

 ISSN: 2474-3542 Journal homepage: http://journal.calaijol.org

An Agglomerative-adapted Partition Approach for Large-

scale Graphs

Tao Chen, Rongrong Shan, Hui Li, Dongsheng Wang and Wei Liu

Abstract:

In recent years, an increasing number of knowledge bases have been built using linked data,

thus datasets have grown substantially. It is neither reasonable to store a large amount of

triple data in a single graph, nor appropriate to store RDF in named graphs by class URIs,

because many joins can cause performance problems between graphs. This paper presents

an agglomerative-adapted approach for large-scale graphs, which is also a bottom-up

merging process. The proposed algorithm can partition triples data in three levels: blank

nodes, associated nodes, and inference nodes. Regarding blank nodes and classes/nodes

involved in reasoning rules, it is better to store with an optimal neighbor node in the same

partition instead of splitting into separate partitions. The process of merging associated

nodes, needs to start with the node in the smallest cost and then repeat it until the final

number of partitions is met. Finally, the feasibility and rationality of the merging algorithm

are analyzed in detail through bibliographic cases. In summary, the partitioning methods

proposed in this paper can be applied in distributed storage, data retrieval, data export, and

semantic reasoning of large-scale triples graphs. In the future, we will research the

automation setting of the number of partitions with machine learning algorithms.

To cite this article:

Chen, T., & et al. (2019). An Agglomerative-adapted Partition Approach for Large-scale

Graphs. International Journal of Librarianship, 4(1), 3-18.

To submit your article to this journal:

Go to http://ojs.calaijol.org/index.php/ijol/about/submissions

http://ojs.calaijol.org/index.php/ijol/about/submissions

INTERNATIONAL JOURNAL OF LIBRARIANSHIP, 4(1), 3-18

ISSN: 2474-3542

An Agglomerative-adapted Partition Approach for Large-scale

Graphs

Tao Chen, Shanghai Library/Institute of Scientific & Technical Information of Shanghai,

Shanghai, China; School of Information Management, Nanjing University, Nanjing, China

Rongrong Shan, Department of Library, Information & Archives Shanghai University, Shanghai,

China

Hui Li, Shanghai Library/Institute of Scientific & Technical Information of Shanghai, Shanghai,

China; School of Information Management, Nanjing University, Nanjing, China

Dongsheng Wang, Computer Science, University of Copenhagen, Copenhagen, Denmark

Wei Liu, Shanghai Library/Institute of Scientific & Technical Information of Shanghai,

Shanghai, China

ABSTRACT

In recent years, an increasing number of knowledge bases have been built using linked data, thus

datasets have grown substantially. It is neither reasonable to store a large amount of triple data in

a single graph, nor appropriate to store RDF in named graphs by class URIs, because many joins

can cause performance problems between graphs. This paper presents an agglomerative-adapted

approach for large-scale graphs, which is also a bottom-up merging process. The proposed

algorithm can partition triples data in three levels: blank nodes, associated nodes, and inference

nodes. Regarding blank nodes and classes/nodes involved in reasoning rules, it is better to store

with an optimal neighbor node in the same partition instead of splitting into separate partitions.

The process of merging associated nodes, needs to start with the node in the smallest cost and

then repeat it until the final number of partitions is met. Finally, the feasibility and rationality of

the merging algorithm are analyzed in detail through bibliographic cases. In summary, the

partitioning methods proposed in this paper can be applied in distributed storage, data retrieval,

data export, and semantic reasoning of large-scale triples graphs. In the future, we will research

the automation setting of the number of partitions with machine learning algorithms.

Keywords: linked data, agglomerative-adapted partition, merging algorithm, large-scale graph,

k-graph

INTRODUCTION

With the rapid development of linked data, more and more organizations are using this mature

technology to build and publish their knowledge bases or datasets (Erkimbaev, Zitserman,

Kobzev, Serebrjakov and Teymurazov, 2013; Knoblock et al, 2017; Chen Tao, Zhang Yongjuan,

Chen et al. / International Journal of Librarianship 4(1) 4

Liu Wei and Zhu Qinghua, 2019). As can be seen from the latest linked open data (LOD) cloud1,

there is a growing number of big datasets, such as DBpedia2, SciGraph3, VIAF4, UniProt5, and so

on. All of these large datasets have become the infrastructure and core components of their fields.

For example, the 2016-04 release of the DBpedia dataset describes 6.0 million entities,

consisting of 9.5 billion RDF triples. DBpedia data is categorized into hundreds of entity classes,

and has been linked by a number of applications and datasets. These large datasets often provide

segmented downloads for different classes in official publishing sites. When these databases can

be applied, we need to dump and restore them in a local repository which also introduces a

number of challenges.

The Resource Description Framework 6 (RDF) is a family of World Wide Web

Consortium (W3C) specifications originally designed as a metadata data model. It has come to

be used as a general method for conceptual description or modeling of information that is

implemented in web resources. Considering the large amount of data, it can lead to performance

problems, especially restoring these data in a graph. In fact, normally we only need to operate

data on its sub-graph, such as retrieval, export, reasoning in some classes. Some researchers

might think of splitting the graph into several named graphs, which is having multiple RDF

graphs in a single document/repository and naming them with URIs. If we divide them on

average, the data for the one class can be divided into multiple graphs at random. If we create

named graphs by class URIs, a larger number of graphs are generated. Excessive joins in

federated queries can also cause performance degradation. Therefore, this is not the better

solution, especially when the data size between classes is unbalanced. For example, some named

graphs only have hundreds of triples, while some others have millions of triples. In view of this

background, we propose a simple agglomerative-adapted partition approach that can be used to

split triples in large-scale graphs.

LITERATURE REVIEW

A great deal of research articles and presentations have addressed the topic of triples partitions

and RDF performance in application. These studies mainly focus on the use of distributed

framework, efficient storage and indexing, and dynamic partitioning algorithms.

 Many research efforts have been devoted to develop distributed RDF data management

systems implemented on the Hadoop computing framework and MapReduce algorithm. For

example, Apache Jena Elephas7 is a set of libraries which provide various basic building blocks

for writing Apache Hadoop based applications which work with RDF data. Some researchers use

Hadoop to store and retrieve large numbers of RDF triples stored in flat text files in Hadoop

Distribute File System (HDFS) (Mohammad, Pankil, Latifur and Bhavani, 2009; Kurt and

Richard, 2010; Khushboo and Abhishek, 2017). Vaibhav, Murat, Bhavani and Paolo (2012)

proposed Jena-HBase, which stored RDF indices in HBase and directly carried out queries

1https://lod-cloud.net/
2https://wiki.dbpedia.org/
3https://scigraph.springernature.com/
4https://viaf.org/
5https://www.uniprot.org/
6https://www.w3.org/RDF/
7https://jena.apache.org/documentation/hadoop/

Chen et al. / International Journal of Librarianship 4(1) 5

through HBase APIs. Nikolaos, Ioannis, Dimitrios and Nectarios (2012) demonstrated the

H2RDF system, a distributed RDF store that combines a multiple-indexing scheme with

BigTable and MapReduce. Alfredo, Rajkumar, Vincenzo and Giovanni (2017) provided a

MapReduce-model-based algorithm for managing big RDF graphs, which tried to exploit the

computational power offered by the MapReduce processing model.

 There are also a number of researchers who have made breakthroughs in data storage and

indexing. Zeng, Yang, Wang, Shao and Wang (2013) introduced Trinity.RDF, a distributed,

memory-based graph engine for web scale RDF data stored in its native graph form. It achieved

much better performance for SPARQL queries than the state-of-the-art approaches. Gu, Hu and

Huang (2014) proposed Rainbow, a scalable and efficient RDF triple store. The RDF data

indexing scheme in Rainbow is a hybrid one which was designed based on the statistical analysis

of user query space. Li and Heflin (2010) presented a query optimization algorithm to identify

the potentially relevant Semantic Web data sources using structural query features and a term

index. Razen, Yasser and Panos (2014) presented PHD-Store, a SPARQL engine for federations

of many independent RDF repositories. PHD-Store followed an adaptive approach that allowed

it to start processing queries immediately, thus minimizing the data-to-query time, while

distributed and indexed only those parts of the graph that benefit the most frequent query

patterns.

 Some other researchers use graph partitioning optimization techniques about RDF graph

patter matching. For instance, Ruben, Miel and Pieter (2014) introduced Linked Data Fragments

(LDF), a publishing method that allowed efficient offloading of query execution from servers to

clients through a lightweight partitioning strategy. Huang and Daniel (2016) introduced a

dynamic graph partitioning algorithm, designed for large, constantly changing graphs, and he

also proposed a partitioning framework that adjusted on the fly as the graph structure changed.

Wang and Kenneth (2012) proposed a promising approach that utilized the graph nature of RDF

datasets to minimize relations among partitions after dataset partitioning, and optimized system

design based on it. Hao, Li, Yuan and Jin (2017) described an association-oriented streaming

graph partitioning method named Assc. This approach first computed the rank values of vertices

with a hybrid approximate PageRank algorithm, and then split these vertices with an adapted

variant affinity propagation algorithm.

 The agglomerative-adapted approach proposed in this paper belongs to the third category

mentioned above. This approach is mainly based on the ontology structure and RDF data, and

merges the different nodes from the aspect of measurement.

METHODS

Building the reformation graph

Several key concepts need to be pointed out before the key approaches and methods are

introduced. An ontology is an explicit specification of a conceptualization which describes

individuals (instances), classes (concepts), attributes/properties, and relations. In knowledge

graphs, it describes classes with nodes and uses directional edges to represent attributes. As

shown in Figure 1, nodes c1, c2, c3, ... are Classes, and p1, p2, p3, ... represent properties. There

are two type of properties, DatatypeProperty and ObjectProperty that describe what kind of

values a triple with the property should have. Datatype properties relate individuals to literal data

Chen et al. / International Journal of Librarianship 4(1) 6

(e.g. strings, numbers, datetypes, etc.) like p1, p2, p3 in Figure 1, whereas object properties relate

individuals to other individuals like properties p5, p6, p7, etc.

 In Figure 1, there are also some different types of nodes/classes: standalone node,

association node, blank node, and inference node.

 A standalone node is a node without relationships with other nodes. This type of nodes

only has datatype properties, such as node c1 in Figure 1 has p1, p2 and p3 properties.

 An associated node, most commonly used in knowledge graphs, has an association with

another node through object property. For instance, node c2 and node c5 are associated with

property p5; node c6 and node c9 are linked with property p10.

 A blank node is a node in an RDF graph that represents a resource (anonymous resource)

for which a URI or literal is not given. Blank nodes are recommended to be used with related

entity resources as there are different node IDs for the same triples of blank node in two graphs.

The node connected to p23 belongs to this node type.

 An inference node is a node reasoned by other classes and properties based on inference

rules. For example, the node r12 is inferred from p16 and p17 properties which belong to node

c9 and node c10 respectively.

 In splitting the reorganization diagram, we can try to get the largest possible trees. As

demonstrated in Figure 1, there are four top nodes c1, c2, c3 and c4, thus the easiest way to do

this is to split this graph into four trees which is shown in Figure 2. However, if you want to split

this graph into more or fewer trees, you can use the method we proposed later.

Figure1. A pseudo-reformation path-goal graph constructed

Figure 2. The split trees and the duplicate areas

Chen et al. / International Journal of Librarianship 4(1) 7

 The significant features of the graph might be the shared nodes such as c5 belongs to c2

and c3 connects with p5 and p6. There are two methods for how these common nodes are

partitioned. As many partitions will bring more joins between different partitions, splitting these

nodes into partitions separately will cause efficiency problems while making a SPARQL query.

However, storing them in multiple partitions can result in duplication of triples. Therefore, we

need to make a balance between these two methods, since our original intent is to minimize

duplication of data and minimize the number of joins with each other.

Partition process for trees

 Given a tree as shown on the right part of Figure 3, we need to extract “partition

templates” from the tree. We propose to partition it with an agglomerative-adapted merging

process to obtain reasonable sized partitions. Firstly, we define the cost of a partition template as

the total number of no-duplicate triples that are mapped to their predicates, and define the

neighbors of a certain partition as the partitions that share the same nodes/predicates and are next

to each other. The basic approach is to start with as many small partitions as possible and always

merge the lowest cost partition with its smallest neighbor partition into a new partition. The new

partition size and sequential partition list are then updated and continuously moved to the next

smallest partition to iteratively partition.

 As illustrated in step 0) in Figure 4, we initialize the cost of each predicate by loading the

triples and mapping their predicates, and the cost of each minimum partition is simply the sum of

the cost of all its predicates. Then we can divide all the nodes into separate partitions, except for

blank nodes, which must be put together with their corresponding resources. There are eight

initial partitions in this step, and the cost in node c10 and its blank node is 50+115+20=185, of

which 50 and 115 are the triple number of p17 and p18 in node c10, and 20 is the triple number

of p23 in blank node. Next we have to do four merging steps.Of course, the number of merging

times is not fixed. That needs to be based on the final number of partitions to determine.

 In step 1), we determine the least partition cost is 35 which is the sum of the quantities of

property p13 and p14 of node c8, and we merge it with its neighbor node c5. For node c8, it has

two neighbor partitions, c5- and c11- oriented partitions; however, the cost of c5 is 60 fewer than

80 of c11. So we chose the least one, c5, as the best adjacent merge node and the cost of new

Figure 3. Take the c3-oriented tree from last graph as an example

Chen et al. / International Journal of Librarianship 4(1) 8

partition merged with c5 and c8 is 60+20+15=95. It is important to note that the inference node

r12 is not processed at this step. It will be merged in the last step.

 Subsequently, in step 2), we continue to search and get the next least partition, which is

c6-oriented partition, with cost of 75, and we merge it with its best neighbor partition with least

cost. After merging, the new partition includes c3 and c6 nodes, and the cost is 70+20+75=165.

Similarly, we repeat this process in step 3) to merge nodes c5, c8, and c11.

 The last step is how to merge the inference node, which is most important step in the

entire process. The nodes corresponding to the properties used in the inference rules need to be

stored in the same partition as the inference node. In step 4), for instance, we should put nodes c9,

c10, and r12 in one partition, and the total cost in this partition is 230+185+50=465.

Figure 4. An example of agglomerative-inspired merging process

Chen et al. / International Journal of Librarianship 4(1) 9

 If we want to split the graph into three partitions, when we merge four times, it has

already produced relatively balanced partition sizes, as shown in Figure 5, with costs of 165, 175

and 465. We can further merge partition one (with nodes c3 and c6) and two (with nodes c5, c8

and c11) if we want to split the graph into two partitions. Eventually we can get two partitions

with costs of 340 and 465.

 The proposed agglomerative-adapted approach is a bottom-up consolidation process.

Note that “bottom” here means the node with the lowest cost and not the leaf of the trees. There

are some details and observations about partition principles or rules:

1) Do not split triples belonging to the same resource, but you can split sub-triples that exist

in the object resource to another partition.

2) If triples t and t’ combined with some axioms (strong relationships) will infer some new

triples, they must appear in the same partition.

3) Try to reduce duplicate nodes in partition templates as much as possible.

4) Try to balance the overall sizes of partition templates, avoiding some template sizes

getting too large while others too small.

5) A blank node is a resource without global identity, and it must appear in the same

partition with its related subject resource.

6) Only split triples corresponding to the object properties, do not split triples of datatype

properties.

 Traditionally, agglomeration is a hierarchical clustering method that starts to treat each

object as singleton clusters and then successively merge pairs of clusters until there is one single

cluster that contains all objects. The significant features that could be referred to are 1) the

cluster number is flexible and could be obtained by cutting an endrogram and 2) the merging

process is to always merge the closest or most similar two clusters.

Figure 5. Rule merging process for last example in figure 6

Chen et al. / International Journal of Librarianship 4(1) 10

 Note that the situation and application methods are of great difference in our case, but we

adapt the ideas of agglomeration to our own partition approach. In this example, we assign very

small cost values to simplify the description of the idea. However, the actual costs should be

larger, which can produce a Cartesian product.

ALGORITHM AND IMPLEMENTATION

The main flow of the algorithm is shown in Figure 6, where we take four merging steps, of

which steps 2 to 4 require iteration to achieve the final desired result. The algorithm should

operate the ontology and RDF data, and we give the core SPARQL statements and algorithm

with pseudocode of the merging approach in the following.

Step1: Statistic Cost of Associated Nodes

1: q ← SELECT ?node (COUNT(DISTINCT *) AS ?cost)

 WHERE {

 ?uri ?p ?o .

 {SELECT DISTINCT ?node ?uri

 WHERE {

 ?uri a ?node .

 FILTER (isIRI(?uri))

 }}

 } GROUP BY ?node

2: entityMaps<node, cost> <-perform this SPARQL query and save the output in entityMap variable.

 First, we perform the statistics algorithm of associated nodes in Step 1 in the whole raw

graph or model (raw_model). It is important to note that blank nodes are not counted here,

because these nodes will be merged into the corresponding nodes later. After execution, this

Figure 6. Algorithm flowchart

Chen et al. / International Journal of Librarianship 4(1) 11

algorithm will output all the associated nodes and their cost value, which can be recorded in

variable entityMaps<node, cost>.

Step2: Merge Costs of Blank Nodes to Associated Node

1: void mergeBlankNodes(entityMaps<node, cost>, raw_model) {

2: while time < entityMaps.size

3: q ← SELECT DISTINCT ?p

4: WHERE {

5: ?uri a <node> ; ?p ?s .

6: FILTER (isBlank(?s))

7: }

8: bp_list<property> <-launch this SPARQL to query all properties which have blank nodes as

object value.

9: IF bp_list.size > 0 THEN

10: while time < bp_list.size

11: mergeBlankNode(cost, raw_model, node, "<" + property + ">");

12: end

13: end

14: }

15: void mergeBlankNode(cost, raw_model, node, path) {

16: q ← SELECT (COUNT(DISTINCT *) AS ?count)

17: WHERE {

18: ?s ?p ?o .

19: {SELECT ?s WHERE {

20: ?uri a <node> ; path ?s .

21: ?s ?p ?o .

22: }}

23: }

24: cost ← cost + count <-run SPARQL query to count cost of blank node (?s) in property path of

associated node.

25: q ← SELECT DISTINCT ?p

26: WHERE {

27: ?uri a <node> ; path ?s .

28: ?s ?p ?o .

29: FILTER (isBlank(?o))

30: }

31: bp_list<property> <-launch this SPARQL to get all properties which have blank nodes of path

resource (?s).

32: IF bp_list.size > 0 THEN

33: while time < bp_list.size

34: path = path + "/<" + property + ">";

35: mergeBlankNode(cost, raw_model, node, path);

36: end

37: }

 Subsequently, with the output of the last step, entityMaps<node, cost>, we can use

algorithm 2 to merge blank nodes to each associated node. Blank nodes can have multiple layers

when used; therefore, this step can be looped and recursively executed, which is shown in

function mergeBlankNode(cost, raw_model, node, path). This algorithm will count the cost of

Chen et al. / International Journal of Librarianship 4(1) 12

all blank nodes of each associated node, and the cost will be summarized with the value of the

associated node counted from algorithm 1 in line 24. Until now, we have merged blank nodes,

and the output can be put into the entityMaps<node, cost> variable for subsequent operation. At

this point, the nodes in entityMaps have not changed, but the costs of blank nodes are

summarized.

Step3: Merge Inference Nodes

 In a semantic web application, an inference engine or reasoner is used to derive

additional RDF assertions, which are entailed from some base RDF together with any optional

ontology information, and the axioms and rules associated with the reasoner. All classes

involved in inference rules are divided the same partition, which can guarantee the efficiency of

reasoning. When merging, the node with less cost will be merged into a large one, and then

update entityMaps value. The operation of this step is relatively simple and can be only

performed in the entityMaps variable. After this merging step, the size of entityMaps will be

changed. The inference nodes will less cost value will be merged into the nodes with more cost.

Step4: Merge Associated Nodes

 In this step, we will extract the node with the smallest cost and use the ontology structure

to calculate the optimal adjacent node. This is not a simple use of SPARQL to directly query the

neighbor nodes, so we can use the following flowchart in Figure 7 to illustrate the algorithm.

 As shown in the Figure 7, the input of the algorithm is class or node URI which has the

smallest cost value in entityMaps, and the output result is the optimal neighbor node, the class of

the upper subject or lower object resource of this node. For a node URI, it may be a subject to

connect other resources, or it may act as object of other resources. Therefore, it is necessary to

find the subject and object classes for this node URI. Because process 1 and 2 are similar, we

Figure 7. Flowchart for getting neighbor node

Chen et al. / International Journal of Librarianship 4(1) 13

will only explain process 1 for looking for an adjacent subject class. First, we need to determine

whether the node URI is an object of another resource, that is, to identify a possible subject

resource. If such a subject resource does not exist, this indicates that the input node is not

connected to another subject resource. Conversely, when such a subject resource exists, the next

step is to determine the resource type of this subject, IRI or a blank node. If the subject type is a

blank node, it means that this blank node must exist as an object for another resource. We should

repeat this step until the end subject of the IRI type is found. Once found, it is convenient to find

out the class type with property rdf:type of this resource which is marked subject_class. Based on

the same principle, we can find the class of the adjacent object resource marked object_class here.

After getting the output result, we select the class with minimum cost in subject_class and

object_class as the output value. Of course, if one of subject_class or object_class does not exist,

you can use the other class as output value. Finally, the cost of the input class can be merged into

the output class, which will update the value of the output class in entityMaps, while removing

the input class too.

 The following pseudocode shows the algorithm implementation of this step in Apache

Jena framework. The final result of the merging step recursion is that the size of entityMaps is k.
1: void mergeAssociatedNodes(entityMaps<node, cost>, raw_model) {

2: entityMap<minClass, min> <-get the node with smallest cost in entityMaps.

3: relClasses <-define the list of relation classes of node with smallest cost in entityMaps.

4: mergeUps(relClasses, raw_model, minClass, ""); <-get the subject's class with function mergeUps.

5: mergeSubs(relClasses, raw_model, minClass, ""); <-get the object's class with function mergeSubs.

6: mergeNode2RelClass(entityMaps<node, cost>, minClass, relClasses); <-merge minClass node to

the optimal neighbor node.

7: IF entityMaps.size > k THEN

8: mergeAssociatedNodes(entityMaps<node, cost>, raw_model); <-after each recursion, the size of

entityMaps will gradually tend to the set value of k.

9: }

10: void mergeUps(relClasses, raw_model, node, property) {<-only offers the program logic of

mergeUps function in paper.

11: IF property is blank THEN

12: property ← a

13: ELSE

14: property ← property + "/a"

15: q ← SELECT DISTINCT ?class ?p

16: WHERE {

17: ?s a ?class ; ?p ?o .

18: ?o property <node> .

19: FILTER (isIRI(?s))

20: }

21: IF results.size > 0 THEN <-results are the outputs in SPARQL query.

22: relClasses.add(class); <-add the class queried in SPARQL to relClasses list.

23: ELSE

24: q ← SELECT DISTINCT ?class ?p

25: WHERE {

26: ?s a ?class ; ?p ?o .

27: ?o property <node> .

28: FILTER (isBlank(?s))

29: }

Chen et al. / International Journal of Librarianship 4(1) 14

30: property ← "<" + p + ">/" + property;

31: mergeUps(relClasses, raw_model, node, property); <-recursive queries until the IRI entity node.

32: }

EXPERIMENTS AND ANALYSIS

Figure 8 is a practical case of the bibliographic platform in our actual project. We use the ideas

and algorithms we proposed to split the whole graph to partitions with different degrees. The

bibliographic platform is developed based on BIBFRAME (Bibliographic Framework), which is

a data model for bibliographic description. BIBFRAME was designed to replace the MARC

standards and to use linked data principles to make bibliographic data more useful both within

and outside the library community.

 The BIBFRAME vocabulary consists of RDF classes and properties. Classes include the

three core classes, Work, Instance, and Item. Properties describe characteristics of the resource

and relationships among resources. The highest level of abstraction, a Work, reflects the

conceptual essence of the cataloged resource. A work may have one or more individual which

reflects information such as publisher, place, and date of publication. An item is an actual copy

(physical or electronic) of an instance. It reflects information such as its location (physical or

virtual), shelf mark, and barcode. The three core classes are connected by properties. For

example, an Instance may be an "instance of" a particular BIBFRAME Work, and an Item is

connected to an Instance via bf:itemOf property.

Chen et al. / International Journal of Librarianship 4(1) 15

 In this figure, we mark the cost of classes that need to be summarized by several

properties. However, there are some classes without a mark that only have one property, and in

this case, the cost of class is the same as its property cost. When actually in use, we use a large

number of blank nodes without the background color in Figure 8, such as GeographicCoverage,

Title, Temporal nodes. The associated nodes, e.g. Work, Instance, Item, Place and Person nodes,

are drawn with background color.

 In order to verify the feasibility of the proposed algorithm, we consider dividing the

entire graph into 5, 4, and 3 partitions, respectively. As seen in Figure 9, the bibliographic

platform contains five associated nodes, so we only need to merge blank nodes if we want to

split the graph to 5 partitions. When you need to split them into 4 partitions, you must merge the

triples data from the Place class into the Work class. Similarly, for 3-graph, the Person class

should be merged into the upper classes, Work and Instance. You will find that Person class has

been stored in two copies. The advantage of two copies is that the relative independence and

integrity of the data can be guaranteed when using partitioned data, which is conducive to the

improvement of the efficiency of use. In this project, we didn't use reasoning, so we did not

provide the result of inference nodes merging.

Figure 8. The reformation tree for Bibliographic platform

Chen et al. / International Journal of Librarianship 4(1) 16

 In statistics, standard deviation (SD) is a measure that is used to quantify the amount of

variation or dispersion of a set of data values. A low SD indicates that the data points tend to be

close to the mean of the set, while a high SD indicates that the data points are spread out over a

wider range of values. The SD can be calculated with following formula:

where { } are the observed values of the sample items, is the mean value of these

observations, and N is the number of observations in the sample.

 In the SD formula, for this example, the N is partitions number, and are costs of nodes.

As we calculated 5-graph, the SD value is 5.3720e+05. With the same method, the SD values are

5.0496e+05 and 3.7213e+05 for 4-graph and 3-graph respectively. As you can see from the

results, 3-graph has a smaller SD value.

CONCLUSION AND FUTURE WORK

This paper presents an agglomerative-adapted partition approach for large-scale RDF graphs.

According to the characteristics of ontology structure and triples, we propose a bottom-up and

multi-layer node-merging algorithm which contains blank nodes merging, associated nodes

merging, and inference nodes merging. Relative independence and moderate equilibrium are the

main points of consideration in the process of partition segmentation. When merging, blank

nodes cannot be split into new partitions, and Classes involved in the inference rules are

recommended to be in one same partition. The merging algorithm can be looped based on the

desired number of partitions, k-graph, and the triples in each partition can be efficiently stored,

retrieved, exported, and inferred. In this paper, we give an example of a bibliographic platform

based on BIBFRAME ontology to verify the proposed partition algorithm.

Figure 9. Partitions comparison of different degrees for Bibliographic platform

Chen et al. / International Journal of Librarianship 4(1) 17

 There is still a lot to be studied and improved upon in the future. For example, the case in

this paper does not involve rule reasoning, which will be added in subsequent research.

Reasoning is regarded as one of the core functions of semantic web. Another job that needs to be

improved is how to set the k value. Currently, k is selected on the basis of experience, which

depends too much on the human factor. Finally, we will use the method of machine learning to

automatically detect the optimal k value.

ACKNOWLEDGEMENT

The research is granted financial support from National Social Science Fund of China

(19BTQ024).

References

Erkimbaev, A. O., Zitserman, V. Y., Kobzev, G. A., Serebrjakov, V. A., & Teymurazov, K. B.

 (2013). Publishing scientific data as linked open data. Scientific and Technical

 Information Processing, 40(4): 253-263. DOI:10.3103/S014768821304014X

Craig A. Knoblock, Pedro Szekely, Eleanor Fink, Duane Degler, David Newbury, Robert

 Sanderson, ... Yixiang Yao (2017). Lessons learned in building linked data for the

 American art collaborative. in Proc. The Semantic Web - ISWC 2017, 263-279.

 DOI:10.1007/978-3-319-68204-4_26

Chen Tao, Zhang Yongjuan, Liu Wei, & Zhu Qinghua (2019). Several specifications and

 recommendations for the publication of linked data. Journal of Library Science in

 China, 45(1):34-46

Mohammad Farhan Husain, Pankil Doshi, Latifur Khan, & Bhavani Thuraisingham (2009).

 Storage and retrieval of large RDF graph using Hadoop and MapReduce. CloudCom

 2009, LNCS 5931, 680-686. DOI:10.1007/978-3-642-10665-1_72

Kurt, R., & Richard, E. S. (2010). High-performance, massively scalable distributed

 systems using the MapReduce software framework: the SHARD triple-store. in Proc.

 Programming Support Innovations for Emerging Distributed Applications, ACM,

 4:1-4:5. DOI:10.1145/1940747.1940751

Khushboo, T., & Abhishek B. (2017). A review of large-scale RDF document processing in

 Hadoop MapReduce framework. International Journal of Scientific Research

 Engineering & Technology (IJSRET), 6(2):123-126. .

Vaibhav Khadilkar, Murat Kantarcioglu, Bhavani Thuraisingham, & Paolo Castagna (2012).

 Jena-HBase: a distributed, scalable and efficient RDF triple store. in Proc. International

 Semantic Web Conference (ISWC), Springer, 1-4.

Nikolaos, P., Ioannis, K., Dimitrios, T., & Nectarios K. (2012). H2RDF: adaptive query

 processing on RDF data in the cloud. in Proc. 21st International Conference on World

 Wide Web, 397-400. DOI:10.1145/2187980.2188058

Alfredo, C., Rajkumar, B., Vincenzo P., & Giovanni P. (2017). MapReduce-based algorithms for

 managing big RDF graphs: state-of-the-art analysis, paradigms, and future

 directions. in Proc. 17th IEEE/ACM International Symposium on Cluster, Cloud and

 Grid Computing, 898-905. DOI:10.1109/CCGRID.2017.109

Chen et al. / International Journal of Librarianship 4(1) 18

Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, & Zhongyuan Wang (2013). A distributed

 graph engine for web scale RDF data. Proceedings of the VLDB Endowment,

 6(4):265-276. DOI:10.14778/2535570.2488333

Rong Gu, Wei Hu, & Yihua Huang (2014). Rainbow: a distributed and hierarchical RDF triple

 store with dynamic scalability. in Proc. IEEE International Conference on Big Data,

 561-566. DOI:10.1109/BigData.2014.7004274

Yingjie Li, & Jeff Heflin (2010). Query optimization for ontology-based information integration.

 Proceedings of the 19th ACM Conference on Information and Knowledge Management,

 CIKM 2010, Toronto, Ontario, Canada. DOI:10.1145/1871437.1871623

Razen AI-Harbi, Yasser Ebrahim, & Panos Kalnis (2014). PHD-Store: an adaptive SPARQL

 engine with dynamic partitioning for distributed RDF repositories. CoRR.

Ruben ,V., Miel, V.S., & Pieter, C. (2014). Web-scale querying through Linked Data

 Fragments. Proceedings of the 7th Workshop on Linked Data on the Web

Huang, J. W., & Daniel J. A. (2016). LEOPARD: lightweight edge-oriented partitioning and

 replication for dynamic graphs. Proceedings of the VLDB Endowment, 9(7):540-551.

 DOI:10.14778/2904483.2904486

Wang, R. & Kenneth, C. (2012). A graph partitioning approach to distributed RDF stores. in

 Proc. IEEE 10th International Symposium on Parallel and Distributed Processing with

 Application (ISPA), 411-418. DOI:10.1109/ISPA.2012.60

Yun Hao, Gaofeng Li, Pingpeng Yuan, & Hai Jin (2017). An association-oriented partitioning

 approach for streaming graph query. Scientific Programming, 11:1-11.

 DOI:10.1155/2017/2573592

About the authors

Dr. Tao Chen is a postdoctoral researcher in Nanjing University and Shanghai Library. His

academic background in computer science and electrical engineering has influenced his research

interests, focusing on data science, linked data, ontology and semantic web. He has more than 20

papers published.

Rongrong Shan is PhD candidate at the Department of Library, Information Science & Archive

at Shanghai University.

Dr. Hui Li is a postdoctoral in Shanghai Library. She is a recent PhD graduate in Computer

Science. Her research interests are in the area of social network analysis and natural language

processing.

Dongsheng Wang is currently a PhD candidate in Computer Science at University of

Copenhagen, he received master’s degree from Korea University. His research interests are in

the areas of big data, semantic web and data mining.

Wei Liu (aka. Keven Liu) is the Deputy Director of Shanghai Library and Institute of Scientific

and Technological Information of Shanghai. He is an adjunct professor of Fudan University and

Shanghai University in Shanghai, China. He took part in many major digital library projects in

China since 1995. He is very active in developing digital humanities infrastructures in recent

years.

	1--106.title
	1--106-acknowledgement-updated

