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Compact spatio-spectral algorithm for single image  
super-resolution in hyperspectral imaging

Superresolución basado en una única imagen  
para imágenes hiperespectrales

Miguel A. Marquez1, Cesar A. Vargas2, and H. Arguello3 

ABSTRACT 

Hyperspectral imaging (HSI) is used in a wide range of applications such as remote sensing, space imagery, mineral detection, and 
exploration. Unfortunately, it is difficult to acquire hyperspectral images with high spatial and spectral resolution due to instrument 
limitations. The super-resolution techniques are used to reconstruct low-resolution hyperspectral images. However, traditional super-
resolution (SR) approaches do not allow direct use of both spatial and spectral information, which is a decisive for an optimal 
reconstruction. This paper proposes a single image SR algorithm for HSI. The algorithm uses the fact that the spatial and spectral 
information can be integrated to make an accurate estimate of the high-resolution HSI. To achieve this, two types of spatio-spectral 
downsampling, and a three-dimensional interpolation are proposed in order to increase coherence between the spatial and spectral 
information. The resulting reconstructions using the proposed method are up to 2 dB better than traditional SR approaches. 

Keywords: Hyperspectral imaging, spatio-spectral dimension, three-dimensional interpolation, hyperspectral downsampling.

RESUMEN

Las imágenes hiperespectrales (HSI) son de vital importancia en una amplia gama de aplicaciones, tales como la teledetección, 
imágenes espaciales, la detección y la exploración de minerales. Desafortunadamente, es difícil adquirir HSI de alta resolución 
espacio-espectral debido a las limitaciones de los equipos de sensado. Para obtener versiones de HSI de alta calidad se usan 
técnicas tradicionales de superresolución. Éstas técnicas no permiten el uso directo de la información espacial y espectral que son 
un factor decisivo para una óptima reconstrucción. En este trabajo se propone la implementación de un novedoso algoritmo de 
superresolución de una sola imagen hiperespectral. El algoritmo integra la información espacial y espectral en las HSI para realizar 
una estimación precisa de alta resolución. Esta integración se obtiene mediante el uso de dos tipos de muestreo espacio-espectral 
y un interpolador tridimensional, que permite aumentar la coherencia de la información inherente en la imagen. Las imágenes 
resultantes son superiores hasta 2 dB comparas con reconstrucciones obtenidas por enfoques tradicionales. 

Palabras clave: Imágenes hiperespectrales, dimensión especial-espectral, interpolación tridimensional, sub-muestreo hiperes-
pectral.
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Introduction

Hyperspectral imaging (HSI) collects a concatenation of 
bidimensional images that entails different wavelengths 
in a certain spectral range. Pixels in hyperspectral images 
are therefore represented by vectors whose entries 
correspond to the intensity in the different spectral 
bands. HSI enables the detection, classification, and 
identification of objects and features based on the spectral 
characteristics (Chakrabarti, 2011). HSI is an area with a 
significant impact in civilian and military applications 
including remote sensing, aerial, space imagery, natural 
resource exploration, farming, and astronomy (Belluco, 
2006), (Borengasser, 2007), (Castrodad, 2010), (Melgani, 
2004), (Underwood, 2003), (Dicker, 2006), (Turk, 1991). 
In all of these applications, it is important to obtain the 
highest resolution in the spatial and spectral dimensions.  
Typically, the hyperspectral spectrometers are used to 
capture high-resolution hyperspectral images, because 
these provide hundreds of narrow contiguous bands over a 
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wide range of the electromagnetic spectrum. Hyperspectral 
sensors measure the reflective properties of objects in the 
visible and short wave infrared regions of the spectrum. 
Unfortunately, atmospheric scattering, imperfect imaging 
optics, secondary illumination, changing viewing angles, 
and sensor noise degrade the quality of these images, 
making the spatial resolution one of the most expensive and 
hardest characteristic to be improved in imaging systems.

In practice, modifying the imaging optics or sensor array 
increases the production costs (Arguello H. , 2012)- (Rueda, 
2013); in addition it is impossible to fabricate spectrometers 
with arbitrary resolution. Hence, researchers have 
investigated the use of resolution enhancement techniques 
by post processing as a better alter native to improve the 
image quality (Akgun, 2005), (Mianji, 2008), (Zhao, 2011). 
To improve the spatial resolution of hyperspectral images, 
traditional super-resolution (SR) techniques may be used. 
Super-resolution methods are currently a very active area 
of research, as it allows the implementation of low-cost 
imaging sensors in hyperspectral spectrometers. Many 
methodologies have been applied to the super-resolution 
problem, such as SR from single image methods (Zhang, 
2012), (Takeda, 2007), (Li, 2001), multi-image-based SR 
methods (Protter, 2009), (Akgun, 2005), (Chan, 2010), and 
learning-based SR methods (Freeman, 2002). However, 
these methods ignore the spectral information that is a 
crucial parameter for an optimal reconstruction of high 
resolution (HR) images. A comprehensive background on 
super-resolution methods can be found in (Akgun, 2005).

Methodology

Bidimensional image super-resolution

The single image super-resolution (SR) problem consists on 
recovering a high resolution (HR) image X∈!s1N×s2M  from 
a low resolution (LR) Y∈!N×M  version. Figure 1 shows an 
example of an HR image restoration from an LR version 
of it. Here, N × M represents the spatial resolution, and 
s1,s2 ∈!   are the super-resolution factors in the dimensions 
N and M, respectively. Let X∈!s1s2NM×1  and y∈!NM×1 be the 
vector representations of a HR and its LR image version, 
respectively (Zhao, 2011), (Winter, 2002), (Tanaka, 2007). 
Then the sensed image can be expressed as

 y=DHx+ ε   (1)

where H∈!s1s2NM×s1s2NM  denotes the blurring matrix, 
D∈!NM×s1s2NM  is the downsampling matrix, and ε ∈!NM×1  
is the noise introduced by the sensing system. Examples 
of the structure of the matrices D and H are indicated 
in Figure 2. Since, NM≪ s1s2NM , Equation (1) leads to 
an undetermined system of linear equations, which has 
infinite number of solutions on x, i.e. an ill-posed problem. 
To make the image recovery process less ill-posed (Akgun, 
2005), (Dong, 2011), Equation (1), can be rewritten as the 
least squares formulation

 x̂= argmin
x

y−DHx
2

2

 (2)

Solution to Equation (2) is given by

 x̂=H TD T DHH TD T( )−1y  (3)

however, this method leads to a low quality spatial 
reconstruction image. To increase quality, several SR 
methods incorporate an effective prior (denoted as a 
regularization term) into the reconstruction process in 
order to improve the above solution. Accordingly, Equation 
(2) is reformulated as

 x̂= argmin
x

y−DHx
2

2
+µF x( )  (4)

 (a) (b)

Figure 1. Restoration of a LR image by SR methods.  (a) Depicts the 
input LR image Y ∈!M×N  with a super-resolution factor of s1, and s2. (b) 
Depicts the output HR image X∈!Ns1×Ms2 .

This paper focuses on the problem of recovering the super-
resolution version of a given low-resolution hyperspectral 
image. Specifically, this work develops a novel reconstruction 
approach by which the spatio-spectral information of low-
resolution (LR) HSI input is exploited. We named this novel 
super-resolution algorithm the C2SR algorithm. We suggest a 
fast algorithm to integrate the spatial and spectral information 
of an HSI to exploit the spatial resolution of the image. 
Moreover, C2SR can work on HSIs captured using current 
hyperspectral spectrometers. This becomes an advantage 
over other techniques like (Rueda-Chacón, 2014), (Arguello 
H. &., 2012), which require the re-design of spectrometers 
based on compressive sensing approaches. (a)
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(b)

Figure 2. Example of a downsampling matrix DH
∈!54×216 , and a blu-

rring matrix H 
H
∈!216×216  for a hyperspectral image X∈!3s1×3s2×6s3 , with 

a super-resolution factors of s1 = s2 = 2 , and s3 = 1. (a) Downsam-
pling matrix DH. (b)  The sensing matrix HH whose effect is equiva-
lent to a symmetric Gaussian lowpass filter of size 3 with standard 
deviation σ = 1. The dark and white pixels depicts values 0 and 1, 
respectively.

where F(x) is a regularization prior, and μ is a regularization 
parameter which represents the tradeoff between the 
reconstruction error and the regularization term. To evaluate 
the reconstruction performance of our method, we choose 
two traditional methods of SR. Non-local means (NLM), 
and steering kernel regression (SKR) are two important 
methods of super-resolution. These methods have received 
a substantial attention, being a family of methods based 
upon local smoothness assumption, i.e., the local structure 
is relatively stable (Takeda, 2007), (Protter, 2009).

Hyperspectral image super-Resolution

Hyperspectral imaging entails signals typically spanning 
hundreds of contiguous wavelength bands in a certain 
spectral range. Pixels in hyperspectral images are therefore 
represented as vectors whose entries correspond to the 
intensity in different spectral bands. Let XH ∈!

s1N×s2M×s3L  
be a high-resolution hyperspectral image (HR-HSI), and 
YH ∈!

N×M×L  its low-resolution (LR-HSI) version. Here, 
L represents the spectral resolution, and s3 ∈!  is the 
super-resolution factor in the dimension L. Also let 
xH ∈!

s1s2 s3NML×1  and yH ∈!
NML×1  be the HR-HSI and LR-HSI 

vector representation of XH , and YH respectively. The HSI 
acquisition process of yH from xH  can be modeled as

 y
H
=D

H
H
H
x
H
+ ε

H  (5)

where DH ∈!
NML×s1s2s3NML  is the downsampling matrix in 

the spatial and spectral domain, HH ∈!
s1s2s3NML×s1s2s3NML  is a 

matrix that describes the blurring in each spectral band (no 
blurring across the spectrum), and εH ∈!

NML×1  is the noise 
introduced by the sensing system. Examples of the matrices 
DH  and HH   are indicated in Figure 2. The signal xH can be 
estimated by solving

 x̂H= argmin
x
H

y
H
−D

H
H

H
x
H 2

2

 (6)

or approximated by using a gradient descent method such 
as

 xH
t+1= xH

t +τ DHHH( )T yH−DHHHxH( )  (7)

Equation (5) is extremely ill-posed, considering that 
the product (DH  HH)T yH generates HR-HSI. The missing 
spectral bands are therefore set up with zeros; this effect 
is commonly known as zero-padding (Figure 3). Thus, the 
recover signal xH

t+1  is a hyperspectral image with zero-
padding in its spectral field, and this is inconsistent with 
the requirements of high-resolution HSI. Figure 3 depicts 
an image with zero-padding in its spectral fields. 

Figure 3. Reconstruction of a LR hyperspectral image Y∈!3×3×3( )  by 
traditional methods using Equation (7).

The compact spatio-spectral  
super-resolution algorithm (C2SR)

This work revisits the HSI super-resolution problem, 
proposing the compact spatio-spectral super-resolution 
approach. This approach solves two main problems in 
current HSI super-resolution techniques: zero-padding, 
and waste of spectral information.  In summary, three 
major steps can describe the proposed algorithm. 
First, an initial approximation of the super-resolved 
spectral bands is obtained by scaling the LR-HSI using 
a three-dimensional inter polation filter represented by 
Ψ∈!s1s2s3NML×s1s2s3NML . This step avoids the zero padding 
effect by distributing information, con tained in the 
LR-HSI, among the super-resolved spectral bands. The 
second step consists on reducing the spatial resolution 
without changing the spectral dimension. This process 
is represented by the matrix Db ∈!

s3NML×s1s2s3NML . This is 
carried on to keep the dimension of the HR-HSI search 
space, hence reducing the computational complexity. 
Also, keeping the dimension avoids image noise 
amplification. To make the Equation (5) well posed, it is 
rewritten as

 DbΨyH=DbΨDHHHxH+DbΨεH  (8)
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Table 1. The compact spatio-spectral super-resolution 
algorithm (c2sr).

Objective: Estimate HR hyperspectral image x̂H .

Input:
• LR hyperspectral image yH .
• Interpolation factors 

s1, s2, and s3.
Initialization:
• Set t = 0

• Initial estimation high resolution HSI xH
0 , using cubic 

interpolation.

xH
0 =ΨyH  

Iteration: Perform the following T times steps

• Update the HR hyperspectral image xH
t , by using:

xH
t+1= xH

t +τ DbΨDHHH( )T DbΨyH−DbΨDHHHxH( )  
• Update t = t + 1

Result: Output of the final high-resolution HIS x̂H .

Therefore, the SR reconstruction consists on solving the 
inverse problem in the Equation (8) to estimate the HR-HSI 
image xH. The super-resolution reconstruction is reduced to 
solving the least squared problem

 x̂H= argmin
x
H

DbΨyH−DbΨDHHHxH 2

2

 (9)

To obtain a solution to Equation (9), it is reformulated in a 
concise form using the gradient descent method, i.e.,

xH
t+1= xH

t +τ DbΨDHHH( )T DbΨyH−DbΨDHHHxH( )  (10)

where t represents the iteration times, and τ stands for the 
step size for gradient descent.  A detailed description of the 
C2SR algorithm is shown in Table I, the C2SR algorithm 
finds the images X̂H  in its vector representation x̂H , which 
satisfies the constraints given in Equation (8). Further, 
the high-resolution image x̂H  can be found in function 

of its low-resolution version ŷH . From Equation (9), we 
can see that there are three key procedures to obtain a 
local optima solution x̂H : the first, is the calculation of a 
rescaled Low-resolution hyperspectral image of input using 

a three-dimensional interpolation Ψ. The second consists 
on reducing the spatial resolution using Db ; and the latter 
is the gradient descent-based minimization to update 
xH
t+1  . Computational burden could be further reduced by 

estimating (Db Ψ DHHH)T  Db Ψ yH at an interval rather than 
every time. This can significantly reduce the CPU time 
spent on the SR reconstruction. Moreover, computations 
can be more efficient if ΨDH≅1 is assumed.  In C2SR 
algorithm, the initial iteration HR x

H

0  is estimated by using 
a three-dimensional interpolation ΨDH≅1, and then the vectors 
DbΨDHHHxH

t  and DbΨyH  are calculated. The update of the 

HR-HSI x
H

t  and the calculation of DbΨDHHHxH
t  are then 

alternately performed until a predetermined maximum 
number of iterations are reached.

Table 2. Mean reconstruction PSNR in dB for the Legos and Ribeira 
images with four levels of Gaussian noise, and a super-resolution fac-
tor of s1 = s2 =s3 = 2.

SNR Image NLM SKR Proposed

10
Legos 28,46 29,43 30,53

Ribeira 33,29 32,94 33,75

15
Legos 28,81 30,02 31,87

Ribeira 34,94 33,17 37,59

20
Legos 29,23 30,08 32,22

Ribeira 35,14 36,73 40,01

50
Legos 29,6 30,25 32,27

Ribeira 35,16 36,77 41,87

Image acquisition

In this section, the performance of the proposed method 
is assessed in terms of the super-resolution factor, and 
the noise in the acquired data. For this purpose, the two 
traditional SR methods [NLM]-[SKR] are implemented 
and compared with the proposed C2SR algorithm. The SR 
methods were tested using the standard image databases 
used in (Arguello H. , 2012), (Rueda-Chacón, 2014) (Rueda, 
2013). The first HSI is a Lego image with 512 × 512 pixels 
of spatial resolution and L = 24 spectral bands. The second 

 (a) (b)

Figure 4. Spectral signatures at two selected spatial points (a) P1 and (b) P2. These graphics shows the comparisons of SR results in the spectral 
dimension between SKR, and proposed method.
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is the Ribeira city image with 1000 × 1000 pixels of spatial 
resolution and L = 32 spectral bands.  The Lego image was 
acquired using a wide-band Xenon lamp as the light source, 
and a visible monochromator which spans the spectral 
range between 450 nm and 650 nm. The image intensity 
was captured using a CCD camera AVT Marling F0033B, 
exhibiting 512 × 512 pixels, with pixel pitch of 9,9 μm, and 
24 bits of pixel depth. The resulting test hyperspectral image 
xH has 512 × 512 pixels of spatial resolution and L = 24 
spectral bands. The second, the Ribeira city image was 
acquired using a low-noise Peltier cooled digital camera 
providing an x − y spatial resolution of 1344 × 1024 pixels 
(Hamamatsu Photonics) with a fast tunable liquid-crystal 
filter mounted in front of the lens, together with an  infrared 
blocking filter. The peak-transmission wavelength was 
varied in 10 nm steps over 400 −720 nm and the bandwidth 
was 10 nm at 510 nm, decreasing to 7 nm at 400 nm to 

16 nm at 720 nm.  The resulting test hyperspectral image 
xH has 1000 × 1000 pixels of spatial resolution and L = 32 
spectral bands (Foster, 2004).

Table 3. Mean reconstruction PSNR in dB for the Legos and Ribeira 
images with three levels of Gaussian noise. (a) Represents the graphs 
of the Ribeira images reconstruction and (b) represents the graphs of 
the Legos images reconstruction.

SR factor Image NLM SKR Proposed

2
Legos 29,46 30,25 32,27

Ribeira 35,16 36,77 41,87

4
Legos 24,47 28,31 29,3

Ribeira 30,36 34,36 35,59

8
Legos 19,93 23,7 23,85

Ribeira 25,89 28,45 29,58

 (a) (b) (c) (d)

Figure 5. Results for Lego HSI database. (a) depicts the low resolution images with sizes 256 × 256 × 12, with a SNR factor of 50 (row 1), 15 
(row 2), and 10 (row 3). The LR image are reconstructed by (b) NLM, (c) SKR, and (d) proposed method. These images are reconstructed by a 
super-resolution factor of s1 = s2 = s3 =2.
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Experimental results

Simulations results were analyzed in terms of Peak-
Signal-to-Noise-Ratio (PSNR) in the spatial, and spectral 
reconstructed images (Wang, 2004). PSNR is defined as 

10 log10 max xH( )
2
/MSE( )  wherein MSE is the mean squared 

error, and max (xH) depicts the maximum intensity of the 
hyperspectral image.  In order to illustrate the spectral 
reconstruction performance, two spatial points were 
randomly chosen, and the spectral signatures plotted in 
Figure 4, these points are indicated as P1 and P2.  Again, it 
can be seen how the curves using the proposed method are 
closer to the original. It is important to remark the impact 
of the tridimensional filters in the reconstructed spectral 
signature curve for hyperspectral images.

The robustness of the reconstructions with respect to the 
effect of noise, and decimation of the measurements is 
studied in the Table 2-3, and illustrated in Figure 5 and 
Figure 6, respectively. Gaussian noise with zero mean was 
added to the measurements. The Signal to Noise Ratio (SNR) 

is calculated according to SNR=10 log10 µν−y( ) / σnoise( )  , 
where μv is the mean value of the LR-HSI y, and σnoiseis 
the standard deviation of the signal noise. The factors of 
decimation used were 2,4 and 8, in the spatial and spectral 
dimension. The results using the proposed method indicate 
improvements up to 4dB in the PSNR of the reconstructed 
hyperspectral image compared with the results using 
Lanczos interpolation. The NLM and SKR methods achieve 
better results than Lanczos interpolation; however, these 
methods also have inferior performance than the proposed 
method. Therefore, in terms of the values of PSNR, the 
proposed method achieves higher performance.

 (a) (b)  (c)  (d)

Figure 5. Results for Ribeira HSI database. (a) depicts the low resolution images without gaussian noise, and sizes of 500 × 500 × 12 (row 1), 
250 × 250 ×6 (row 2), and 125 × 125 ×3 (row 3). The LR images are reconstructed by (b) NLM, (c) SKR, and (d) proposed method. 
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Conclusions 

In this paper, we present a novel SR reconstruction method 
for a single hyperspectral image. The proposed method 
incorporates the spectral reconstruction, the local spectral 
similarity, and the local structural regularity into a unified 
iterative framework for SR task. The thorough experimental 
results show the effectiveness of the proposed method. The 
proposed SR framework can be naturally extended by the 
following considerations: the design of three-dimensional 
downsampling matrix and three-dimensional interpolation 
matrix. The discrete mat ematical model of the LR image 
formation and HR reconstruction process for hyperspectral 
images has been proposed. This mathematical model 
outperforms current approaches up to 2 dB in terms of 
PSNR.
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