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High-dynamic range compressive spectral imaging  
by grayscale coded aperture adaptive filtering

Reconstrucción de imágenes espectrales compresivas con alto rango 
dinámico por medio de filtrado adaptativo en escala de grises

N. Diaz1, H. Rueda2, and H. Arguello3

ABSTRACT

The coded aperture snapshot spectral imaging system (CASSI) is an imaging architecture which senses the three dimensional informa-
tion of a scene with two dimensional (2D) focal plane array (FPA) coded projection measurements. A reconstruction algorithm takes 
advantage of the compressive measurements sparsity to recover the underlying 3D data cube. Traditionally, CASSI uses block-un-
block coded apertures (BCA) to spatially modulate the light. In CASSI the quality of the reconstructed images depends on the design 
of these coded apertures and the FPA dynamic range. This work presents a new CASSI architecture based on grayscaled coded apertu-
res (GCA) which reduce the FPA saturation and increase the dynamic range of the reconstructed images. The set of GCA is calculated 
in a real-time adaptive manner exploiting the information from the FPA compressive measurements. Extensive simulations show 
the attained improvement in the quality of the reconstructed images when GCA are employed.  In addition, a comparison between 
traditional coded apertures and GCA is realized with respect to noise tolerance.
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RESUMEN

El sistema de adquisición de imágenes espectrales basado en una apertura codificada de única captura (CASSI) es una arquitectura 
para muestrear imágenes espectrales que captura información de una escena en tres dimensiones mediante medidas proyectadas y 
codificadas del sensor en dos dimensiones (2D). Para recuperar el cubo de datos se emplea un algoritmo de reconstrucción que apro-
vecha la esparcidad de las medidas compresivas. Tradicionalmente, CASSI usa aperturas codificadas binarias para modular espacial-
mente la luz.  En CASSI la calidad de las imágenes reconstruidas depende del diseño de estas aperturas codificadas y de la saturación 
del sensor. Este trabajo presenta una nueva arquitectura CASSI  basada en aperturas codificadas de escala de grises (ACG), la cual 
reduce la saturación en el sensor e incrementa el rango dinámico de las imágenes reconstruidas.  El conjunto de ACG se calcula en 
tiempo real de forma adaptativa explotando la información contenida en las medidas compresivas del sensor. La mejora obtenida en 
la calidad de las imágenes reconstruidas se muestra a partir de diversas simulaciones en las que se utilizan las ACG. Adicionalmente, 
se lleva a cabo una comparación entre las aperturas codificadas tradicionales y las ACG con respecto a la tolerancia del ruido.

Palabras clave: Muestreo compresivo, imágenes hiperespectrales, saturación, rango dinámico, apertura codificada, imágenes 
ópticas.
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Introduction
The coded aperture snapshot spectral imaging system 
(CASSI) is an imaging architecture which senses the 
three dimensional information of a scene with a 
single two dimensional (2D) coded random projection 
measurement set (Wagadarikar, et al. 2008). The CASSI 
optical architecture comprises five optical elements: an 
objective lens is used to form an image of a scene in the 
plane of the coded aperture; a coded aperture modulates 
the spatial information over the complete wavelength 
range; a relay lens transmits the coded light field onto 
a dispersive element that disperses the light before it 
impinges on the focal plane array (FPA). Given a set of 
compressive measurements, compressive sensing theory 
(CS) (Candes 2006, Donoho 2006, Baraniuk 2007) is used 
to reconstruct the underlying data cube of size N × N × L 
from just N (N + L − 1) measurements, where N is the spatial 
dimension and L is the spectral depth of the data cube. In 

CASSI, the quality of the reconstructed images relies on 
the design of the set of 2D coded apertures, whose entries 
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block or transmit the light from the scene. These coded 
apertures are called block-unblock coded apertures (BCA).

A single shot in CASSI may not provide sufficient number 
of compressive measurements. A recent modification in 
CASSI allows multi-shot sensing procedures which increase 
the number of compressive measurements, (Arguello and 
Arce 2013, Arguello and Arce 2014, Rueda and Arguello 
2013, Rueda, et al, 2014). In this modification, each shot 
uses a distinct coded aperture that remains fixed during 
the integration time of the detector. The quality of the 
reconstructed images improves in CASSI in proportion to the 
number of compressive measurements (Arguello and Arce, 
2011). Each CASSI shot adds simultaneously N(N+L-1) 
compressive measurements.  Therefore, the total number of 
available measurements with K shots is KN(N + L − 1).

The FPA’s dynamic range is the ratio between the smallest 
and the largest value detected by the sensor. The largest 
value is known as saturation level. Saturation occurs 
when compressive measurements exceed the saturation 
level, i.e., the quantizer’s dynamic range. In that case, the 
measurements take the value of the saturation level (Laska, 
et al, 2011). In CASSI and multi-shot CASSI, each saturated 
pixel in the sensor induces errors in the reconstructed 
image. Typically, CASSI system employs CCD or CMOS 
sensor, both affected by saturation depending on their 
dynamic range.

In order to avoid saturation the coded apertures can 
be used to modulate the incoming light in the system. 
Traditionally, BCA are implemented using piezo systems 
(Kittle, et al, 2010) or a digital-micromirror-device (DMD) 
(Wu, et al, 2011), to vary the coding pattern in each 
snapshot. The disadvantage of BCA is that their entries can 
take just two binary values {0,1}; that is, the modulation of 
the intensity to binary entries. In order to improve intensity 
modulation, we propose the use of grayscale-adaptive 
coded apertures (GCA) which can be also implemented 
using a DMD. The new design takes advantage of the fast 
switching time of the micro-mirrors which enables the use 
of a pulse-width modulation technique for the production 
of grayscale values. GCA can be used to yield a modulation 
of the intensity and to increase the dynamic range of the 
reconstructions.

This work extends the compressive capabilities of CASSI 
by replacing the traditional BCA by a set of GCA. GCA-
CASSI multi-shot is motivated by the possibility of reducing 
saturation levels through modulation of the amplitude of 
the incoming scene.

Figure 1a shows the sketch of the proposed architecture. 
The adaptive process is accomplished through a PC real-
time model (Feedback), in which the PC receives the 
measurement Gi from the FPA and remembers the previous 
compressive measurements Gi+1, Gi+2, Gi+3 and the previous 
coded aperture patterns. Using the adaptive filter (AF), 
the micro-mirrors are updated in the DMD, and the AF 
attenuates the coded aperture between snapshots, yielding 
an adaptively generated GCA T i+1 . Figure 1b shows the 
detail of the grayscale-adaptive coded aperture where the 

attenuated pixel represents an oscillating DMD. In Figure 
1b the pixels from the DMD are selected with 25 %, 50 %, 
and 75 % of duty cycle; the higher the duty cycle, the 
greater transmittance of the pixel. In the following sections 
we introduce the block-unblock CASSI optical model and 
present the grayscale-adaptive-based model.  Simulations 
are performed to evaluate the improvements attained by 
the proposed grayscale-adaptive coded apertures.

System model
The CASSI system uses a traditional block-unblock coded 
aperture (BCA) T(x, y) to modulate the spatio-spectral density 
f0(x, y, λ), where (x, y) are the spatial dimensions and λ 
represents the spectral dimension. The resulting coded field 
is then dispersed by the dispersive element, resulting in,

 
f
2
x, y,λ( )= T ′x , ′y( ) f0 ′x , ′y ,λ( )× ∫∫

                   h x− ′x − S λ( ), y− ′y( )d ′x d ′y
 (1)

(a)

(b)

Figure 1. (a) Sketch of the grayscale-adaptive coded aperture-based 
CASSI system (GCA-CASSI). A PC real-time approach is used to provi-
de feedback in order to update the coded aperture pixels involved in 
saturation, (b) Illustration of a GCA where three grayscale pixels are 
represented, each pixel have a distinct duty cycle, 25 %, 50 %, and 
75 %. The higher the duty cycle, the more transmittance of the pixel.
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where T (x´,y´) is the transmission function representing the 
coded aperture, h(x − x´− S (λ), y − y´) is the optical impulse 
response of the system and S (λ) is the dispersion induced by 
the prism. The compressive measurements across the FPA 
are obtained by the integration of the field f2(x,    y, λ) over the 
detector range sensitivity. Therefore, the spectral density in 
front of the detector is given by g x, y( )= f2

Λ
∫  x,  y,  λ( ) dλ. When 

the signal measurement is replaced in g (x, y) the resulting 
equation is:

 
g x, y( )=

Λ

.

∫ T ′x , ′y( ) f0 ′x , ′y ,λ( )× ∫∫
               h x− ′x − S λ( ), y− ′y( )d ′x d ′y dλ

 (2)

When the optical impulse response of the system is assumed 
linear and ideal, the spectral density being integrated is 
given by:

 g x, y( )=
Λ

.

∫ f0 x +S λ( ) , y,λ( ) T x +S λ( ) , y( )dλ.   (3)

Representing the detector as a spatially pixelated array with 
pixel size Δd, the measurements in the presence of noise ω, 
at the (n, m)th position can be represented as:

 

 Gn,m = f
0
x+ S λ( ), y,λ( )T x+ S λ( ), y( )

            ×rect x
Δd
−m, 

y
Δd
− n

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
dxdydλ+ωn,m 

 (4)

where m, n represent the (m, n)th pixel in the FPA sensor, 
and rect(.) is the rectangular function. Similarly, the coded 
aperture T(x, y) can be represented as a spatially pixelated 
array. Assuming the coded aperture pixel size as Δt and T ′n , ′m  
represents a binary value, (0) block and (1) unblock, the 
coded aperture can be expressed as,

 T x, y( )=
′n , ′m
∑ T ′n , ′m rect

x
Δt
−m', y

Δt
− n'

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
.  (5)

The coded aperture in Equation (5) can be replaced in 
Equation (4). Thus, the detector measurement becomes

 

Gn,m =
′n , ′m
∑T ′n , ′m rect

x+ S λ( )
Δt

−m', y
Δt
− n'

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟∫∫∫  

          ×rect
x
Δd
−m, y

Δd
− n

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

          × f
0
x+ S λ( ), y,λ( )dxdydλ+ωn,m.

 (6)

Representing the spatio-spectral source density being 
integrated on the detector in discrete form as Fn,m,k such that 
n∈ 1,...,N{ }  indexes the x -axis, m∈ 1,...,N{ }  the y -axis, and 

k ∈ 1,...,L{ }  the wavelength, Equation (6) can be succinctly 
expressed as

 Gn,m =
k=1

L

∑Fn−k( ),m,kT n−k( ),m +ωn,m,
 (7)

where Gn,m is the intensity at the (m,n)th position of the 
detector with dimensions  N(N + L − 1), the spectral data 
cube F has size N × N × L, Tn,m is the (m,n)th value in the 
coded aperture and ω represents the noise of the system.

Grayscale CASSI system model
In this paper the BCA is replaced with a GCA, which 
modulates the source along the spatial coordinates. 
The CASSI system architecture with GCA (GCA-CASSI) 
is illustrated in Figure 1a, where the traditional BCA is 
replaced by the GCA depicted in Figure 1b. The coding is 
now performed by the GCA represented byT x, y( )which 
is applied to the spatio-spectral density source  f0(x, y, λ), 
resulting in the coded field f1(x, y, λ). This coded field differs 
from the one achieved with the BC, given that a particular 
element of the GCA attenuates the wavelengths instead of 
blocking or unblocking the complete spectrum at a given 
spatial location. The entries of the GCA Tn´m´  vary in the 
range {0 −( l − 1)}, being l the number of grayscale levels 
of the DMD. In this way, Equation (7) can be rewritten as,

 Gn,m =
k=1

L−1

∑Fn−k( ),m,kT n−k( ),m +ωn,m.  (8)

FPA saturation in CASSI
Saturation occurs when the measurements exceed the 
dynamic range of the sensor quantizer. The quantizer has 
finite dynamic range due to two reasons: the first is related 
to physical limitations that allow a finite range voltage 
to be correctly converted to bits; and the second is that 
only a finite number of bits are available to represent 
each value. Quantization with saturation is referred to as 
finite-range quantization (Laska, et al, 2011). The errors 
imposed by finite-range quantization are unbounded. CS 
recovery techniques only provide guarantees for noise that 
is bounded, or bounded with high probability (Laska, et 
al, 2011). Dealing with saturation is important in CASSI 
because it reduces the attainable reconstruction quality. 
Figure 2 shows examples of compressive measurements, 
generated using Equation (7), three distinct percentages 
of saturated pixels (0 %, 5 % and 10 %, respectively), and 
their corresponding attained reconstructions using 4 shots. 
Notice that the higher the saturation percentage, the lower 
the quality of the reconstructed image.

In order to understand how the saturation in CASSI occurs, 
the qth slice of the data cube in Figure 3 is analyzed. It shows 
a representation of the physical phenomenon in CASSI, 
where t is the coded aperture of the qth row, G  is the qth the 
coded and dispersed slice, and g is the FPA measurement 
of the qth slice.

Figure 4 shows a top-view of the integration process 
of the FPA sensor. The pixel g6 is analyzed in order to 
understand the saturation in the sensor’s pixels.  The qth 
slice of the data cube F is represented by the matrix F. 
Each fn,m element is pictorially represented as a small cube. 
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The 6th compressive measurement in the qth row is given by

g6 = G6k
k=0

L−1

∑ , where each G6k  is integrated in the sensor and 

is given by G6k = t6−k⋅ f6−k ,k , k = 0,...,L−1. The intensity value in 
g6 only depends on the coded aperture pixels from t1 to t6. 
The saturation at g6 can be avoided by replacing the BCA 
by a GCA.

Figure 2. Compressive measurements for 3 levels of saturation and 
their respective reconstructions. First row: Compressive measurements 
with 0 %, 5 %, and 10 % FPA saturation. Second row: The correspon-
ding reconstructions for 0 %, 5 %, and 10 % saturation using 4 shots.

Figure 3. Sketch of the spectral data flow in GCA-CASSI. The qth slice 
of the data cube with six spectral components is coded by the qth row 
of the GCA falta and dispersed by the prism. The sensor captures the 
intensity in g integrating the coded light.

Figure 4. The qth slice of the data cube F is represented by the matrix 
F. The elements are pictorially represented as a small cube. The inten-
sity value in g6 only depends on the coded aperture pixels from t1 to 
t6.g6 saturation can be avoided by using a GCA.

Adaptive estimation of the GCA
In order to reduce the saturation level from the compressive 
measurements, an adaptive filter (AF) is designed to 
adaptively penalize the entries of the coded apertures, so 
the input source is attenuated before it is integrated by the 
detector. Consequently, these coded apertures will exhibit 
non-binary values, thus generating GCA. Formally, let V i 
represent a weight matrix whose entries are a measure 
of how many times the ith coded aperture pixel affects a 
saturated pixel in the sensor. In particular, the entries of V i 
can be written as

 Vn,m
i =

ℓ=n− L−1( )

n

∑ u Gℓ,m
i − s⎡

⎣⎢
⎤
⎦⎥+1,  (9)

where u[.] is the unit step function. Gℓ.m
i  is the ℓ,m( )th  pixel 

from the ith compressive measurement. i∈ 1 ,...K{ } and K is 
the number of total snapshots. The number of shots can be 
expressed in terms of compressive ratio. The latter can be 
defined as Cr= K N N + L−1( )( )( ) / N 2L , where K represents 
the number of shots, and N and L the spatial and spectral 
dimensions. Cr can be seen as the ratio between the 
reconstructed measurements and the number of pixels in the 
reconstructed data cube; s = 2b−1 represents the saturation 
level of the sensor, which depends on the number of bits 
“b” of the sensor. Notice that Equation (9) can be easily 
calculated in a PC real time approach (Feedback). Based 
on the weight matrix, a penalization function is generated 
by assuming that the attenuation in a pixel of the coded 
aperture is inversely proportional to the number of saturated 
pixels in the FPA. That is, the penalization function can be 
seen as the attenuation matrix W i whose entries Wn,m

i  are 
given by, 

 Wn,m
i =

1

Vn,m
i

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
.
1

Vn,m
i−1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
,  (10)

where V0 is assumed to be an one-value matrix. Notice that 
the attenuation matrix W takes into account the previous 
weighted matrices as in a memory AF approach. Given the 
K randomly generated coded apertures T1,...,TK, the GCA 
T 1,...,T K  are generated according to,

 T i+1=T i+1!W i,  (11)

where A!B  is the Hadamard product between the matrices 
A and B. Notice that T 1=T 1 , that is, the first GCA remains 
as the original, since the AF needs feedback. After the 
second snapshot some measurements still remain saturated. 
The effect of the AF improves the quality of reconstructed 
images when the remaining saturated measurements are 
discarded. The measurements that continue to be saturated 
in each snapshot are discarded, reducing the number of 
measurements and enhancing the quality of reconstructed 
images.

The adaptive estimation of GCA-CASSI improves the 
sensing. This gain in the detector is denominated “high 
dynamic range”.  More specifically, high dynamic range 
is the characteristic of the GCA-CASSI that allows sensing 
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areas with low and high irradiance. The low irradiance 
areas are correctly measured taking advantages of the 
inhomogeneous illumination. In addition, high irradiance 
areas are adequately measured due to the GCA attenuation 
after each snapshot. For that reason, the GCA-CASSI is a 
system with high dynamic range due to its ability to adapt 
to inhomogeneous illumination, sensing adequately the 
compressive measurements.

Spectral image reconstruction
CS theory establishes that a spectral signal F ∈!N×N×L or its 
vector representation f ∈!N .N .L is S − sparse in some basis 
Ψ, such that f = Ψθ  can be approximated by a linear 
combination of S vectors of Ψ with S≪ N 2L . Then, f 
can be reconstructed from d random projections with 
high probability when d≥ S  log  N 2L≪ N 2L . In CASSI the 
compressive measurements can be represented in matrix 
form such that H is a matrix of size N  N + L−1( ) N 2L( )  
whose structure is determined by the coded apertures 
and the dispersive element. Similarly, multi-shot CASSI is 
represented as yℓ = H ℓ f , where H ℓ  represents the effect 
of the ℓth  coded aperture (Arguello and Arce, 2011).  The 
set of K compressive measurements with a distinct coded 

aperture is then assembled as y= y0
T

,..., yk−1
T T

. The CASSI 
projections can be represented alternatively as y= HΨθ  , 
where the matrix A= HΨ  is the sensing matrix. The 
reconstructed data cube is obtained as f =ΨargminθHΨθ2+ tθ1  

where H = H 0T ,...,H k−1T
T

, θ is a S − sparse representation of 
f on the basis Ψ, and t is a constant of regularization. Let 
y  be the measurement vector with no saturated entries 
whose length is N  where N /< N  N  + L−1( ) . The matrix H  
is created by adaptively selecting the non saturated rows 
of the matrix H. The reconstructed data cube is obtained as 
f =ΨargminθHΨθ2+ tθ1  (Laska, et al, 2011).

Simulation results
In this section the CASSI with grayscale-adaptive coded 
apertures is compared against the traditional CASSI with 
BCA. A set of compressive measurements is simulated 
using the models in Equation (7) and Equation (11).  The 
measurements were constructed using a test spectral 
database obtained using a wide-band Xenon lamp as the 
light source, and a visible monochromator, which spans 
the spectral range between 450nm and 650nm. The image 
intensity was captured using a CCD camera exhibiting 
256 × 256 pixels. The simulations are performed in a desktop 
architecture with an Intel i7-4770 3.4 Ghz processor, 32 
GB of RAM memory and using Matlab R2012b. The test 
data cube F with 256 × 256 pixels of spatial resolution and 
L = 16 spectral bands is shown in Figure 5, and Table 1 
shows the bandwidth and the central wavelength of each 
spectral band.

The BCA entries are realizations of a Bernoulli random 
variable such that the transmittance of each pattern is 
25 %. The entries of the GCA are random realizations of 
block, unblock and attenuation elements, such that the 

transmittance in the first shot is 25 % and it is updated 
in the following shots by the AF, following Equation (11). 
The number of saturated pixels in the measurements is 
varied from 0 % to 10 %. The coded apertures are designed 
to have 256 × 256 pixels of spatial resolution. The CS 
reconstruction is carried out using the algorithm Gradient 
Projection for Sparse Reconstruction (GPSR) (Figueiredo, et 
al, 2007). The basis representation Ψ is set as the Kronecker 
product of two basis Ψ =Ψ1⊗Ψ2  where Ψ1 playing the role 
of spatial sparsifier is the 2D-Wavelet Symmlet 8 basis, and 
Ψ2 being the spectral sparsifier is the 1D-DCT basis. Figure 
6 shows four snapshots using the BCA and the GCA. The 
silhouette of the compressive saturated measurements can 
be observed in the grayscale-adaptive coded aperture after 
the first snapshot. The resulting silhouette occurs when 
the weighted matrix attenuates the pixels in the coded 
aperture, which are responsible for saturated values in the 
compressive measurements.

Figure 5. Spectral datacube used for simulations.

Table 1. Bandwidth and central wavelength.

Bandwidth Central wavelength

448–454 451

 455-460 458

461–468 464

469-475 472

476–485 480

486-494 490

495–505 500

506-516 511

517-529 523

530–540 535

541-557 549

558–572 565

573–594 584

595-615 605

616–639 628

640-662 651
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Figure 6. Comparison between BCA and GCA for four shots. The BCA 
and the GCA and the corresponding compressive measurements are 
shown.

Figure 7 shows the average reconstruction peak signal 
to noise ratio (PSNR) as a function of the percentage 
of saturation.  The grayscale adaptive and the BCA are 
compared for two, four, six, and eight snapshots. In both 
cases noiseless and with noise tests were included. Noiseless 
simulations are important because they show the system in 
ideal conditions. In contrast, noise simulation illustrated 
the system in a real scenario, in which the measurements 
were affected with gaussian noise with SNR = 10 dB. GCA 
outperforms in up to 11 dB the BCA when the number of 
saturated measurements is increased.

Figure 7. Average reconstructions PSNR as a function of the percen-
tage of saturation. The GCA are compared with BCA. The PSNR is me-
asured for GCA and BCA for percentages of saturation between 0 % 
and 10 %. Clearly, the GCA improves the quality of the reconstructed 
images compared with the BCA.

Figure 8 shows the average PSNR of the reconstructed data 
cubes as a function of the number of snapshots. The GCA 

is compared with BCA for distinct number of snapshots 
and variation of FPA saturation. The improvement of 
the proposed optical architecture can be quantified by 
averaging the PSNR of the reconstructed datacubes. GCA 
outperform in up to 11 dBs the BCA when the number of 
snapshots is increased.

Figure 8. Average PSNR of the reconstructed data cubes as a function 
of measurement snapshots. The block-unblock-based and the graysca-
le adaptive-based CASSI Imagers are compared at distinct percentages 
of saturation. Top-left: Saturated measurements 1 % and 4 % with noi-
se. Top-right: Saturated measurements 7 % and 10 % with noise. Bot-
tom-left: Saturated measurements 1 % and 4 % noiseless. Bottom-right: 
Saturated measurements 7 % and 10 % noiseless. The use of GCA im-
proves in quality of reconstructed images when the number of snaps-
hots is higher compared with BCA.

Figure 9 shows a comparison between reconstructed images 
using GCA and BCA where the number of snapshots varies 
between K = {1,3,6,8}. The BCA and GCA reconstructed 
images are compared including white noise in the 
measurements where SNR = 10 dB. All reconstructions are 
obtained from FPA measurements with 10 % of saturated 
pixels. For 1 snapshot there are no significant differences 
in PSNR between the BCA and the GCA, since both 
architectures use BCA for the first snapshot. Clearly, when 
more than 1 snapshot is captured, the GCA outperforms 
the BCA in up to 11 dB in the quality of the reconstructed 
images. The higher the number of snapshots, the higher the 
quality of reconstructed images up to 30 dB.

Figure 10 shows a comparison between GCA and BCA 
where 4 snapshots were captured. This time, the FPA 
measurements were saturated with 0 %, 3 %, 6 % and 10 % 
of saturated pixels.  The GCA outperforms the BCA in up 
to 11 dB in the quality of reconstructed images. The GCA 
tolerates increments in the percentage of saturation better 
than BCA. When the percentage of saturation is 0 % the 
quality of the reconstructed image is similar between GCA 
and BCA due to the fact that AF is inactive.

The resulting reconstructed data cubes curves are 
compared against their respective ground truth curves 
from the database. In addition, to evaluate the spectral 
reconstruction performance, 2 spatial points were randomly 
chosen and the spectral signatures are plotted in Figure 
11 where 8 snapshots were captured and the number of 
saturated pixels in the FPA measurements is 5 % and 10 %. 
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According to Figure 11, GCA spectral signatures are more 
similar to the original signature than those obtained with 
the BCA.

Figure 9. Comparison between reconstructed images using GCA and 
BCA for K = {1,3,6,8} snapshots. The first and third rows are recons-
tructed images from the FPA noiseless measurements. The second and 
fourth rows are reconstructed images from FPA measurements with 
noise, SNR = 10 dB. All reconstructions were obtained from FPA me-
asurements with 10 % of saturated pixels. Clearly, when more than 1 
snapshot is captured, the performance of GCA is higher than the BCA.

Figure 10. Comparison between GCA and BCA for K = 4 snapshots. 
First row: BCA noiseless. Second row: BCA with noise. Third row: GCA 
noiseless. Fourth row: GCA with noise. All reconstructions were obtai-
ned from FPA measurements with 0 %, 3 %, 6 % and 10 % of saturated 
pixels. When the percentage of saturation is increased, the GCA pre-
sents a higher performance.

Figure 11. Spectral signatures at four selected data points, K = 8 snaps-
hots and the number of FPA saturated pixels is 5 % and 10 %. Top-left: 
P1 noiseless in the FPA measurements. Top-right: P2 noiseless in the 
FPA measurements. Bottom-left: P1 with noise in the FPA measure-
ments. Bottom-right: P2 with noise in the FPA measurements. GCA 
spectral signature is more similar to the original signature than BCA.

Conclusions
GCA has been introduced in compressive spectral imaging 
system CASSI to replace the traditional BCA. The proposed 
architecture allows to attenuate the effects of the saturation 
of the FPA sensors. The saturation in CASSI depends on 
high irradiance that enters into the system overcoming 
the dynamic range of the sensor. The adaptive grayscale 
coded aperture deals with high irradiance attenuating it. 
The proposed technique has advantages in sensing the high 
irradiance but also the low irradiances, which means that 
the GCA-CASSI has a high dynamic range compared with 
BCA-CASSI. The designed GCA outperforms the BCA in up 
to 11 dB in the quality of the reconstructed images. The 
proposed adaptive filter can be implemented in PC real-
time approach.
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