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Fast calculation of the maximum power point  
of photovoltaic generators under partial shading

Cálculo rápido del punto de máxima potencia de generadores 
fotovoltaicos bajo condiciones de sombreado parcial 

Carlos Andrés Ramos-Paja1, Luz Adriana Trejos2, and Javier Herrera Murcia3 

ABSTRACT 

This paper presents a method to calculate the energy production of photovoltaic generators considering partial shading or mismatched 
conditions. The proposed method is based on the complete one-diode model including the bypass diode in its exponential form, 
where the current and voltage values of the modules composing the photovoltaic panel array are calculated without using the 
Lambert-W function. In addition, the method introduces a procedure to calculate the vicinity of the maximum power points, which 
enables the reduction of the operations required to obtain the global maximum. The proposed method provides short simulation times 
and high accuracy. On the other hand, since the method does not require complex mathematical functions, it can be implemented 
straightforwardly on known software packages and development languages such as C and C++. Those characteristics make this 
method a useful tool to evaluate the economic viability and return-of-investment time of photovoltaic installations. Simulation results 
and comparisons with a classical procedure confirm the good performance of the proposed method in terms of execution time and 
accuracy.
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RESUMEN

Este artículo presenta un método para calcular la producción energética en sistemas fotovoltaicos considerando sombreado parcial 
o condiciones no regulares. El método propuesto está basado en el modelo de un diodo completo incluyendo el diodo de bypass en 
su forma exponencial, donde la corriente y voltaje de los módulos son calculados sin utilizar la función Lambert-W. Adicionalmente, 
el método introduce un procedimiento para calcular la vecindad de los puntos máximos de potencia, lo cual permite una reducción 
en el número de operaciones requeridas para obtener el máximo global. El método propuesto proporciona tiempos de simulación 
cortos y alta precisión. Por otro lado, ya que el método no requiere funciones matemáticas complejas, puede ser implementado en 
conocidos paquetes computacionales y lenguajes de desarrollo como C y C++. Dichas características hacen de este método una 
herramienta útil para evaluar la viabilidad económica y el tiempo de retorno de inversión en instalaciones fotovoltaicas. Resultados 
de simulación y comparaciones con un procedimiento clásico confirman el buen desempeño del método propuesto en términos de 
tiempo de ejecución y precisión.

Palabras clave: Sistema PV, producción energética, cálculo rápido, condiciones no regulares, tiempo de simulación.
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Introduction

PV systems are commonly analyzed by means of software 
packages, but due to the complexity of the PV circuits, 
simulation times are excessively long, which is a significant 
drawback if large PV systems must be analyzed. In addition, 
some computational tools do not enable to simulate actual 
operational conditions such as the mismatching caused by 
shadows. Some reported methods (Patel & Agarwal, 2008) 
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that aimed to correct partially these drawbacks are based on 
commercial simulation environments that limit its use due 
to license issues. Others are based on obtaining systems 
of non-linear equations, but their solution require using 
complex functions such as the Lambert-W function, which 
still produces long processing times (Petrone, Spagnuolo, & 
Vitelli, 2007). Finally, other methods are based on simplifying 
the model of the PV modules and bypass diodes, which 
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reduces the simulation time but also reduces the accuracy. 
On the other hand, most of the reported energy production 
analysis methods consider the reconstruction of the Current 
vs. Voltage (I-V) and Power vs. Voltage (P-V) curves on all the 
voltage range, which introduces long simulation times due to 
the significant amount of points simulated. Figure 1 presents 
the typical structure of a commercial PV system rated under 
5 kW, in which several PV modules are connected in series 
(forming a string) in order to provide the voltage level 
required by commercial PV inverters. Such inverters include 
an implementation of a Maximum Power Point Tracking 
(MPPT), grid-connection functions and electrical protections. 
However, shades covering even a small part of the modules 
significantly change the Maximum Power Point (MPP) of the 
PV generator (Herrmann, Wiesner, & Vaanen, 1997). Hence, 
to accurately predict (i.e. simulate) the power production of 
such commercial systems it is required to account for partial 
shading conditions.

(partial shading of the string) or due to faults in some of 
the PV cells (Garcia, Hernandez & Jurado, 2012), which 
produce a different electrical characteristic in comparison 
with the non-damaged cells.

Concerning shading conditions, the main problem is the 
operation of the PV module as a load. Figures 2a and 2b, 
present the Voltage vs. Current (V-I) and Power vs. Current 
(P-I) curves of a ERDM-85 PV (ERDM Solar) module 
operating under two different solar irradiance conditions, 
943 W/m2 (Iph = 5 A) and 566 W/m2 (Iph =    3 A), where a 
polarity change in PV voltages will force the modules to 
consume power. Such a polarity change condition appears 
due to the ohmic components of the PV module when 
the module current is higher than its maximum current 
production. From the model in Figure 1 it can be observed 
that when is > iph, without the presence of the bypass diode 
Dby, the current in excess of is over iph will flow through Rh 
producing a polarity change in vd voltage. The operation of 
the PV module as a load reduces the life-time of the module 
(Silvestre & Chouder, 2007), or could even produce a hot-
spot condition destroying the module (Herrmann, Wiesner, 
& Vaanen, 1997). In order to avoid such a detrimental 
operation, a bypass diode is connected in anti-parallel 
configuration with the module as illustrated in Figure 1 
(Hernandez, Garcia & Jurado, 2012). The current in excess 
of is over iph flows through the bypass diode Dby and not by 
Rh. The diode activation imposes a small negative voltage to 
the module, forcing it to consume a small amount of power 
which is considered acceptable by commercial standards 
(Orozco-Gutierrez M. , Ramirez-Scarpetta, Spagnuolo, & 
Ramos-Paja, 2014). Such a condition is observed in Figures 
2c and 2d, which present the V-I and P-I curves of the string 
formed by two ERDM-85 PV modules. The simulation 
shows that, for string currents lower than 3 A, both modules 
produce power; while for string currents between 3 A and 
5 A only the highly irradiated module produces power. Such 
a condition puts in evidence the activation of the bypass 
diode associated to the less irradiated module for is > 3 A.

Figure 1. Structure of commercial single-string photovoltaic systems.

This paper presents a method to estimate the energy 
production of commercial PV systems under shading 
conditions based on a non-simplified system model 
avoiding the use of the Lambert-W function. The method 
introduces a procedure to approximate the location of the 
maximum power points, which reduces the number of 
evaluation points in order to obtain the global maximum 
power. By means of this approach, the method provides 
a significant reduction of the simulation time with high 
accuracy. The effectiveness of the proposed method is 
presented by means of simulations and comparisons with a 
classical procedure.

Mismatching phenomenon  
and classical model

The mismatching phenomenon occurs when several 
units of series-connected PV modules, i.e. PV strings, 
are subjected to different operation conditions. Such 
mismatched operation occurs due to different irradiation 

Figure 2. Electrical behavior of PV strings under mismatched condi-
tions.

 (a) (b)

 (c) (d)
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From the results shown in Figure 2, it is noted that the PV 
string operates with both modules, or with a single one, 
depending on the operation conditions. This behavior holds 
for any number of modules, producing a system with N 
possible conditions, where N represents the number of 
PV modules. Such a simulation also shows that each PV 
module has an optimal operation condition, i.e. the MPP, in 
which the module produces the maximum power. Hence, 
if both modules have the same parameters, and operation 
conditions the MPPs are the same, then the MPP voltage 
(vMPP) of the string is calculated by multiplying the MPP 
voltage of any module by N. Similarly, the MPP power 
(pMPP) of the string is the MPP power of any module 
multiplied by N (Femia, Petrone, Spagnuolo, & Vitelli, 
2012). However, under mismatched conditions the MPPs 
of the modules are different, as illustrated in Figure 2c and 
2d. Moreover, the differences between the modules MPPs 
produce multiple local MPP, known as LMPP, from which 
the one with highest power is the global MPP, known as 
GMPP. The maximum number of LMPPs is equal to N. 
Figure 2 illustrates such a multiple-maximum condition. In 
addition, since the modules produce different voltages for 
the same current, the MPP current (iMPP) of the string does 
not match the MPP current of the modules. Therefore, a 
non-trivial mathematical model is required to calculate the 
string maximum power. 

Mathematical model of a PV module

The single-diode model, presented in Figure 1, is widely 
adopted in literature to represent the photovoltaic module 
behavior (Petrone, Spagnuolo, & Vitelli, 2007). In such a 
model, the current source Iph represents the photo-induced 
current, the diode Dj represents the junction behavior, while 
Rh and Rs represent the parallel and series ohmic losses. The 
junction current id is given by (1), the parallel current ih and 
module current ipv are given by (2), the module voltage vpv 
is given by (3), the bypass diode current iby and the string 
current is are given by (4).

 id = isat ⋅ exp
vd
vtd
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 ih =
vd
Rh
∧ ipv = iph− id − ih  (2)

 vpv = vd − ipv ⋅Rs  (3)

 iby = isat,by ⋅ exp
vby
vtd ,by
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,vby =−vpv ∧ is = ipv + iby  (4)

In these expressions isat, vtd, Rh and Rs depend on the PV 
module construction. Similarly, the parameters of the bypass 
diode isat,by and vtd,by depend on the device construction and 
iph is proportional to the irradiance powering the module. 

The main problem of this model concerns the implicit 
relation of the PV current, which is evident from (1)-(4): 
ipv depends on vpv, which in turn depends on ipv. Hence, 
the PV current imposed by a PV voltage, or the PV voltage 
imposed by a PV current, can be calculated by solving 
the equations system (1)-(4) using a numerical method. 
Traditionally, the Lambert-W function has been used in 
order to obtain an explicit solution for such a system as 
given in (5) and (6) (Petrone, Spagnuolo, & Vitelli, 2007), 
where W is the Lambert-W function.

 ipv =
Rh ⋅ iph + isat( )− vpv
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The main drawback of such a solution is the high 
computational load required to compute the Lambert-W 
with high accuracy (Veberič, 2012). In fact, the most 
widely used implementations of the Lambert-W function 
are available in Matlab and in the GNU Scientific Library 
GSL (Galassi, et al., 2013). To provide high accuracy, 
Matlab processes the Lambert-W function using the 
Symbolic Math Toolbox, which requires long calculation 
times in comparison with classical numerical solutions 
based on series or explicit expressions. In contrast, the 
work presented by Veberič (2012) reports that GSL uses a 
recursive solver (similar to the Newton-Raphson method) to 
compute the Lambert-W function, which also requires long 
processing times in comparison with explicit solutions.

Classical procedure to calculate the string power

Taking into account that PV strings are a series-connection 
of PV modules, an additional diode is added in series to 
avoid the injection of negative currents into the string. Such 
a diode is named blocking diode, as illustrated in Figure 1. 
It is noted that the current of the blocking diode, given in 
(7), is the string current, but this diode exhibits a negative 
voltage (in relation with the modules voltage), hence it 
consumes power.

 ibk = isat,bk ⋅ exp
vbk
vtd ,bk
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Applying the Kirchhoff laws to the electrical scheme of the 
PV string in Figure 1 drives to the following relations: the 
modules and blocking diode currents (ipv and ibk) are equal 
to the string current (is), while the string voltage (Vs) is equal 
to the sum of the modules and blocking diode voltages 
(Vpv,i and Vbk). Such electrical relations form the non-linear 
system F(x) given in (8), where the PV current of each 
module is calculated using the non-linear expressions (5) 
and (6). In such a system x = [vpv,1,  vpv,2,  …  vpv,i,  …  vpv,N,  vpv,bk ].
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 F x( )=
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!
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There are several papers dealing with the solution of (8) 
(Petrone, Spagnuolo, & Vitelli, 2007; Orozco-Gutierrez, 
Ramirez-Scarpetta, Spagnuolo, & Ramos-Paja, 2013; 
Bastidas, Franco, Petrone, Ramos-Paja, & Spagnuolo, 
2013), with two main approaches: solving (8) using the 
exact system Jacobian (Petrone, Spagnuolo, & Vitelli, 
2007; Orozco-Gutierrez, Ramirez-Scarpetta, Spagnuolo, 
& Ramos-Paja, 2013), or simplifying the Jacobian (e.g. 
the bypass diode equation) to speed-up the calculation 
(Bastidas, Franco, Petrone, Ramos-Paja, & Spagnuolo, 
2013). In both cases a recursive solver is required, e.g. 
Newton-Raphson or Trust-region. Hence, the solution of 
(8) requires a large amount of Lambert-W calculations, 
which in turn require a large amount of time. The 
solution of (8) is based on the Jacobian J of F(x) given 
in (9), which requires the derivative of (5) and (6) with 
respect to the PV voltage, involving also the Lambert-W 
function. Finally, the recursive solver used to find the 
string current must invert J to approximate, successively, 
the system solution.
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 (9)

The size of J is (N + 1) × (N + 1), e.g. for 2 modules the 
Jacobian is a 3 × 3 matrix while for 7 modules the Jacobian 
is an 8 × 8 matrix. Therefore, the computational effort to 
solve the system, mainly by inverting J and multiplying and 
adding matrices, significantly increases with the number 
of modules. Moreover, the classical solutions (Petrone, 
Spagnuolo, & Vitelli, 2007; Orozco-Gutierrez, Ramirez-
Scarpetta, Spagnuolo, & Ramos-Paja, 2013; Bastidas, 
Franco, Petrone, Ramos-Paja, & Spagnuolo, 2013), calculate 
the whole power curve to detect the GMPP, which requires 
even longer calculation times.

Calculation of the polarization  
curve without solving non-linear systems  
or Lambert-W functions

In order to avoid the use of the Lambert-W function 
to calculate each module voltage and current, i.e. not 
using (5) and (6), this paper proposes to perform a 
sweep over vd to calculate ipv from (1) and (2), which are 
explicit equations, i.e. no Lambert-W needed. Then, the 
module voltage vpv is calculated from (3) and the string 
current is calculated from (4), again without involving 
the Lambert-W function. With this procedure all the 
modules are characterized in terms of the string current 
without any simplification to the model, using two 
ordered vectors: PV voltage and string current vectors. 
However, since the modules are in series, they operate 
at the same string current is. Therefore, the modules’ 
electrical characteristics must be interpolated in order 
to calculate the modules’ voltage at the same current is. 
Moreover, the voltage drop introduced by the blocking 
diode must be also taken into account: since the 
blocking diode current is explicit (7), the blocking diode 
voltage is calculated as vbk = vtd,bk × ln (1 + is/ isat,bk ). Finally, 
all the modules’ and blocking diode voltages are added 
to obtain the string voltage, which enables to calculate 
the string power. The previous procedure has two main 
parts: first, the characterization of the modules, which 
must be done one time for a given irradiance condition 
S independent of the string current to be tested; and 
second, the calculation of the string voltage, which 
depends on the string current. The flowchart in Figure 
3 summarizes the string voltage calculation procedure. 

Calculating the whole power curve to detect the GMPP, as 
in Petrone, Spagnuolo, & Vitelli (2007), Orozco-Gutierrez, 
Ramirez-Scarpetta, Spagnuolo, & Ramos-Paja (2013) and 
Bastidas, Franco, Petrone, Ramos-Paja, & Spagnuolo 
(2013), requires executing a single time the first part of 
the procedure, while the second part must be executed 
for each string current value. In both cases no Lambert-W 
functions and recursive solvers are used. Figure 4 presents 
the performance comparison between the proposed fast 
method and the classical method, in calculating the 
complete P-I curve for strings with different number of 
modules (2 to 20). The results presented in Figure 4a show 
that the fast method requires processing times between 
4 and 5 orders of magnitude shorter. For example, with 
2 PV modules the classical method requires 2,47 × 106 % 
more time than the proposed fast method, while with 
20 modules the classical method requires 2,03 × 107 % 
more time. In fact, for PV systems up to 20 modules, the 
proposed fast method never requires more than 1 ms to 
obtain the solution; instead, the classical method requires 
from 2,63 minutes (2 modules) up to 4,58 hours (20 
modules). In order to validate the method’s accuracy, 
three characteristics were evaluated: string voltages vs and 
power ps for each current value and the global maximum 
power pGMPP. Since the PV voltage and power are zero at 
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the short-circuit current, a suitable error formula must be 
used to avoid divisions by zero.

The Range Average Absolute Error (RAAE) is adopted 
(Saavedra-Montes, Ramirez-Scarpetta, Ramos-Paja, & Malik, 
2007), which normalizes the difference between the signals 
over the maximum variation range of the reference data to 
provide a fair comparison between the different operation 
conditions. The RAAE expression is given in (10), where h 
is the number of data, while  y*k and y are the under-tests 
and reference signal vectors. Figure 4b presents the errors 
between the fast and classical methods for vs, ps and pGMPP, 
where the differences between the results of both methods 
are under 0,0001 %, which is a negligible difference.

 RAAE %⎡⎣⎢
⎤
⎦⎥ =100 ⋅

1
h

yk
* − yk

k=1

h

∑
MAX y( )−MIN y( )

 (10)

Then, those results put in evidence the high accuracy 
and fast processing time provided by the fast solution. 
However, the calculation of the pMPP is based on performing 
a complete sweep to the string power curve, which requires 
calculating a large number of unnecessary points far from 
the GMPP. Avoiding such unnecessary calculations will 
enable to improve, even more, the performance of the 
proposed algorithm in terms of speed and required memory. 
Therefore, the following section proposes a method to 
estimate the neighborhood of the GMPP to reduce the 
number of P-I points to be calculated.

Estimation of the maximum  
power point vicinity

Since PV strings are formed by modules connected in series, 
the current in which the MPP of each module occurs is near 
to the string currents in which the LMPPs (and GMPP). This 
condition is due to the large change in the module power 
curve derivative present at the module MPP as reported 
in Orozco-Gutierrez, Ramirez-Scarpetta, Spagnuolo, 
& Ramos-Paja (2013): previous to the MPP the slope is 
positive and after the MPP the slope is negative having a 
higher amplitude. Therefore, the power slopes around the 
module MPP cause a change in the sign of the power slope 
of the string that produces a LMPP (or GMPP) as depicted in 
Figure 2: the MPP of each module in Figure 2b produces a 
MPP, at almost the same current, in the string power curve 
depicted in Figure 2d. Using that information, this section 
is devoted to estimate the vicinity of the string LMPPs 
(and GMPP) currents by estimating the modules’ MPP 
currents. Then, starting from those currents, a hill-climbing 
algorithm is used to reach the LMPP without evaluating the 
complete power curve, thus avoiding the evaluation of an 
unnecessary large number of points. The first approximation 
used to find the vicinity of the MPP current is to neglect 
the effect of the series resistance Rs and bypass diode, i.e. 
ppv ≈ pd = ipv ∙ vd as given in (11), which leads to an explicit 
relation. Then, at the maximum pd value the derivative 
of pd with respect to vd is zero as given in (12). Hence, 
Equation (12) must be solved for each panel to find the vd 

Figure 3. Fast procedure to calculate the string voltage.

Figure 4. Electrical behavior of PV strings under mismatched conditions.
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values near the MPP. However, Equation (12) is an implicit 
expression that cannot be solved explicitly even using the 
Lambert-W function. Therefore, some simplifications must 
be introduced into (12) to avoid the use of recursive solvers: 
first, since the MPP voltage of commercial PV modules is 
commonly larger than 16 V, and the thermal voltages vtd 
of commercial modules is around 1,1 V (Eicker, 2003), 
the relation vd >> vtd holds and vd /vtd + 1 ≈ vd /vtd. Moreover, 
based on the Fractional-open-circuit MPPT analysis (Esram 
& Chapman, 2007), it is expected that vd at the MPP be 
near to 78 % of the open circuit voltage of the PV module. 
Hence, the term vd /Rh ≈ (0,78 ∙ voc,STC) / Rh, where voc,STC 
represents the open circuit voltage in STC (Standard Test 
Conditions). With such approximations introduced in (12), 
the vd,MPP value near to the MPP is given in (13). Then, such 
vd,MPP values for each module are replaced into (1)-(4) in 
order to obtain the vicinity of the MPP currents IMPP,approx for 
the string.

 pd = vd ⋅ iph− isat ⋅ exp
vd
vtd
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Figure 5 presents the simulation of a PV string formed by 3 PV 
modules with the following parameters: isat = 1,5415 × 10-8A, 
vtd = 1,1088 V, Rs = 0,0045 W, Rh = 109,495 Ω, voc,STC = 21,78 
V, isat,by = 1 × 10-6A, vtd,by = 0,015 V, isat,bk = 1 × 10-6A and 
vtd,bk = 0,15 V. 

approximated MPP currents obtained with (13), which are 
very close to the exact MPP currents. With the previous 
results, the search of each LMPP can be started from the 
vd,MPP values, which strongly reduces the number of points of 
the power curve to be calculated in comparison with a full 
sweep of the curve as performed in traditional approaches. 

Calculation of the maximum power  
with a reduced number of P-I points

Taking into account that the vd,MPP values are near to the 
LMPP conditions, a simple hill-climbing algorithm is used 
to detect the LMPP power: increase (or decrease) the string 
current while the power increases. Figure 6 presents the 
flowchart of the proposed algorithm, which is divided in 
modular blocks to evaluate all the LMPP possible conditions. 
The first block, named initialization block, characterizes 
the PV modules in the same way as the algorithm presented 
in Figure 3, where a vd sweep to each module is performed. 
The initialization block also calculates the LMPP vicinity in 
terms of vd,MAX values as described in the previous section. 
Finally, the control variables N (number of modules), k (LMPP 
in evaluation) and pGMPP (maximum power) are initialized. 
After detecting the zones of the LMPPs, the algorithm 
evaluates each zone to calculate the corresponding LMPP 
with the LMPP block, where the string current is calculated 
in the same way previously proposed in the flowchart of 
Figure 3: the modules’ voltages are interpolated at the same 
string current value. This process starts at the approximated 
LMPP currents IMPP,approx, increasing the string current while 
the power increases. However, in the case that the first 
iteration produces a power reduction, it means the LMPP 
is at a lower current, hence the current is decreased while 
the power increases.

When the LMPP is detected it is contrasted with the other 
LMPPs to update the GMPP. This process is repeated until 
all the LMPPs are evaluated. To illustrate this procedure, 
a PV string formed with four modules is simulated, where 
the parameters are the same ones described in the previous 
section, but the irradiances of the modules are 940 W / m2, 
600 W / m2, 400 W / m2, and 200 W / m2. Figure 7 illustrates 
the number of P-I points calculated using the sweep and 
proposed (reduced) methods, where the reduced number 
of calculations can be appreciated. 

In fact, for the string made of four modules the sweep 
method calculates 950 P-I points, while the reduced 
method only calculates 58 points. Since the number of 
P-I points calculated by the reduced method depends on 
the approximation of IMPP,approx, multiple simulations were 
performed to provide an average relation between the 
number of points calculated by both methods to reach the 
same result: the reduced method calculates an average of 
6,39 % of the P-I points calculated by the sweep method. 
Therefore, the proposed GMPP calculation algorithm, 
i.e. Figure 6, improves significantly the performance in 
comparison with classical solutions based on implicit 

Figure 5. Approximation of vd values at the LMPPs.

For the sake of simplicity, the three modules have the same 
parameters, which does not introduce any distortion to the 
calculation results. To force the mismatching condition, the 
three modules are considered under different irradiance 
levels (i.e. partial shading): 500 W/m2, 400 W/m2 and 200 W/
m2, hence three LMPP exist. The simulation also shows the 
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expressions for ipv recursive solvers and sweeps for 
calculating the string power.

to process a 20 modules PV system, the proposed method 
requires less than 1 ms. On the other hand, the comparison 
between a classical procedure and the proposed method 
results in a RAAE lower than 0,0001 %, which is a 
negligible difference. Since the proposed method enables 
to obtain the GMPP in a fast and accurate way, large PV 
systems can be analyzed in terms of economic viability 
accounting for partial shading conditions, which was 
not possible with classical methods. Such analysis could 
include Monte Carlo simulations to quantify the impact 
of shading on the power production of the PV installation 
to select the best location for the PV array. In addition, 
this method can be used in the dynamic reconfiguration 
of the PV system to reduce the impact of partial shading 
in the power production. Finally, the simplicity of the 
method makes it suitable for implementation in software 
packages like Matlab and development languages such 
as C and C++.
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