lorpa (Dillichaur VDC), Jumla. There were 2 sites i. e. Site 1 and Site 2 at Tallo Lorpa, Jumla. The longitude of Tallo Lorpa is 82° 16', latitude 29° 19' and altitude 2540 m. Similarly, The longitude of Bijayanagar is 82° 10', latitude 29° 17' and altitude 2580 m. The genotypes were tested in plot size of two rows of three meter length in randomized block design with two replications and plant spacing of 75 × 25 cm2. The plots were fertilized with 120:60:40 N:P2O5:K2O kg/ha in the form of urea, di-amonium phosphate (DAP), and murate of potash (MoP). Entire dose of phosphorus and potash was applied at the time of sowing while urea was added in three split doses and also 15 t/ha farm yard manure (FYM) was incorporated in soil at the time of land preparation. Irrigation was applied as per the requirement of crop. All the trials received standard cultural practices to control weeds and pests.

Data recording and measurements

Plants harvested from central two rows were used on data measurements. Days to anthesis were counted from sowing to until 50% of plants had shed their pollen and days to silking were recorded from sowing to 50% plants extruded their silks. Anthesis silking interval (ASI) was calculated as the difference between silking and anthesis interval. Plant height and ear height was measured as the distance from ground to the tip of the tassel and the base of the uppermost ear respectively on five plants per plot. Disease scoring was done from 1 to 5 scale (Payak & Sharma, 1983; Shrestha et al., 2019). Grain yield (kg/ha) at 15% moisture content was calculated using fresh ear weight with the help of the formula adopted by

Carangal et al. (1971) and Shrestha et al. (2018) to adjust the grain yield (kg/ha) at 15% moisture content.

Data Analysis

All collected data were entered in Microsoft Excel 2016 and analyzed by using GENSTAT (version 14th edition; VSN International, Hemel Hempstead, UK). All the data collected were statistically analyzed using the analysis of variance (ANOVA) procedure described by Gomez and Gomez (1984) for randomized complete block design (RCBD) experiments. Separation of treatment means for significant difference was done by using the Fisher least significant difference (F-LSD) procedure at 0.05 probability level (Obi, 1986; Shrestha, 2019).

Results and Discussion

The findings of maize experiments at Bijaynagar, Jumla showed that the grain yield was highest in KKT-POP (6594 kg/ha), JML-30 (4271 kg/ha) and DLP-14 (3141 kg/ha) respectively. The days to 50% tasseling varied from 98 days (HML-28) to 140 days (KKT-02 and KKT-03) and silking varied from 102 days (HML-04, HML-28) to 145 days (KKT-02 and KKT-03). The plant height varied from 102 cm (HML-08) to 157 cm (DLP-16) and ear height from 40 cm (DLP-01) to 74 cm (KKT-pop). The disease score varied from 1.5 (HML- 04 and KKT-02) to 3 (HML-28 and Ganesh-1).

The findings of the maize experiments at Tallo Lorpa, Jumla showed that The grain yield was highest in Ganesh-1 (6210 kg/ha), JML-30 (6203 kg/ha) and KKT-14 (5466 kg/ha) respectively. The days to 50% tasseling varied from 102 days (MGU-pop and HML-04) to 157 days (KKT-02) and silking varied from 107 days (DLP-pop and MGU-pop) to 153 days (KKT-14). The plant height varied from 104 cm (Pool-17) to 187 cm (Jumka-pop) and ear height from 51 cm (DLP-01) to 104 cm (KKT-14). The disease score varied from 2 (DLP-01, HML-04, HML-pop, JML-27, JML-30, KKT-14, Karnali pool yellow and Karnali pool white) to 3 (DLP-14).

The pooled analysis of maize experiments at Tallo Lorpa and Bijaynagar showed that grain yield ranges from 1776 kg/ha (DLP-01) to 4830 kg/ha (Ganesh-1). The grain yield was highest in Ganesh-1 followed by KKT-POP (4408 kg/ha), KKT-14 (3952 kg/ha), MGU-08 (3913 kg/ha), Karnali Pool White (3482 kg/ha), Karnali Pool Yellow (3402 kg/ha) and KKT- 03 (3392 kg/ha) respectively.

		50%	50%	ASI	Plant	Ear	Disease	Grain
SN	Genotypes	tasseling	silking	(days)	height	height	Score	yield
		(days)	(days)		(cm)	(cm)	(1-5)	(kg/ha)
1	ККТ-03	140	145	5	153	59	2	2183
2	ККТ-14	124	130	6	153	64	2	3018
3	ККТ-Рор	124	130	6	177	74	2.5	6594
4	MGU-03	116	125	9	123	54	2	2666
5	MGU-08	119	124	5	111	47	3	2634

Table 1. Grain yield and agronomic traits of maize genotypes evaluated at Bijayanagar, Jumla district during spring season of 2012 and 2013

6	MGU-15	119	121	2	118	54	2	1927
7	MGU-Pop	107	111	4	149	67	2	2952
8	Dolmu Pop	106	113	7	145	61	2.5	2733
9	Jumka Pop	107	111	4	147	73	2	2432
10	Karnali Pool Yellow	105	109	4	134	71	2	2910
11	Karnali Pool White	116	122	6	148	77	2.5	3173
12	Pool-17	116	122	6	144	54	2.5	2746
13	Ganesh-1	116	121	5	215	118	3	5060
14	DLP-01	104	106	2	140	40	2	1555
15	DLP-14	102	108	6	150	55	2	3141
16	HML-Pop	104	109	5	148	58	2.5	2615
17	JML-27	114	119	5	130	48	2	2808
18	JML-30	107	111	4	141	61	2	4271
19	JML-32	111	116	5	123	47	2	2779
20	JML-Pop	109	114	5	119	51	2	2467
21	ККТ-02	140	145	5	104	52	1.5	2891
22	DLP-16	112	116	4	157	68	2	2728
23	DLP-Pop	99	104	5	128	73	2	3052
24	HML-04	99	102	3	114	36	1.5	1391
25	HML-08	109	113	4	102	35	2.5	1850
26	HML-28	98	102	4	129	44	3	2336
	Grand mean	112	117	5	139	59	2.2	2881
	CV%	10.45	9.4	24.2	15.5	23. 4	22.4	13.5
	F test	*	*	*	*	ns	ns	*

ns = non-significant at 5% level of significance, * = Significant at 5% level of significance

SN	Genotypes	50%	50%	ASI	Plant	Ear	Disease	Grain yield
		tasseling	silking	(days)	height	height	Score	(kg/ha)
		(days)	(days)		(cm)	(cm)	(1-5)	
1	KKT-03	132	136	4	169	77	2.5	5326
2	KKT-14	145	153	8	182	104	2	5466
3	ККТ-Рор	140	145	5	173	88	2.5	3972
4	MGU-03	122	126	4	164	88	2.5	3322
5	MGU-08	121	125	4	173	68	2	4278
6	MGU-15	125	128	3	153	81	2	1339
7	MGU-Pop	102	107	5	145	63	2	4496
8	Dolmu Pop	107	111	4	145	72	2	3795
9	Jumka Pop	124	128	4	187	98	2.5	3792
	Karnali Pool	100	107	Δ	120	71	2	
10	Yellow	123	127	4	129	/1	Z	4540
11	Karnali Pool	176	120	л	170	57	2	4052
	White	120	130	4	120	57	Z	4032
12	Pool-17	122	126	4	104	42	2.5	3235
13	Ganesh-1	140	145	5	184	77	2.5	6210
14	DLP-01	104	109	5	111	51	2	1705
15	DLP-14	109	114	5	133	62	3	3942
16	HML-Pop	109	114	5	154	82	2	3698
17	JML-27	111	113	2	176	90	2	3171
18	JML-30	109	113	4	173	75	2	6203
19	JML-32	109	113	4	115	46	2.5	2275
20	JML-Pop	144	147	3	127	85	2.5	3071
21	KKT-02	157	162	5	178	97	2.5	3088
22	DLP-16	107	113	6	119	57	2.5	3868
23	DLP-Pop	102	107	5	130	71	2.5	3760
24	HML-04	102	109	7	120	38	2	2723
25	HML-08	107	113	6	133	70	2.5	4066

Table 2. Grain yield and agronomic traits of maize genotypes evaluated at Tallo Lorpa (Site1), Jumla district during spring season of 2012 and 2013.

26	HML-28	107	113	6	135	66	2.5	2131
	Grand mean	119	124	5	148	72	2.3	3751
	CV%	10.7	10.3	26	15.1	22.9	12.9	34.11
	F test	*	*	*	*	ns	*	*

ns = non-significant at 5% level of significance, * = Significant at 5% level of significance

Table 3. Grain yield and agronomic traits of maize genotypes evaluated at Tallo Lorpa (S	ite
2), Jumla district during spring season of 2012 and 2013.	

		50%	50%	ASI	Plant	Ear	Disease	Grain
SN	Genotypes	tasseling	silking	(days)	height	height	Score	yield
		(days)	(days)		(cm)	(cm)	(1-5)	(kg/ha)
1	ККТ-03	114	119	5	118	65	2	2697
2	KKT-14	109	115	6	136	45	2	3373
3	ККТ-Рор	117	123	6	146	44	2.5	2659
4	MGU-03	109	117	8	99	43	2	2811
5	MGU-08	111	117	6	122	36	2.5	3535
6	MGU-15	109	115	6	100	38	2	1493
7	MGU-Pop	111	116	5	130	44	2	1648
8	Dolmu Pop	109	115	6	116	44	2	2179
9	Jumka Pop	109	117	8	134	39	2	3169
10	Karnali Pool	113	119	6	92	43	2	2563
	Yellow							
11	Karnali Pool	113	119	6	131	33	2.5	2952
	White							
12	Pool-17	118	123	5	123	32	2.5	2659
13	Ganesh-1	115	122	7	148	38	2.5	3221
14	DLP-01	104	111	7	147	53	2	2070
15	DLP-14	109	115	6	149	51	2	1700
16	HML-Pop	113	119	6	137	46	2.5	2336
17	JML-27	111	116	5	144	48	2	2666
18	JML-30	113	119	6	144	38	2	1264
19	JML-32	109	117	8	142	47	2	3642

International Journal of Applied Biology, 3(2), 2019

20	JML-Pop	109	114	5	119	44	2	3388
21	ККТ-02	107	113	6	137	46	1.5	2846
22	DLP-16	107	112	5	156	46	2	1755
23	DLP-Pop	111	115	4	125	48	2	2400
24	HML-04	109	115	6	122	43	1.5	2438
25	HML-08	111	117	6	136	46	2.5	2207
26	HML-28	109	114	5	131	41	3	2036
	Grand	111	117	C	120		2.1	
	mean	111	11/	0	130	44	2.1	2527
	CV%	3.2	1.9	19.7	27.02	11.7	19.3	22.5
	F test	*	*	*	ns	ns	*	*

ns = non-significant at 5% level of significance, * = Significant at 5% level of significance

Table 4	. Mean of th	ne gain y	ield and	agronomic t	raits of	maize g	genotypes	evaluated	i at Jumla	I
district	(Bijaynagar	and Tal	lo Lorpa)	during sprin	ng seas	on of 20)12 and 20	13.		

		50%	50%	ASI	Plant	Ear	Disease	Grain viold	
SN	Genotypes	tasseling	silking	(days)	height	height	Score		
		(days)	(days)		(cm)	(cm)	(1-5)	(Kg/11a)	
1	ККТ-03	128.67	133.33	4.67	146.7	67	2.16	3392	
2	ККТ-14	126	132.67	6.67	157	71	2	3952	
3	ККТ-Рор	127	132.67	5.67	165.3	68.7	2.5	4408	
4	MGU-03	115.67	122.67	7	128.7	61.7	2.16	2933	
5	MGU-08	117	122	5	135.3	50.3	2.5	3913	
6	MGU-15	117.67	121.33	3.67	123.7	57.7	2	1587	
7	MGU-Pop	106.67	111.33	4.67	141.3	58	2	3032	
0	Dolmu	107.00	110	F (7	125.2	50	2.10	2002	
0	Рор	107.55	115	5.07	155.5	29	2.10	2902	
9	Jumka Pop	113.33	118.67	5.33	156	70	2.16	3131	
	Karnali								
10	Pool	112 67	110 22	4 67	110 0	61 7	2	2402	
	Yellow	113.07	110.33	4.07	110.5	01./	Z	3402	
11	Karnali								

	Pool	118 33	123 67	5 22	135 7	55 7	2 33	3482
	White	110.55	125.07	5.55	135.7	55.7	2.55	3402
12	Pool-17	118.67	123.67	5	123.7	42.7	2.5	2880
13	Ganesh-1	123.67	129.33	5.67	182.3	77.7	2.66	4830
14	DLP-01	104	108.67	4.67	132.7	48	2	1776
15	DLP-14	106.67	112.33	5.67	144	56	2.33	2928
16	HML-Pop	108.67	114	5.33	146.3	62	2.33	2883
17	JML-27	112	116	4	150	62	2	2882
18	JML-30	109.67	114.33	4.67	152.7	58	2	3338
19	JML-32	109.67	115.33	5.67	126.7	46.7	2.16	2899
20	JML-Pop	120.67	125	4.33	121.7	60	2.16	2975
21	ККТ-02	134.67	140	5.33	139.7	65	1.83	2941
22	DLP-16	108.67	113.67	5	144	57	2.16	2784
23	DLP-Pop	104	108.67	4.67	127.7	64	2.16	3071
24	HML-04	103.33	108.67	5.33	118.7	39	1.66	2184
25	HML-08	109	114.33	5.33	123.7	50.3	2.5	2708
26	HML-28	104.67	109.67	5	131.7	50.3	2.83	2168
	Grand	111 21	110.26	E 1E	120.0	го л	2.2	2052
	Mean	114.21	119.50	5.15	150.0	56.4	2.2	2022
	CV,%	7.6	7.3	24.5	14.1	23.5	12.3	28.2
	LSD0.05	14.24	14.28	2.06	32.07	22.52	0.445	1412.6
	F-test	**	**	ns	*	ns	**	*

ns = non-significant at 5% level of significance, * = Significant at 5% level of significance,

** = significant at 1% level of significance

The genotypes were found significant (P< 0.05) for grain yield. These results are in line with those of Kunwar and Shrestha (2014), Shrestha (2016) and Prasai et al. (2015) who reported significant differences among maize cultivars for grain yield. Other traits namely disease score, days to 50% tasseling and silking were highly significant (P< 0.01) where as plant height significant and ear height and ASI were non significant. Difference in days to tasseling and silking among maize genotypes were also observed by Prasai et al. (2014), Dhakal et al. (2017) and Kunwar et al. (2014).

Result of combined analysis over year showed that there was highly significant (P< 0.01) influence of genotypes on days to tasseling and days to silking. Hussain et al. (2011) reported differential pattern of maize varieties for plant height. Ear height was significant for genotypes that results get sufficient validation from the findings of Nazir et al. (2010) and

Ahmad et al. (2011). Grain yield was significant and this results was similar to the results were reported by Akbar et al. (2009) who evaluated and identified high yielding maize varieties among different genotypes tested.

The reason for differences in grain yield among the maize genotypes under different locations was due to their variation in their genetic makeup. The grain yield of maize is the most important and complex quantitative character controlled by numerous genes. The gain yield of maize under different environment conditions may be due to both environmental and genetic effect. Different researchers have reported significant amount of variability in different maize populations including top-crosses and open pollinated varieties (Sampoux et al., 1989). These results are in line with those of Grzesiak (2001), who also observed considerable genotypic variability among various maize genotypes under different location.

Conclusions

The study showed variation for almost all the traits studied among the maize genotypes, which is an indication of the presence of sufficient variability and can be exploited through selection. The highest grain yield was one of the basic criteria for identifying superior varieties. The genotypes KKT-POP, KKT-03, KKT-14, MGU-08, Ganesh-1, Karnali Pool White and Karnali Pool Yellow were found superior in their grain yield potentiality in Jumla district. So these maize genotypes were found suitable genotypes for Karnali zone of Nepal.

Acknowledgements

The authors are thankful to Agricultural Research Station (ARS), Jumla for providing experimental fields at Jumla. Nepal Agricultural Research Council was highly acknowledged for research funding.

References

- Ahmad, S.Q., Khan, S., Ghaffar, M. & Ahmad, F. 2011. Genetic Diversity Analysis for Yield and Other Parameters in Maize (Zea mays L.) Genotypes. Asian J. Agric. Sci., 3(5): 385-388.
- Akbar, M., Saleem, M., Ashraf, M.Y., Hussain, A., Azhar, F.M. & Ahmad, R. 2009. Combining ability studies for physiological and grain yield traits in maize at two temperatures. Pakistan J. Bot., 41(4): 1817-1829.
- Assefa, T. 1998. Survey of maize diseases in western and north-western Ethiopia. In the sixth Eastern and Southern Africa Regional Maize Conference, CIMMYT. Addis Ababa, Ethiopia. pp. 121-124.
- Carangal, V.R., Ali, S.M., Koble, A.F., Rinke, E.H. & Sentz, J.C. 1971. Comparison of S1 with testcross evaluation for recurrent selection in maize. Crop Science, 11: 658-661.
- Dhakal, B., Shrestha, K. P., Joshi, B. P. & Shrestha, J. 2017. Evaluation of early maize genotypes for grain yield and agromorphological traits. Journal of Maize Research and Development, 3(1): 67-76.
- Golbashy, M., Ebrahimi, M., Khorasani, S.K. & Choucan, R. 2010. Evaluation of drought tolerance of some corn (Zea mays L.) hybrids. Iran. Afr. J. Agric. Res., 5 (19): 2714-2719

- Gomez, K. A. & Gomez, A. A. 1984, Statistical procedures for agricultural research. 2nd ed. New York . John Wesley and Sons, 680p.
- Grzesiak, S. 2001. Genotypic variation between maize (*Zea mays* L.) single-cross hybrids in response to drought stress. Acta Physiologiae Plantarium, 23(4): 443-456.
- Hussain, N., Khan, M. Y. & Baloch, M.S. 2011. Screening of maize varieties for grain yield at Dera Ismail Khan. J. Anim. Plant Sci., 21(3): 626-628.
- Karki, T. B., Shrestha, J., Achhami, B. B. & KC, G. 2015. Status and prospects of maize research in Nepal. Journal of Maize Research and Development, 1(2): 1-9.
- Koutsika-Sotiriou, M. 1999. Hybrid seed production in maize. In Basra, A. S. (2ed) "Heterosis and Hybrid Seed Production in Agronomic Crops", Food Products
- Kunwar, C. B. & Shrestha, J. 2014. Evaluating Performance of Maize hybrids in Terai Region of Nepal.World Journal of Agricultural Research, 2 (1): 22-25.
- Kunwar, C.B., Bhurer, K.P., Paudel, S.P., Chhetri, J.B. & Shrestha, J. 2014. Early and extra early maturity maize variety for terai, inner terai and foot hill of Nepal. In: Y. P. Giri, Y.G. Khadka, B.N. Mahato, B.P. Sah, S.P. Khatiwada, M.R. Bhatta, B.K. Chettri, A. K. Gautam, D. Gauchan, A.R. Ansari, J.D. Ranjit, R. Shrestha, B. Sapkota (eds). Proceedings of the 27th National Summer Crops Workshop, Vol. II, held on 18-20th April, 2013 at National Maize Research Program, Rampur, Chitwan, Nepal. Pp.78-81.
- MOAD. 2012. Statistical Information on Nepalese Agriculture. Government of Nepal. Ministry of Agriculture and Cooperatives, Agri- Bussiness Promotion and Statistics, Singha Durbar, Kathmandu, Nepal.
- MoALD. 2017. Statistical information on nepalese agriculture. Government of Nepal. Ministry of Agriculture and Livestock Development, Singha Durbar, Kathmandu, Nepal.
- Nazir, H., Zaman, Q., Amjad, M. & Nadeeman, A. Aziz. 2010. Response of maize varieties under agro ecological conditions of Dera Ismail khan. J. Agric. Res., 48(1): 59-63.
- Obi, I. U. 1986, Statistical methods of detecting differences between treatment means, SNAAP press limited, Enugu, Nigeria, 45p.
- Payak, M.M. & Sharma, R.C. 1983. Disease rating scales in maize in India. In Techniques of Scoring for Resistance to Important Diseases of Maize. All India Coordinated MaizeImprovement Project, Indian Agricultural Research Institute, New Delhi. Pp. 1-4.
- Prasai, H. K., Sharma, S., Kushwaha, U.K.S. & Joshi, B.P. 2014. Varietal improvement of early maize for far western hills of Nepal. In: Y. P. Giri, Y. G. Khadka, B. N. Mahato, B. P. Sah, S. P. Khatiwada, M. R. Bhatta, B. K. Chettri, A. K. Gautam, D. Gauchan, A. R. Ansari, J. D. Ranjit, R. Shrestha, B. Sapkota (eds). Proceedings of the 27th National Summer Crops Workshop, Vol. II, held on 18-20th April, 2013 at National Maize Research Program, Rampur, Chitwan, Nepal. Pp.174-177.

- Prasai, H.K., Kushwaha, U.K.S., Joshi, B.P. & Shrestha, J. 2015. Performance evaluation of early maize genotypes in far western hills of Nepal. Journal of Maize Research and Development, 1(1): 106-111.
- Sampoux, J.P., Gallais, A. & Lefort-Buson, M. 1989. S1 value combined with topcross value for forage maize selection. Agronomie, 9(5): 511-520.
- Shrestha, G.L. 2002. Special Techniques of Organic Rice Farming in Jumla, Nepal A Unique Rice Culture in the High Himalayas. 1st RDA/ARNOA International Conference "Development of Basic Standard for Organic Rice Cultivation" 12-15 November 2002, RDA and Dankook Univ. Korea (2002).
- Shrestha, J. 2016. Evaluation of quality protein maize genotypes for grain yield in mid hill districts of Nepal. International Journal of Life Sciences, 10(1): 7-9.
- Shrestha, J. 2019. P-Value: A true test of significance in agricultural research. Retrieved from https://www.linkedin.com/pulse/p-value-test-significance-agricultural-researchjiban-shrestha/
- Shrestha, J., Subedi, S., Timsina, K.P., Gairhe, S. Kandel, M. & Subedi, M. 2019.Maize Research. New India Publishing Agency (NIPA), New Delhi-34, India
- Shrestha, J., Yadav, D. N., Amgain, L.P. & Sharma, J.P. 2018. Effects of nitrogen and plant density on maize (*Zea mays* L.) phenology and grain yield. Current Agriculture Research Journal, 6(2): 175-182