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Abstract. Wind is a dominant source of renewable energy with a high sustainability potential. However, the intermittence and unstable nature of 
wind source affect the efficiency and reliability of wind energy conversion systems. The prediction of the available wind potential is also heavily flawed 
by its unstable nature. Thus, evaluating the wind energy trough wind speed prevision, is crucial for adapting energy production to load shifting and 
user demand rates. This work aims to forecast the wind speed using the statistical Seasonal Auto-Regressive Integrated Moving Average (SARIMA) 
model and the Deep Neural Network model of Long Short-Term Memory (LSTM). In order to shed light on these methods, a comparative analysis is 
conducted to select the most appropriate model for wind speed prediction. The errors metrics, mean square error (MSE), root mean square error 
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to evaluate the effectiveness of each model and are used 
to select the best prediction model. Overall, the obtained results showed that LSTM model, compared to SARIMA, has shown leading performance 
with an average of absolute percentage error (MAPE) of 14.05%.  
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1. Introduction 

Renewable energies are a serious alternative to fossil fuels. these 
type of energy sources are sustainable, extremely abundant 
within nature and can be a reliable alternative to classic energy 
generation methods. Wind energy, particularly, is one of the 
most exploited energy sources; it is a clean source, with a high-
performance coefficient, it assures a good energy 
independence. The most imposing drawback of wind energy is 
the high intermittence within the year cycle (Asari et al., 2002). 
Because of its fluctuating nature, wind speed is an extremely 
unpredictable meteorological factor. Increasing the accuracy of 
wind forecasting is necessary to optimize wind farm operations, 
maximize their yield, and ensure a steady development  (Devis 
et al., 2018). Wind energy production plants use special 
equipment to determine wind direction in order to control the 
rotor axis direction (Kodjo et al., 2008). However, The wind 
direction has a low influence on the energy production, 
especially since wind tends to have one or two dominant 
directions for which most of the energy is produced (Adekunle, 
2017). Thus, the unpredictable nature of wind potential, 
affecting the yield of wind turbines is related to the variation of 
wind speed itself for a given direction. 

Currently, there are two methods to forecast the wind speed. 
The first one, named indirect technique, involves predicting 
wind speed based on environmental data, such as wind 
direction, temperature, air humidity, etc. The second way is to 
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use past wind speed data to forecast wind speed for the next 
hours or days. According to the time horizon, the time series 
prediction is divided into three categories: (i) an extremely 
short-term prediction, which is very useful for intraday market 
trading and it represents a few minutes to an hour, (ii) A short-
term prediction approach that is suitable for maintenance 
planning and it is from one hour to 12 hours. Finally, (iii) a 
medium to long-term prediction, which is useful for maintaining 
non-renewable energy production. The prediction horizon 
ranges from several hours to several days. 

To grasp wind speed forecasting, several approaches have 
been proposed. These methods can be separated into physical 
and statistical methods. Generally, the physical models require 
ample physical background information, so that they are not 
appropriate for wind speed forecasting in electric power 
systems (Mi et al., 2019). In the statistical methods, the historical 
data are used to train time series models, e.g., auto-regression 
(AR) model, autoregressive moving average (ARMA) model 
(Erdem and Shi, 2011), Kalman filter, and artificial neural 
network (ANN) (Zhang et al., 2016). The purpose of this article 
is to compare the predicting results of the Seasonal Auto-
Regressive Integrated Moving Average (SARIMA) model with 
the deep neural network model of Long Short-Term Memory 
(LSTM) using the same dataset and diverse evaluation metrics. 

In the first section of this paper, various kinds of forecasting 
models are described, and then compared based on the analysis 
of several contents in the literature. In the second section, wind 
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speed time series data is studied using the time-series 
decomposition method. The third paragraph discusses a short-
term wind speed forecasting using two of the most frequently 
employed time-series forecasting methods: SARIMA and the 
LSTM models. In the last section of the paper, the obtained 
results are carefully analyzed. To evaluate the performance of 
the wind speed forecasting model, data from three different 
velocity month were used, and four kinds of error metrics were 
considered: The Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE) and Mean 
Absolute Percentage Error (MAPE). 

2. Related work 

According to the methodology, there are three major types of 
weather forecasting systems namely, physical, deterministic 
and hybrid systems. Physical systems utilize probabilistic 
approaches to indicate weather event probability, Deterministic 
approaches produce more precise weather forecasts for a given 
location, and hybrid models which combine multiple individual 
prediction models to overcome several prediction limits 
(Jaseena and Kovoor, 2020). In the literature, all these 
approaches are applied for wind speed forecasting systems: 

2.1. Physical models 

In general, a physical model is an interpretable model, which 
permits the identification of causal relationships and has the 
possibility to generate data by performing various numerical 
simulation experiments. However, it can only approximate 
complex cases and only simulates well-known physical laws. 
Physical models are used to forecast the wind resource, 
beginning with meteorological data and adjusting it to local 
physical effects. The physical method does not require any 
training inputs from older data; they provide real-time physical 
information of wind farm, such as wind speed, wind direction, 
temperature, humidity, air pressure, air density (Bessac et al., 
2018). Combined with the information of topography around the 
wind farm (terrain, obstacle, contour etc.), the wind speed at the 
wind turbine’s mast height is calculated, and the output of the 
turbine may then be determined. The use of inaccurate 
meteorological parameters induces system faults, which 
subsequently causes a cumulative impact of error, and reduce 
the forecast accuracy. The physical model uses the 
mathematical approaches of the atmosphere, they are mainly 
based on numerical weather prediction model; the NWP model 
is a program that resolves complex equations and describes 
atmospheric processes and how they evolve over time. Authors 
in (Lorenc, 1986), have proposed a NWP model that uses 
Bayesian Probabilistic Arguments. However, the model does 
not exhibit accurate results in short-term prediction. Indeed, the 
performance of the physical model is relatively weak when the 
wind speed is very random, it is only used for long-term 
forecasting or it is considered as an input for the statistical 
method. Evidence illustrates that, to achieve the objective of 
accurate wind speed prediction, the statistical model built based 
on probability theory and mathematical statistical method is 
identified as the most widely used model. 

2.2. Deterministic models 

Deterministic models can be classified into statistical models 
and Artificial Intelligence models. (i) The statistical methods 
consider the training of history of wind speed data and produces 
a result without considering the effect physical phenomena. A 
statistical method contains Kalman filters model; in this method, 
wind speed is considered a state variable leading to the 

establishment of state space representation. Kalman filters 
algorithm is then used to forecast the future wind speed. This 
approach commonly increases the accuracy of NWP models 
predictions (Cassola and Burlando, 2012). The fuzzy logic 
model, is a polyvalent statistical approach for wind forecasting, 
which the values of variables are real numbers between 0 and 1. 
It is based on qualitative variables to model complex systems, it 
is generally best suited for systems and phenomenon, for which 
it’s not possible to establish an exact model (Damousis et al., 
2004). Another statistical method is the conventional statistical 
model; they are similar to the direct random time-series model. 
Model identity, parameter estimation, and model validation are 
used to develop a mathematical solution to the problem. These 
models can be categorized into the following categories: 
Autoregressive model (AR), moving average model (MA), 
autoregressive moving average model (ARMA), auto regressive 
integrated moving average model (ARIMA) (Yatiyana et al., 
2017). (ii) Artificial intelligence (AI) models have proven to be 
more accurate and efficient at handling nonlinear data sets and 
providing better forecasting results. These models are divided 
between machine learning (ML) approaches for forecasting and 
deep learning predictors. Among the most commonly used 
machine-learning predictors for forecasting are ANN and 
Support Vector Machine (SVM) models. Thanks to its ability to 
convey non-linear correlations between previous weather 
patterns and future weather conditions, ANN-based models 
(Faniband and Shaahid, 2020) are one of the most common 
approaches for weather prediction. Neural networks are non-
linear regression models that can rapidly process large amounts 
of data and efficiently match input and output variables. SVM 
are supervised machine learning models focused on solving 
mathematical discrimination and regression problems. SVMs 
are appreciated for their simplicity of application, they can 
handle classification and regression issues (Brereton and Lloyd, 
2010). Deep Learning is a subcategory of machine learning that 
uses an artificial neural network approach to extract intelligence 
from big data sets. This technique employs supervised or 
unsupervised methods in deep architectures to create 
hierarchical representations. RNNs are employed in deep 
learning and in the generation of models that simulate the 
activity of the human brain system. They are particularly 
powerful in forecasting results. For classical RNNs, the absence 
of the gradient is a severe issue, since the neural network, 
unable to be properly trained, would surely lose performance. 
LSTM (Long Short-Term Memory) units are one of the solutions 
to this problem (Tokgöz and Ünal, 2018). LSTM based 
architectures are capable of capturing long-term dependencies 
with much more precision. 

2.3. Hybrid models 

Hybrid predictive models were introduced to address the limits 
of single models and increasing the performance of wind speed 
forecasting, a single model is not sufficient to handle complex 
real-world systems with unknown mixed models. Such as the 
combination of ANN and ARIMA model forecasts proposed in 
(Li et al., 2011) (Nair et al., 2017), the combination of long short-
term memory (LSTM) network and the decomposition methods 
using the grey wolf optimizer (GWO) (Altan et al., 2021). 

In literature, the most common and extensively used hybrid 
models are parameter optimization and data preprocessing 
based models (Hajirahimi and Khashei, 2019). The data 
preprocessing-based hybrid models, generally rely on data 
preparation approaches, the time series is converted split into 
many subsets of data. Authors in (Nguyen and Novák, 2019) 
created a hybrid model based on preprocessing to forecast 
seasonal time series. 
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Table 1 
Comparison of wind speed forecasting models 

Wind speed forecasting model Strengths  Weaknesses 

Models based on Bayesian approach. 
(Miranda and Dunn, 2006) 
(Tascikaraoglu and Uzunoglu, 2014). 

It offers a high flexibility in the modeling, 
allowing the inclusion of information from 
physical phenomena that may have an 
influence on the variable studied.  

This approach demands more work and time and 
requires a certain level of skill on the part of the 
user. 

NWP models (Yang et al., 2018) (Bennitt 
and Schueler, (2012).) (Martinez-García et 
al., 2021). 

Provides good results for longer prediction 
terms. The spatial resolution of numerical 
weather prediction models is continuously 
growing, providing a better representation 
of weather characteristics. 

Requires longer processing times and advanced 
computational resources. 
Not appropriate for short forecast times. 
Difficult to model. Requires the analysis and 
understanding of a variety of conditions. 

Kalman filter models (Wu et al., 2004) 
(Babazadeh et al., 2012) (Hide et al., 2003) 

Good performance in linear regression 
methods  
Because of its recursive form it is not 
needed to store historical data 

Needs extensive previous information of the 
system. 
Divergent filter estimates due to stability 
problems. 

Fuzzy logic models (Bououden et al., 
2012). 

Appropriate for structures that are harder to 
model precisely. 

Very complicated, and needs a considerable 
processing time when there are numerous rules.  

Time series models (AR, ARMA, ARIMA) 
(Torres et al., 2005) (Eldali et al., 2016) 

The structure is relatively simple, it’s 
possible to correct local trends in data,  

Requires a much longer historic records, difficult 
to model nonlinear problems.  

ANN-based models (Navas et al., 2020) 
(Nazir et al., 2020). 

Before analysis, there is no requirement to 
establish a mathematical model, not very 
susceptible to input data errors, better 
adaptability to online measures. 

Needs a training process and a large number of 
training data sets. 

SVM-based models (Ranganayaki and 
Deepa, 2017) (Pinto et al., 2014) 

Good efficiency in generalization 
Requires a good setting of parameters, using a 
complicated optimization approach, and 
long training time. 

LSTM based models (Araya et al., 2020)  
(Geng et al., 2020). 

Capable of capturing long-term 
dependencies more precisely. 

Needs a training process and a big number of 
training data sets. 

Hybrid models (Soman et al., 2010) 
(Zhang et al., 2020). 

Achieves a good prediction ability with 
higher precision, and maximizes the 
approximation of the actual value. 
Achieves excellent Stability performance. 

Difficulty of analyzing correlated observations and 
their temporal orders. 
Sequential nature of the data. Require complex 
and specific resolution techniques.  

 
 
 
The parameter optimization models are established using 
optimization algorithm, specifically Meta heuristic techniques, 
thanks to its ample searching benefits (Qian et al., 2019) 

2.4. Literature synthesis 

Different forecasting models have been used trough literature. 
Each model includes a special set of strengths and weaknesses. 
Table 1 summarizes numerous references with an explication of 
the strengths and weaknesses of the methods used. 

Based on this literature analysis, numerous researches work 
related to wind speed forecasting and power using various 
models have been used; these approaches often produce 
credible results, and each method has strengths and 
weaknesses. The appropriate model is chosen based on the 
specific data characteristics of the site and the application area 
of the method, though, the developed prediction models are 
typically site-specific and greatly influenced by the change in the 
prediction times required.

 

3.  Mathematical fundamentals 

3.1. Problem formulation 

The problem consists of predicting the future wind speed values 
from historical wind data. Assuming that 𝑊 denotes the input 
set that includes the recorded wind speed data in the past up to 

the time 𝑡, and �̂� means the output vector that refers to the 
predicted wind speed values over a given prediction horizon ℎ. 

Figure 1 shows the wind speed forecasting paradigm. 𝑊 And �̂� 
are defined below: 

 

{
𝑊 = [𝑤𝑡−𝑁 , 𝑤𝑡−(𝑁−1), … , 𝑤𝑡]                       

�̂� = [�̂�𝑡+1, �̂�𝑡+2, �̂�𝑡+3, … , �̂�𝑡+ℎ−1, �̂�𝑡+ℎ]
   (1) 

 
 

 
Fig. 1 Wind speed forecasting paradigm 
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The prediction operation consists to forecast the �̂� values 
from the known 𝑊 records with the objective to minimize the 
prediction error (𝑤𝑡+𝑖 − �̂�𝑡+𝑖) for each 𝑖 = 0 𝑡𝑜 ℎ. Thus, the 
prediction problem can be formulated as follow: 
 
[�̂�𝑡+1, �̂�𝑡+2, … , �̂�𝑡+ℎ−1, �̂�𝑡+ℎ] =  𝑓(𝑤𝑡−𝑁 , 𝑤𝑡−(𝑁−1), … , 𝑤𝑡) (2) 

 

Where 𝑓 denotes the forecasting method. 
In this study, SARIMA and LSTM methods are used to predict 
the time related wind speed. Those models would be compared 
based on several metrics as detailed below. 

3.2. ARIMA model 

ARIMA model, which means Auto-Regressive Integrated 
Moving Average is the most popular stochastic models in time 
series forecasting (Siami-Namini et al., 2018). ARIMA is a time 
series model that can be employed to analyze and forecast next 
values in the series. ARIMA models are determined by the 
combination of three different features (𝑝,𝑑 and 𝑞). The 
parameters 𝑝, 𝑑 and 𝑞 are integers superior or equals to 0 and 
are described as follow: 

p: represents the seasonality, it’s specifying the number or 
order of the AR terms. 

d: the trend, it’s the number or order of the differences  
q: the noise, it represents the number or order of the MA, 

moving average terms. 
 
The fundamental forecasting equation in terms of y is: 
 
�̂�𝑡 = ϕ1 y𝑡−1 + ⋯ + ϕ𝑝 y𝑡−𝑝 + 𝑒𝑡  − θ1𝑒𝑡−1  − ⋯ θ𝑞𝑒𝑡−𝑞     (3) 

 
Where ϕi are the auto-regression coefficients, θj are the 

moving average coefficients of the model, et is the noise, and yt 
represents the wind speed value at time t. 

A more detailed version of the ARIMA model is seasonal 
ARIMA (SARIMA), this technic proposes to model the 
seasonality of the time series by adding the period parameter S 
and the coefficients P, D and Q equivalent to the parameters p, 
d and q of the differentiated time series (Farida and Zeghdoudi, 
2020)  

The factors p, d, q, S, P, D and Q are fixed by improving the 
Akaike information criteria (AIC). This measure is based on 
striking a balance between a model's complexity and its fit 
(Mantalos et al., 2010). 

3.3. Deep learning models 

3.3.1. Recurrent neural network (RNN) 

A recurrent neural network (RNN) is a developed branch of 
artificial neural network (ANN) that aids in sequence modeling. 
The recurrent neural networks have the capacity to build on 
previous types of networks. 

In RNN, an input sample is added to previously recorded 
outputs that are included as new inputs. Although RNNs are 
efficient, they are affected by the vanishing gradient problem, 
which makes learning large data sequences very difficult. The 
gradient transmits information used in updating the RNR 
parameters and when the gradient becomes significantly 
smaller, the parameter updates become inconsequential, 
indicating that no meaningful learning is done. Instead, better 
variation of RNNs is used: Long Short-Term Networks (LSTM) 
(Tian et al., 2018). 

3.3.2. Long Short-Term Memory (LSTM) 

LSTM networks are a category of RNN that employs a 
combination of special and standard units. A “memory cell” in a 

LSTM unit can store information and keep it for lengthy periods, 
and a collection of gates is used to manage information. As a 
result, they use an activation function to determine the 
activation of a weighted sum. The structure of LSTM cell is 
shown in Figure 2. The LSTM cell contains the following 
components: Forget Gate f, candidate layer c, input Gate i, 
output Gate o, hidden state h, memory state c, inputs of the 
LSTM cell at any step are 𝑋𝑡 (current input), ht-1 (previous 
hidden state) and 𝑐𝑡−1 (previous memory state).  

The LSTM cell produces two outputs: ht (current hidden 
state) and 𝑐𝑡  (current memory state). Firstly, the LSTM cell get 
the prior memory state  𝑐𝑡−1 and performs by element 
multiplication with the forget gate f. If the forget gate value is 0, 
the prior memory state is totally forgotten; if it is 1, the previous 
memory state is completely transferred to the cell. (f gate values 
are between 0 and 1). 

 
𝑐𝑡 = 𝑐𝑡−1 × 𝑓𝑡       (4) 

 
Calculating the new memory state: 

𝑐𝑡 = 𝑐𝑡 + (𝑖𝑡 × 𝑐′
𝑡)    (5) 

Thus, the output is  
 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑐𝑡)  (6) 
 

3.4.  Evaluation metrics 

Validating a prediction model is indispensable to ensure that the 
model is indeed capable of accurately predicting the values of a 
variable of interest. The focus is on whether the values predicted 
by the model are close to the true values in the validation data 
set. The statistical error metrics described in the following  are 
the most commonly reported indicators: The mean square error 
(MSE), the root mean square error (RMSE), mean absolute error 
(MAE) and mean absolute percentage error (MAPE) 
(Botchkarev, 2019): 

• MSE and RMSE 

The mean square error of an estimator of a parameter is a 
measure characterizing the precision of this estimator; it 
measures the average of the square of the error’s deviancies. 
However, the RMSE is the square root of the second sampling 
moment of discrepancies between forecasted and observed 
values. Because the influence of each error is proportional to the 
amount of the error squared, greater errors have a 
disproportionate effect on RMSE. (Hossin and Sulaiman, 2015),  
(Kamble and Deshmukh, 2017). 

 

𝑅𝑀𝑆𝐸𝑦,�̂� = √
1

𝑛
∑ (𝑦𝑗 − �̂�𝑗)2𝑛

𝑗=1     (7) 

 
Fig. 2 The structure of LSTM cell 
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• MAE 

Mean absolute error (MAE) is a statistical measure for 
comparing two continuous variables. Given that, y and y1 are 
variables of paired observations expressing the same 
phenomena. Comparisons of expected against observed, 
subsequent time versus starting time, and one measuring 
technique versus another measurement technique are examples 
of y1 versus y (Botchkarev, 2019): 

  

𝑀𝐴𝐸𝑦,�̂� =
1

𝑛
∑ |𝑦𝑗 − �̂�𝑗|𝑛

𝑗=1    (8) 

 
The mean absolute error is one of the main methods used for 

comparing predictions with their eventual results. 

• MAPE 

The mean absolute percentage error (MAPE) is one of the most 
widely used indicators of prediction performance. It was used 
as the primary measure in the M-competition (Kim and Kim, 
2016). 

 

𝑀𝐴𝑃𝐸𝑦,�̂� =
1

𝑛
∑ |

𝑦𝑗−�̂�𝑗

𝑦𝑗
|𝑛

𝑗=1        (9) 

 
MAPE has a severe disadvantage in generates undefined 

values when the real values are null or near to zero (Tayman 
and Swanson, 1999). 

4. Materials and methods 

4.1.Methodical approach for the work process 

A methodical approach was developed to better implement and 
assess the two methods for wind speed prediction; the 
work process is depicted in the diagram shown in Figure 3. 

 

Fig. 3 Methodical approach for the work process 
 

 
 

 

 

 
 
Fig. 4 Wind Data Visualization : (a) March 2018, (b) July 2018 and (c) 

October 2018 

4.2.Data preparation 

The meteorological data for this study was recorded at the site 
"Abdelkhalak Torres" in "Al Koudia Al Baida -Tetouen" located 
at (Latitude: 35° 45' 35.1, Longitude: -5° 41' 19.9''). The data 
used in this is recorded daily with a 10 𝑚𝑖𝑛 sampling period at 
a height of 100 m above the ground. The data that was 
specifically used for this study was recorded between January 
1st and December 31st of the year 2018. Records includes date, 
time of the record and the wind speed. The data that was 
considered for the validation of the prediction model is related 
to three months: March, July and October of the year. 

Data cleaning is a crucial step of data preparation. Missing 
data might be the result of an instrument malfunction or a 
discrepancy with previously recorded data. In the suggested 
method, the mean of the previous five observations is used to 
fill in the missing data. 

The analysis and processing of the data was carried out by 
the python 3.8 programming language, with the Spyder 5.0.0 
application available on the graphic interface of the Anaconda 
distribution. 
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4.3. Time series wind data analysis 

A time series is defined as a sequence of numerical values 
indexed in time, habitually with the same time step separating 
two successive observations. In this paper, the data is a 
univariate time-series data. After importing the data set from the 
recorded CSV file, and to better apprehend the data recording 
for each studied month, the data is plotted as a time series with 
the date along the x-axis and the wind speed on the y-axis. The 
data visualization is showed in Figure 4. 

Time-series forecasting is the process of fitting a model to 
previous data and employing it to forecast future observations. 
Decomposition is a time series analysis technique, it gives a 
systematic method of thinking about a time series forecasting 
issue, in terms of modeling complexity and in terms of how to 
effectively capture each of these components in a given model. 
A time series must be decomposed to systematic and non-
systematic components. Systematic components are time series 
components with consistency or recurrence that can be 
characterized and modeled. Non-systematic components are 
time series components that cannot be directly represented. 
Time series have three systematic components: level, trend, and 
seasonality, with an additional non-systematic noise 
component. 

 

 

 
Fig. 5. Time series decomposition 

 

The average value is called level; the trend in the series is the 
increasing or decreasing value. Seasonality is the recurring 
short-term cycle, while noise is the random fluctuation in time 
series (Athiyarath et al., 2020). Results obtained for each month 
are shown in Figure 5. 

For each month, the plot on Figure 4 shows clearly that the 
wind speed is unstable and extreme winds are rare. It is noted 
that the seasonal component is more significant on October and 
evolves slowly in time, because the data are from separate 
months of the year. However, for consecutive months these will 
be different seasonal patterns with more important seasonal 
components. In addition, random fluctuations are more frequent 
in October and appear to be approximately stable in size over 
time. According to the trend line, the data and the trend are on 
the same scale and there is no long-term evolution of the series. 

5. Simulations and results 

5.1 Wind speed forecasting based on SARIMA model 

5.1.1  Parameter’s selection and model fitting 

The objective of this subsection is to conduct a grid search to 
identify the best combination of parameters that generates the 
highest performance for the model. To accomplish this 
objective, time series predictive model SARIMA was used. The 
code's output indicates that respectively: SARIMA(1, 1, 1)x(0, 0, 
1, 2) , SARIMA(1, 1, 1)x(0, 0, 1, 2), and SARIMA(1, 0, 1)x(0, 1, 1, 
2) generate the lowest AIC (The Akaike Information Criteria ) 
value of 14 869,12 for march, 9 443,72 for July, and 12 864,92  
for October. Therefore, this optimal combination was adopted. 

After fitting seasonal ARIMA models, it is important to run 
model diagnostics to ensure that the assumptions made by the 
model are correct. Figure 6 illustrates the diagnostics produced 
by the proposed model for each month. 

The conducted study has shown that the model residuals are 
normally distributed. The correlogram reveals that the 
autocorrelation of time series residuals are near to zero. This is 
confirmed by the plot of the residuals over time, which shows 
no significant seasonality. The Kernel Density Estimator (KDE) 
tracks tightly the normal distribution N (0, 1); this demonstrates 
that the residuals are distributed regularly. From the Q-Q plot, 
it can be observed that in the middle of the plot, the distribution 
of residuals closely follows the linear trend of the data obtained 
from a standard distribution; however, the residuals distribution 
diverges at the extremities, which corresponds to the extreme 
values of the data. Subsequently, the model generates a 
satisfactory fit that can be used to predict future values. 

5.1.2 Forecasting validation  

In order to evaluate the accuracy of the proposed forecasts, 25% 
of the time series data was used as a test set. The forecasted 
wind speed targeted by the present model is related to the 
periods between the 24th and the end of the months March, July 
and October 2018. The forecasts were generated at one-step 
forward, meaning that the forecasts at each date are compiled 
using the complete history up to that time. The graph in Figure 
7, compares the actual values to the predicted values. Overall, 
the forecasted data tightly aligns with the actual values; this 
confirms that the proposed model produces reliable prediction 
results. This performance will be quantified using the errors 
metrics introduced previously.  

 
 

R
e
si

d
u

a
l 

  
 S

e
a

so
n

a
l 

  
 T

re
n

d
 

March 2018 

R
e
si

d
u

a
l 

  
 S

e
a

so
n

a
l 

  
 T

re
n

d
 

July 2018 

R
e
si

d
u

a
l 

  
 S

e
a

so
n

a
l 

  
 T

re
n

d
 

October 2018 



I. Tyass et al  Int. J. Renew. Energy Dev 2023, 12(2), 288-299 

| 294 

ISSN: 2252-4940/© 2023. The Author(s). Published by CBIORE 

 
 

 

 
Fig. 6. The model diagnostics: (a) March 2018, (b) July 2018 and 

(c) October 2018 
 
 

 

 

 
Fig. 7. SARIMA Forecasting validation: (a) March 2018, (b) July 2018 

and (c) October 2018 

 

5.2 Wind speed forecasting with the LSTM network 

5.2.1 Experimental test setup 

For each month, the global dataset is split in training dataset and 
test dataset of 75% and 25% of data respectively. A walk-
forward validation forecasting model is used. Each step of the 
dataset test is browsed one at a time. Afterwards, the model is 
ready to make predictions. The new estimated value from the 
test data set is obtained and made available to predict the next 
time step. 

5.2.2 . LSTM data preparation 

To create a LSTM model, the data must be processed. The time 
series data is therefore turned into a supervised learning model. 
Data is separated into input (X) and output (Y). The observation 
from the prior time step (t-1) is used as the input, while the 
observation from the current time step (t) is used as the output. 
The hyperbolic tangent function (𝑡𝑎𝑛ℎ), having an average 
range (-1, 1), is the default activation function for LSTMs. 
Therefore, the training dataset was employed to generate the 
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scaling coefficients (min and max) and then used the results to 
scale the test dataset and the observations were transformed to 
get a certain scale: the scale was reversed in order to restore the 
values to the original scale while computing error score in order 
to interpret and compare the acquired results. 

5.2.3  LSTM model development 

The LSTM layer requires that the inputs be arranged in a matrix 
with three following dimensions: samples, time steps, and 
features. Samples are sets of data in rows, time steps are 
discrete periods inside an observation, and features are distinct 
measurements taken at the time of the observation. 
Accordingly, each time step in the original sequence was treated 
as a distinct sample with a single time step and feature. The 
LSTM layer specifies the projected number of observations to 
be received in each batch. The frequency of updating the 
weights per time step is determined by the batch size and the 
number of epochs. The number of neurons is the last 
characteristic to define the LSTM layer, a number between 1 
and 5 is sufficient. To forecast the wind speed at the following 
time step, the network requires a single neuron in the output 

layer. Once the network is described, it must be compiled into 
an appropriate symbolic representation. ADAM optimization 
algorithm was applied to compile the network since it is a 
realistic approach with advantages over other stochastic 
optimization methods (Chang et al., 2019) (Zhou et al., 2019). 
After, the network is fitted to the training data, which is taken in 
a supervised learning format. As be needed to make one-step 
predictions, the batch size is fixed to 1, the best configuration 
found is: Batch Size: 1, number of epochs: 50, number of 
neurons: 4. The number of epochs specifies how many times the 
learning algorithm will work on the training data set. 

The result will be a two-dimensional array with a single value 
because they are supplied with a single input. At this point, the 
LSTM Network model for the wind speed dataset can be 
submitted for performance evaluation.  

Table 2 shows an example of the expected and predicted 
values in the test dataset for each month studied. Figure 8 
illustrates a line graph of the test values versus the predicted 
values. As observed, the forecasted data firmly aligns with the 
observed values, this, further confirms the model’s forecasting 
capability. 

 
Table 2 
The expected values versus predicted values 

March July October 

H=10, Pred= 8.523, Expec=11.068 
H=11, Pred=11.109, Expec=11.534 
H=12, Pred=11.545, Expec=10.359 
H=13, Pred=10.248, Expec=10.107 
H=14, Pred= 9.981, Expec=12.074 
H=15, Pred=12.072, Expec=11.480 

H=10, Pred=4.226, Expec=5.700 
H=11, Pred=5.820, Expec=6.169 
H=12, Pred=6.173, Expec=5.354 
H=13, Pred=5.164, Expec=7.654 
H=14, Pred=7.901, Expec=8.754 
H=15, Pred=8.851, Expec=7.180 

H=10, Pred=10.553, Expec=13.057 
H=11, Pred=13.191, Expec=12.621 
H=12, Pred=12.745, Expec=11.590 
H=13, Pred=11.738, Expec=11.424 
H=14, Pred=11.589, Expec=11.612 
H=15, Pred=11.787, Expec= 9.983 

 
 

 
(a) 
 

 
(b) 

 

 
(c) 

 

 
 
 
 
 
 

 
 

Fig. 8. Expected values vs predicted values: (a) March 2018, (b) 
July 2018 and (c) October 2018 
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5.2.4 Reinforcement of the model 

The outputs of neural networks vary according to the initial 
conditions. For this specific problem, the experiment from the 
previous section were repeatedly conducted and the average of 
each error metric as a measure of the configuration performance 
envisaged on unknown data was used. In a loop with a set 
number of repetitions, the model's fit and walk-forward 
performance were validated. Every iteration, the executions of 
error metrics are captured. Next, a summary of the scores for all 
of the error metrics (MSE, RMSE, MAE, and MAPE) is produced. 
Table 3 shows the errors metrics results for 15 iterations for the 
three periods studied. The box and whisker graph of the 
distribution of test MAPE results for each of the 15 iterations is 
shown in Figure 9. MAPE values obtained with different periods 

for the same number of iterations show significant variances. 
However, it is interesting to note that the model produced the 
lowest MAPE value in JULY when compared to the 

other months. Looking at the three boxes medians, the median 
for March is closest to the minimum error, but for October, 50% 

of MAPE values are close to the maximum value. The lowest 
interquartile range (Q3-Q1) calculated, IQR = 0.060%, 
corresponds to the month of JULY, which indicates that the 
MAPE value distribution is the most homogeneous and the 
errors values are evenly distributed around the median. 

5.3 Results discussion 

The objective of this analysis section is to evaluate the 
numerical predictive models and determine which one 
performed better in terms of producing the lowest metrics error 
and minimal computation time. Overall, both, LSTM and 
SARIMA  models offers good accuracy values of errors 
metrics comparing to results cited in the literature, for short 
term wind speed forecast (Liu et al., 2021) (Haddad et al., 2019) 
(Duan et al., 2021). As shown in Table 4, besides the 
improvement, LSTM model still provides the highest predictive 
performance in terms of minimal metrics error in March and 
October the months with a high velocity and more extreme 
values. 

 

 
Table 3  
Error metrics values resulting from 15 iterations 
 March  July  October 

 MSE RMSE MAE MAPE  MSE RMSE MAE MAPE  MSE RMSE MAE MAPE 

Minimum 1.1050 1.0449 0.7102 15.9400%  0.3947 0.6234 0.4544 10.5000%  1.5131 1.2298 0.9300 15.7000% 

Q1 1.1177 1.0493 0.7147 16.0094%  0.4022 0.6270 0.4573 10.6704%  1.5240 1.2398 0.9350 15.7667% 

Median 1.1203 1.0556 0.7164 16.0346%  0.4050 0.6310 0.4587 10.7006%  1.5295 1.2420 0.9370 15.8133% 

Q3 1.1286 1.0567 0.7177 16.2518%  0.4070 0.6352 0.4599 10.7307%  1.5414 1.2442 0.9372 15.8309% 

Maximum 1.1449 1.0586 0.7231 16.3737%  0.4089 0.6377 0.4889 10.9224%  1.5546 1.2464 0.9399 15.8926% 

Mean 1.1238 1.0525 0.7168 16.1607%  0.4042 0.6313 0.4606 10.6982%  1.5318 1.2413 0.9360 15.8025% 

Range 0.0399 0.0137 0.0129 0.4337%  0.0142 0.0143 0.0345 0.4224%  0.0415 0.0166 0.0099 0.1926% 

 
 
 
 

 

Fig. 9. LSTM Repeated Experiment Box and Whisker graph 
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Table 4 
Errors comparison 

 

The remarkable performance observed through LSTM -based 
approaches are related to the used iterative optimization 
algorithm, with the goal of finding the best results, Furthermore, 
taking a look at the RMSE values, the statistical SARIMA model 
gives slightly better results on July, than the LSTM model. 
Therefore, in periods with small fluctuations, the neural network 
achieved comparable performances to the traditional statistical 
models. It should be mentioned that LSTM would give more 
accurate results if the data contained structural changes with 
frequent fluctuation. In effect, the SARIMA method is unable to 
interpret the non-linear component of the wind speed time 
series data, thus, the model cannot capture all of the available 
details of the dataset. Contrarily, LSTM is a deep learning tool 
developed to learn temporal patterns, capture non-linear 
relations, and store relevant memory for a longer period. 
Furthermore, the required computational time for forecasting 
becomes critical to make any comparison. The LSTM based 
model is most computationally demanding than SARIMA, 
because of the optimization algorithm, 50 epochs were trained 
for each optimizer for 15 times and found that training and 
testing time ranges from 16 to 20 minutes, while the compilation 
time using SARIMA does not exceed 6 min. Previous study has 
also supported this (Shivani et al., 2019). Indeed, authors in 
(Makridakis et al., 2018), confirm that the complexity reported 
by ML approaches still substantially higher than statistical 
methods. The utility and advantage of a large data-learning 
model such as LSTM, is more solicited when the size of data is 
much larger (Liu et al., 2021). In this study, relatively small series 
data sets (one month) were used for predictive model training 
ant testing. Otherwise, the performance differences favoring the 
LSTM model would have been considerably more interesting. 
In previous academic research, the ARIMA model provided 
favorable performance with a smaller volume of data (Elsaraiti 
and Merabet, 2021). 

6. Conclusion 

The present study is a comparative analysis of SARIMA and 
LSTM forecasting models. The main goal is to evaluate the 
prediction performance of each one. The study uses wind speed 
time series recorded at three different months as common data. 
Furthermore, SARIMA and LSTM were compared based on the 
same evaluation metrics: MSE, RMSE, MAE and MAPE. The 
MAPE values ranges from 10.5% to 16.10% for both models 
which indicates that performance is acceptable in both cases. 
The results analysis shows that the LSTM exudes higher 
performance than the SARIMA model. This distinction is 
basically due to the use of iterative optimization algorithm in 
LSTM model. Practically speaking, The SARIMA model is more 
functional, because it requires the tuning of six unique 
parameters (p, q, d, P, Q, D), while the LSTM requires the 
evaluation of numerous additional hyper parameters, such as 
the number of units in each layer, the number of layers, the 

batch size, the number of epochs and the activation function. 
Regarding the forecasting operation conducted in this study, 
related to wind speed in particular, SARIMA model was faster 
to train and less complicated to implement. As a perspective 
study, the obtained results can be supported by extending the 
comparative analysis. Thus, in the future work, other machine 
learning prediction approaches are to be considered such as the 
support vector machine. The upcoming study will also use 
larger datasets that extend over a year, allowing us to assess the 
impact of seasons on the forecasting ability. 
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