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Probability of correct reconstruction 
in compressive spectral imaging

Probabilidad de reconstrucción exitosa en el sensado 
compreso de imágenes espectrales

Samuel E. Pinilla1, Héctor M. Vargas2, and H. Arguello3

ABSTRACT 

Coded Aperture Snapshot Spectral Imaging (CASSI) systems capture the 3-dimensional (3D) spatio-spectral information of 
a scene using a set of 2-dimensional (2D) random coded Focal Plane Array (FPA) measurements. A compressed sensing 
reconstruction algorithm is then used to recover the underlying spatio-spectral 3D data cube. The quality of the reconstructed 
spectral images depends exclusively on the CASSI sensing matrix, which is determined by the statistical structure of the 
coded apertures. The Restricted Isometry Property (RIP) of the CASSI sensing matrix is used to determine the probability of 
correct image reconstruction and provides guidelines for the minimum number of FPA measurement shots needed for image 
reconstruction. Further, the RIP can be used to determine the optimal structure of the coded projections in CASSI. This article 
describes the CASSI optical architecture and develops the RIP for the sensing matrix in this system. Simulations show the higher 
quality of spectral image reconstructions when the RIP property is satisfied. Simulations also illustrate the higher performance 
of the optimal structured projections in CASSI.

Keywords: Restricted Isometry Property, RIP, CASSI, compressive sensing, spectral imaging, coded aperture.

RESUMEN

El sistema de adquisición de imágenes espectrales de única captura basado en apertura codificada (CASSI), capta información 
tridimensional (3D) espacio-espectral de una escena, usando un conjunto de medidas bidimensionales (2D) proyectadas en 
un FPA (Focal Plane Array). Para recuperar el cubo de datos a partir de las proyecciones en el FPA, se usa un algoritmo de 
reconstrucción basado en la teoría de muestreo compresivo. En CASSI la calidad de la reconstrucción de imágenes espectrales 
depende exclusivamente de la matriz de sensado, que es determinada por la estructura estadística del código de apertura. La 
propiedad restringida isométrica (RIP) de la matriz de sensado CASSI es usada para determinar la probabilidad de una correcta 
reconstrucción de la imagen. Este artículo describe la arquitectura óptima CASSI y desarrolla la RIP para las matrices de muestreo, 
para la captura de la información del cubo de datos. En efecto, la RIP provee la guía para determinar el mínimo número de 
capturas FPA necesarias para la reconstrucción de una imagen. Más adelante, la RIP es usada para encontrar la estructura óptima 
de las proyecciones de los códigos de apertura de CASSI. Las simulaciones muestran alta calidad de la reconstrucción obtenida 
de las imágenes espectrales cuando se satisface la condición impuesta por la RIP. También muestran el más alto rendimiento 
obtenido de las estructuras óptimas de las proyecciones CASSI.

Palabras clave: Propiedad Isométrica Restrictiva, RIP, CASSI, muestreo compresivo, imágenes hiperespectrales, códigos de apertura.
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Introduction

Imaging spectroscopy requires sensing a large amount of 
spatial information across a multitude of wavelengths. The 
sensed signals are titled multispectral or hyperspectral images. 
Traditional imaging spectroscopy sensing techniques scan 
adjacent zones of the underlying spectral scene and merge 
the results to construct a spectral 3-Dimensional (3D) data 
cube. Push broom spectral imaging sensors, for instance, 
capture a spectral data cube with one FPA measurement per 
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spatial line of the scene (Gehm et al., 2008). Spectrometers 
based on optical band-pass filters spectrally scan the 
source data cube (Gupta, 2008). These sensing techniques 
obey the well-known Nyquist criterion, which imposes 
a severe limit on the number of samples needed. More 
specifically, these methods require scanning a number 
of zones linearly in proportion to the desired spatial or 
spectral resolution. As the desired resolution increases, the 
required number of samples grows considerably, such that 
the cost of sensing a hyperspectral image is extremely high. 
Recently, with a mathematical technique for reconstructing 
sparse signals, called Compressive Sensing (CS), one can 
use fewer samples much lesser then predicted by the 
Nyquist criterion. This new technique involves diverse 
mathematical areas such as numerical optimization, 
signal processing, random matrix analysis, and statistics. 
The enormous potential of CS has been recently applied 
in areas such as microscopy, holography, tomography 
and spectroscopy  (Arce et al., 2014; Brady et al., 2009; 

Studer et al., 2012; Wagadarikar et al., 2008; Yu and Wang, 
2009). CS allows sensing a signal with a fewer number of 
samples than that required by the Nyquist criterion. Thus, 
CS has allowed overcoming a diverse number of physical 
sensing limits. This paper focuses on the application of CS 
in spectral imaging which is coined Compressive Spectral 
Imaging (CSI). CSI senses 2D coded random projections 
of the underlying scene, such that the number of required 
projections is far less than the linear scanning case. The 
Coded Aperture Snapshot Spectral Imaging (CASSI) system 
is an imaging architecture that effectively implements CSI. 
Thus, CASSI senses the 3D spectral information of a scene 
using 2D random projections. Figure 1 illustrates the CASSI 
optical architecture. The main components in CASSI are the 
coded aperture, the prism and the Focal Plane Array (FPA). 
The coded aperture patterns are the only varying elements 
in CASSI, the other optical elements remain fixed during 
the operation of the instrument.

Figure 1. CASSI architecture components (Kittle et al., 2010).

Figure 2 shows the main components of the CASSI 
architecture. In CASSI, the coding is applied to the image 
source density ƒ0(x, y, λ,) by the coded aperture T(x, y), 
where (x, y) are the spatial coordinates. The resulting coded 
density ƒ1(x, y, λ,) = T(x, y) ƒ0(x, y, λ,) is spectrally dispersed by 
a dispersive element before it impinges in the focal plane 
array (FPA), resulting in the coded field

 f
2
(x, y,λ) = T (x ', y ') f

0
(x ', y ',λ)h(x '− S(λ)− x, y '− y) dx 'dy ',∫∫  (1)

where T(x, y) is the transmission function representing 

the coded aperture, h ′x − S λ( )− x, ′y − y( )  is the optical 

impulse response of the system, and S(λ) is the dispersion 
induced by the prism. A linear dispersion by the prism is 
assumed. The compressive measurements across the FPA 
are obtained by the integration of the field ƒ2(x, y, λ ) over the 
detector spectral range. The discretized FPA measurements 
can be thus modeled as 

 Yjℓ = Fj(ℓ+k )(k )Tj(ℓ+k ) +ω jℓ
k=0

L−1−aℓ

∑ ,  (2)

where L is the number of spectral bands sensed, 
aℓ = floor ℓ / N − L( )( ) ℓ − N + L+1( ), Yjℓ  is the intensi-
ty measured at the ( j,ℓ)  position of the FPA with 
1≤ j,ℓ ≤ N ,F ∈"N×N×L , is the discretized data cube, 

T ∈ 0,1}{ N×N
 is the discretized coded aperture with two-

dimensional structure, and ω jℓ  is the noise system.

The single-shot CASSI system has been extended to a 
multi-shot system architecture such that multi-frame coded 
measurements are acquired as separate FPA measurements, 
each with a distinct coded-aperture pattern (Kittle et al., 
2010).
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Figure 2. Optical elements present in CASSI.

Equation (2) can be written in matrix form as y = Hf + ω, 
where y is the measurements vector, H is the matrix that 
represents the coded apertures and prism effect and f is 
the vectorized spectral data cube. Given the compressive 
measurements y, the objective of CS is to recover the 
signal f. Compressive Sensing (CS) dictates that an n-long 
signal f can be recovered from m≪ n  random projections 
y = H Ψ θ. Moreover, if it defines the m × n matrix A = HΨ 
as the sensing matrix, then the spectral data cube f = Ψθ is 
sparse in the base Ψ. The RIP in CASSI is thus fundamental 
to determine both the minimum number of shots needed for 
correct reconstruction and for the design and optimization 
of the coded aperture patterns (Wagadarikar, 2010). CS 
structured random matrices have been extensively analyzed 
for Toeplitz, random partial Fourier, and partial circulant 
matrices (Fornaiser, 2010). Recently a generalization of 
structurally random matrices has been developed (Do et al., 
2012). The RIP in CASSI was first considered in Wagadarikar 
(2010), where it is assumed that the RIP in CASSI is satisfied. 
The work in Wagadarikar (2010) then derives conditions on 
the coded apertures so that the RIP is better satisfied. These 
results, however, do not develop the explicit parameters for 
the bounds needed in the RIP, such as the probability of 
error, or the minimum number of FPA measurements. In 
this paper the RIP in CASSI is derived, the structure of the 
CASSI sensing matrix is formulated, and the RIP constants 
are expressed as a function of the structure of the random 
coded aperture patterns. A minimum number of random 
projections are needed so as to satisfy the RIP of the sensing 
matrix A (Candes and Tao, 2005). This paper establishes the 
theoretical probability of correct recovering in CSI. The 
results of this work can be used in the optimization of coded 
aperture patterns and to estimate a bound for the minimum 
number of shots needed for correct reconstruction.

CASSI Sensing Matrix

The goal in this section is to present the discrete model of the 
optical process in CASSI system in matrix form. Moreover, 
using this model allows carrying out the RIP analysis on the 
CASSI sensing matrix. The discretized output at the detector 
corresponding to the ith coded aperture T i j,ℓ( )∈ −1{ ,1}1  
is given by

 Yjℓ
i = Fj(ℓ+k )(k )Tj(ℓ+k )

i +ω jℓ
k=0

L−1−aℓ

∑ ,  (3)

for i = 1,!,K , where Yjℓ
i is the intensity at the ( j,ℓ)  

position at the detector, whose dimensions are N × N + L − 1, 
F represents an N × N × L spectral data cube and ω jℓ is the 
white noise of the sensing system. In this work, the entries 
of the coded aperture are limited to T i j,ℓ( )∈ −1{ ,1} . The 
varying terms in Equation (3), indexed by i are: first, the 
discrete coded apertures T i or its vector representation 
t i whose entries are realizations of a Bernoulli random 
variable with parameter p = P tℓ

i ={ 1} = 1− P tℓi ={ 1}  and 
second, the number of shots K. (See Appendix A).

The i th FPA measurement Yjℓ
i  can be written in matrix 

notation as

 y i = Hif +ω,  (4)

where yi ∈!
v  is a V-long vector representation of the 

measurement Y i ∈!N× N+L−1( )  in Equation (3), where 

V = N ( N + L − 1),Hi ∈ −1,0,1}{  represents the coded 

aperture and the dispersive element where n = N2 L, 

f= f0
T f1
T!fL−1

T⎡⎣ ⎤⎦  is the vector representation of the data 

cube F, and ω is the noise of the system. More specifically, 

the entries of fk can be expressed as

 ( fk )ℓ = F(ℓ−rN )rk ,  for ℓ = 0,...,N 2 −1,  k = 0,...,L−1,   (5)

where r = floor ℓ / N( ) . The vectorization of the code 
aperture T i is defined as

 t i( )
ℓ
= T(ℓ−rN )r

i ,  for ℓ = 0,...,N 2 −1,  k = 0,...,L−1,  (6)

where r = floor ℓ / N( ) . Similarly, the vectorization of the 
output Y i is defined as

 ( yi )ℓ = Y(ℓ−rN )r
i ,  for ℓ = 0,...,V−1,  k = 0,...,L−1,  (7)

where r = floor ℓ / N( ) . Using the above matrix 
representation, the output y i can be expressed as

 y i =

diag(t i )

0
N (L−1)N 2

0
N (1)N 2

diag(t i )

0
N (L−2)N 2

!
!
"

!

0
N (L−1)N 2

diag(t i )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Hi! "######################## $########################

f0
f1
f2
!
fL−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (8)

where diag (t i) is an N2 × N2 diagonal matrix whose entries 
are the elements of the vectorized coded aperture t i, 
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0
N 1( )×N 2  and 0

N L−1( )×N 2  are N (1) × N2 and N (L−1) × N2 zero-
valued matrices, respectively.

The matrix Hi can be expressed as (Arguello and Arce, 
2012)

 Hi = (ΘV
N ) j diag(t i ) 0R

⎡
⎣⎢

⎤
⎦⎥j=0

L−1∑
T

I Θn
−N( )2 j ,  (9)

where 0R is a N2 × N(L − 1) zero-valued matrix, the structure 
of the V × V permutation matrix Θv is

                 ΘV =

0 0 ! 0 1
1 0 0 0
" " # " "
0 0 0 0
0 0 ! 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (10)

The n × n matrix Θn has the same structure of Θv in Equation 

(10) and I  is I = I 0⎡⎣ ⎤⎦  where I is an N2 × N2 identity 

matrix, ΘV
N =ΘvΘv…Θv

, ΘV
−N = ΘV

−1ΘV
−1…ΘV

−N  are N − times 

the usual matricial product, and 0 is a N2 × N2(L − 1) zero 

valued matrix.

Figure 4. Structure of the matrix A for K = 2, N = 8 and L = 4 and Ψ 
is based on the 2D Symmlet Wavelet Transform.

Given the measurements y, the signal f is estimated by 
solving

 f = Ψ argmin
θ

y −HΨθ
2

2
+τ θ

1

⎛
⎝⎜

⎞
⎠⎟

 (12)

where τ is the regularization constant. Several algorithms 
have been developed to solve this l2 − l1 optimization. In 
this paper the Gradient Projection for Sparse Reconstruction 
(GPSR) algorithm is used (Figueiredo et al., 2007).

Table 1. Variables summary.

Variable Size Description

L 1  Number of spectral bands

N 1  Spatial dimension of the data cube

K 1  Number of CASSI shots

f n = N2 L  Vectorized form of the N × N × L  spectral data cube F

Ti N × N ith two dimensional coded aperture

t i N2  Vectorized form of T i

yi V =N (N +L −1) ith vectorized CASSI output

Hi V × n  CASSI matrix representation for the ith shot

H KV × n  CASSI matrix for the K shots

A  =  HΨ KV × n  CASSI Sensing matrix

As KV × S  Matrix with S columns of A chosen at random A

The RIP in CASSI

The sth restricted isometry property (RIP) δ s = δ s A( )  of the 
matrix A∈!KV ×n  is defined as the smallest δ such that

 
(1−δ ) θ

2

2
≤ Aθ

2

2
≤ (1+δ ) θ

2

2
,
 (13)

for all s-sparse vectors ϴ. Notice that equivalently Equation 
(13) is given by 

Figure 3. Structure of the matrix H for K = 2, N = 6 and L = 3. The 
diagonals in the H matrix are the vectorized coded apertures.

The ensemble of CASSI outputs y = y0
T ,…,yk−1

T⎡⎣ ⎤⎦
T

 can be 
rewritten as

 y = Aθ = (HΨ)θ +ω,  (11)

where the CASSI sensing matrix is A = HΨ, the matrix 

H = H0
T ,…,Hk−1

T⎡⎣ ⎤⎦
T
, and θ is a sparse representation of f 

in the base Ψ. Notice that A∈!m×n  where m = KV, and 

m ≤ n  . Figure 3 and Figure 4 depict an example of the 

matrices H and A respectively for small values of N, L, 

and K. In practice, the dimensions of these matrices are 

much larger (Arguello and Arce, 2011). Figure 4 uses 

Ψ = diag Ψ2D , … ,Ψ2D( )  where Ψ2D is the 2D Symmlet 

Wavelet Transform.
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 ASθ 2

2
− θ

2

2
≤ δ θ

2

2
,  (14)

for all S ⊂ 1,…,n}{ , S = card S( ) ≤ s  and all θ ∈! S  and  

As is a m × S matrix whose columns are equal to S columns 

of the matrix A. We then observe that, for θ ∈! S

 
ASθ 2

2
− θ

2

2
= ASθ,ASθ − θ,θ

= (AS
HAS − Id )θ,θ ,

 (15)

where AS
H  is the conjugate transpose of As and Id ∈!

S×S  

is the identity matrix. Since the matrix AS
TAS − Id  is 

Hermitian, we have from the Equation (15)

 max
θ∈!S \{0}

(AS
HAS − Id )θ,θ

θ
2

2 = AS
HAS − Id 2→2

≤ δ .  (16)

Thus, from the definition of the RIP in Equation (13) and 
Equation (16) we have that the constant δs is given by

 δ s = max
S⊂[n], S ≤s

AS
TAS − Id 2

2
.  (17)

Defining the matrix ATT = AS
TAS , Equation (17) can be 

rewritten as

 δ s = max
S⊂[n], S ≤s

λmax (ATT − Id ),  (18)

where λmax ⋅( )  denotes the largest eigenvalue (Fornaiser, 
2010). A small value of δS in Equation (18) for a large value 
of S indicates that the RIP condition is satisfied. The RIP 
condition implies a stable recovery of the signal ϴ from the 
projections Aϴ using a l1 optimization algorithm (Fornaiser, 
2010). Let the entries of Ψ be Ψj,k, then using the structure 
of the matrices Hi in Equation (9), the entries of AS can be 
written as 

 (ΑS ) jk = (t i ) j−rNΨ j+r (N '),Ωk
r=0

L−1

∑  (19)

for j = 0,…,m−1 , k = 0,…,S −1 , where i = f  loor j /V( ) , 

′N = N 2 − N , and Ωk ∈ 0,…,n−1}{ . Using Equation (19), 
the entries of ATT are denoted as (ATT   )jk which are expressed 
as 

 ΑTT ) jk = (t i )ℓ−rN (t
i )ℓ−uNΨ ℓ+rN ',Ωj

Ψ ℓ+uN ',Ωj
u=0

L−1

∑
r=0

L−1

∑
ℓ=0

V −1

∑
i=0

K−1

∑  (20)

for j=0, ..., S−1 and j ≠ k. When j=k then (ATT   )jk = K. 
Without loss of generality, we analyze the case when 
Ψ = diag (Ψ 2D, ... , Ψ 2D) and Ψ 2D is the 2D Symmlet Wavelet 
Transform. Given that Ψ is a block diagonal matrix, the 
sums over u and r in Equation (20) have only one nonzero 
element, then Equation (20) can be expressed as 

 (ΑTT ) jk = (bi )ℓ (Ψ 2D )rℓ ,Ω j
(Ψ 2D )uℓ ,Ωk

'

ℓ=0

V −1

∑
i=0

K−1

∑  (21)

where rℓ ,  uℓ ∈ 0,…,N 2 −1}{ , and bi( )
ℓ
= t i( )

rℓ
t i( )

uℓ
 are 

realizations of a Bernoulli random variable with parameter 

p* = p2 + 1− p( )2 . Notice that x( )ℓ = bi( )
ℓi=o

k−1∑  is a Binomial 

random variable. More specifically, x( )ℓ ∼ B K , p
*( ) . 

Notice also that y( )ℓ = Ψ 2D( )rℓ ,Ω j
Ψ 2D( )uℓ ,Ωk

 with Ωj and Ωk 

varying randomly, it can be considered a random variable 

with E y( )ℓ( ) = 0 . Then, Equation (21) can be rewritten as

 (ΑTT ) jk = (x)ℓ (y)ℓ  
ℓ=0

V −1

∑ j ≠ k,  (22)

and (ATT   )jk =  K for j = k. Because (ATT   )jk for j ≠ k is the sum of 

i.i.d zero mean random variables, and applying the central 

limit theorem when V →∞ , then ATT( ) jk → N 0,σ 2( )  

where σ 2 =V  Var  x( )ℓ y( )ℓ( ) . A demonstration of the 

applicability of the central limit theorem in Equation (22) 

can be found in Do et al. (2012). Figure 5 depicts the 

matrix ATT for k = 2, N = 8, and S = 180. It can be seen in 

this figure that the matrix ATT is dense and its entries can 

be seen as a Gaussian random variable. Given that x and 

y in Equation (22) are independent random variables then 

Vxy =Var x( )ℓ y( )ℓ( )  can be estimated as 

 Vxy = (E((x)ℓ ))
2Var((x)ℓ )Var((y)ℓ ).  (23)

Since x( )ℓ  is a Binomial random variable, then 

Var x( )ℓ( ) = 4Kp* 1− p*( )  and E x( )ℓ( )( ) = K 2p* −1( )
. Given the specific structure of Ψ2D, the variance 

Var y( )ℓ( ) = 1/ N 4 . The variance Vxy in Equation (23) can 

be rewritten as 

 Vxy =
K 2(2p* −1)2

N 4 + 4Kp
*(1− p*)
N 4 .  (24)

Given that the entries of the matrices ATT are Gaussian, then it 
is possible to apply the concentration inequalities developed 
by Ledoux to calculate the distribution of λmax in Equation (17) 
(Candes and Tao, 2005; Ledoux, 2001). More specifically, for 
each fixed t > 0 the concentration inequality is given by 

 P σ max (ATT − Id ) >
SVxy
K 2 + o(1)+ t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
≤ e

−K 2

2Vxy
t2

,  (25)

where σmax indicates the maximum singular value and o (1) 
is a small term tending to zero as K→∞  which can be 

estimated as o 1( ) = Vxy
1/3

2K 2/3

SVxy
K 2

⎛

⎝⎜
⎞

⎠⎟

1/6

1+
SVxy
K 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2/3

. Using 

Equation (25) and following a similar approach as that of 
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Candes in (Candes and Tao, 2005), the RIP in CASSI can 
be written as

 P σ max (ATT − Id ) >
SVxy
K 2 + o(1)+ t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
≤ Pe ,  (26)

where Pe = e
−K

2

Vxy
t2 /2

e−nH r( ) , r = S / n  and 

H r( ) = −r log r( )− 1− r( )log 1− r( ) . Using Equation (26), 

the constant δs is found as δ s =
SVxy
K 2 + o 1( )+ t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

.

3: Create sensing matrix as A = (H Ψ) / K

4: For i = 1 to maxlter do

5: Generate S ∼U 1,n( ),  S ≤ s

6: C i( ) = λmax AS
TAs − Id( )

7: If  C i( ) <1 then

8: count = count +  1

9: end if

10: end for

11: δs = max (c)

12: Pr = count/maxlter

Estimate numerically for δs with p and K

To estimate numerically the restricted isometry constant 
δs of order S from matrix A, Monte Carlo simulations are 

computed by sampling the sub-matrices AS
TAs − Id( )  from 

Equation (17). 

An important parameter of the CASSI system is the 
transmittance of the coded apertures. Algorithm 1 was 
developed in order to determine the relationship between 
the transmittance of the coded apertures and the RIP 
constant δs. The objective of this section is to determine the 
transmittance that provides the best value of the constant δs.

The steps 1-3 in Algorithm 1 are used to construct the CASSI 
sensing matrix with parameters p and K. The coded apertures 

T i for i∈ 0,…,K −1}{  are N × N symmetric matrices 

whose entries 1,−1}{  follow a Bernoulli distribution with 

probability p. The CASSI Sensing matrix A is formed by 
multiplying the CASSI matrix H with the sparsity basis Ψ. 
Subsequently, an iterative method is implemented to find 
the maximum eigenvalue of the possible sub-matrices 

AS
TAs − Id( ) .

Figure 5. The matrix depicts the matrix ATT for K = 2, N = 8, and 
S = 180. The off-diagonal entries of ATT can be seen as Gaussian en-
tries.

Simulations

In order to verify the RIP in CASSI in Equation (26), an 
algorithm is proposed based on Monte Carlo Uniform 
Sampling. Also, two spectral data cubes are used to simulate 
the CASSI real system reconstructions. All experiments have 
been carried out in Matlab 2010b on a 3GHz Intel Core i7 
and 32GB memory desktop computer.

Algorithm 1. CASSI transmittance analysis.

Input:
p,K 

maxlter 
Ψ ∈!n×n

(Transmittance and number of shots)
(Number of trials) 

(3D Orthonormal basis)

Output:
Probability of reconstruction Pr 

RIP Constant δs

1: Ti ∈ 1,−1}{ , with ∼ B 1, p( )  and i∈ 0,…,K −1}{

2:
Create CASSI matrix Hi from Equation (9) and concatenate as

H = H0
T ,…,Hk−1

T⎡⎣ ⎤⎦
T Figure 6. Constant δs vs the code aperture transmittance (parameter 

p), for various number of FPA measurement shots K, and S/n = 0,005.
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The number of iterations in Algorithm 1 is defined as 
maxlter = n!/ (n − s) !s!. Since the number of all possible 
combinations of the sub-matrices is very large, the constant 
RIP δs can be determined using Monte Carlo simulations. 
Therefore the index subspace S is sampled by using a uniform 
distribution (step 5) with size S ≤ s . The eigenvalues in 
all experiments are stored in the vector C. Finally, the 
probability of correct reconstruction is calculated from 
probability distribution of C by determining the number of 
eigenvalues smaller than 1. In this work, the parameters 
used in Algorithm 1 were N = 16, L = 8 , maxlter = 1 000 000 
and Ψ = Ψ2D ⊗ IL , where Ψ2D ∈!

N 2×N 2  is the 2D-Wavelet 

Symmlet 8 basis and I ∈!L×L  is the identity matrix.

pixels of spatial resolution and L  = 33 spectral bands 
ranging from 400 nm to 720 nm. The third database is a 
color scene with 256 * 256 pixels of spatial resolution and 
L  = 31 spectral bands ranging from 400 nm to 700 nm at 
10 nm steps. In In Figure 10a, an example is shown where 
the spectral band selected is 500 nm. For all the databases, 
the reconstruction is compared for different sparsity values 
using Bernoulli distributed coded apertures in CASSI with 
transmittance 50 %. 

The reconstruction is realized using the GPSR algorithm 
(Figueiredo et al., 2007). The base representation 
Ψ = diag Ψ2D ,…,Ψ2D( )  where Ψ2D is the 2D-Wavelet 
Symmlet 8 basis. The data cube F was approximate for 
different values of the sparsity S/n by removing the n − S 
less significant coefficients in magnitude from the sparse 
representation θ. The performance of matrices is analyzed 
under different sparsity levels. Figure 8d, Figure 9d and 
Figure10d indicate the performance (PSNR) analysis as a 
function of the sparsity and number of shots.

Figure 7. Probability of correct reconstruction 1 − Pe vs the number 
of shots K and the sparsity S with transmittance p = 0,5.

Figure 6 shows the variation of δs for different number of 
shots K, p, transmittances and S/n = 0,005. The constant δs 
is minimum for P t( )ℓ = 1} = p = 0,5{ , or equivalently when 
the transmittance of the code apertures is 50 %. Notice that 
a value of δs = 1 indicates that reconstruction is not possible.

Similar performance is obtained for other values of S/n. The 
probability of reconstruction 1 − Pe (see Equation (26)) is 
also compared to the results provided by a set of Monte-
Carlo simulations. The results are shown in Figure 7, where 
a high probability depends on small sparsity and a higher 
number of shots.

Experiments with real data

In this section, the performance of CASSI sensing matrix 
is evaluated in the reconstruction of three spectral images 
(Foster et al., 2006). An example of the first database of 
533 nm is shown in Figure 8a. This is a natural scene with 
256 × 256 pixels of spatial resolution and L  = 33 spectral 
bands ranging from 400 nm to 720 nm. An example of the 
second spectral database at 533 nm is shown in Figure 9a. 
The second spectral image is a city scene with 256 × 256 

Figure 8. (a) The slice of the spectral band 533nm. The respective re-
construction is illustrated for S/n = 0,065 for (b) 4 shots and (c) 9 
shots. (d) PSNR as a function of the number of shots and sparsity.

The results of 100 reconstructions experiments given K 
and S/n are condensed in Figure 8d and Figure 9d (with 
S/n = 0,065 in the first image and S/n = 0,125 in the second 
and third images), where the PSNR of the reconstruction 
images verifies that the performance (PSNR) increases as 
the sparsity and the number of shots K  increases.
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Figure 9. (a) The slice of the spectral band 533 nm. The respective reconstruction is 
illustrated for S/n = 0,125 for (b) 12 shots and (c) 16 shots. (d) PSNR as a function of 
the number of shots and sparsity.

Figure 10. (a) The slice of the spectral band 500nm. The respective reconstruction is 
illustrated for S/n = 0,125 for (b) 12 shots and (c) 8 shots. (d) PSNR as a function of the 
number of shots and sparsity.
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Minimum number of shots for reconstruction

While the Nyquist Shannon sampling theorem states that 
a certain minimum number of samples is required for 
sampling the spectral data cube, compressive sensing can 
reduce the number of measurements that need to be stored 
by the prior knowledge that spectral signal is sparse in a 
known basis and that sensing matrix satisfied the RIP. Figure 
8d, Figure 9d and Figure 10d indicate the respective RIP 
constant δs for correct reconstruction. The results indicate 
clearly that there are a minimum number of shots for 
correct reconstruction as a function of the sparsity for a 
noiseless case. The reconstruction of the band depicted in 
Figure 8a is shown in Figure 8b and Figure 8c for 4 and 9 
shots respectively. Figure 8b illustrates the effect of using a 
number of shots less than that established by the RIP where 
the PSNR was 25 dBs with sparsity S/n = 0,065. For Figure 
8c the PSNR was 31 dBs with sparsity S/n = 0,065. Notice 
that the number of shots used in Figure 8c is higher than the 
minimum recommended in Figure 8d. The number of shots 
used in Figure 8d is similar than the minimum recommended 
in Figure10d. The artifacts in the reconstructed image in 
Figure 8b, Figure 9b and Figure10c, with low PSNR, are 
clearly noticeable. On the contrary, Figures 8c, 9c and 10b 
show high quality in the reconstructed image. For Figure 
10b and 10c the reconstruction performance are 28 and 
24 dBs respectively, for the given number of shots 12 and 8. 

Conclusions

The structured CASSI sensing matrix has been formulated 
and its RIP has been demonstrated. Simulations verified the 
theoretical RIP CASSI bounds. For optimal reconstruction, 
the coded aperture patterns must be designed with p = 0,5 
or equivalent with a transmittance of fifty percent. Given a 
sparsity condition for signal representation, the minimum 
number of shots for reconstruction is determined by the 
variance of the representation basis and the variance of the 
random structure of the code apertures. An algorithm based 
on Monte Carlo simulations was developed to determine 
the optimal transmittance of the coded apertures. The 
experiments indicate the influence of the sparsity level and 
the number of shots in the performance of the system.
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Appendix A

Let Γ be a coded aperture such that Fjℓ( ) = 1  for all j,ℓ  . 

Suppose that yΓ  is the FPA measurement when the aperture 
Γ is used, ′H  be the CASSI matrix associated to the coded 

Γ and thus yΓ = ′H f . Let yl = ′H f  be the CASSI output 

when the coded aperture T i j,ℓ( )∈ 0,1}{  is used. Define 

the FPA measurement yi as

 

yi = 2yl − yΓ
   = 2Hif − ′H f
   = 2Hi − ′H( )f = Hif

 (27)

where it can be noticed that Hi ∈ −1,0,1}{ . Thus, the 

binary coded apertures can be implemented by subtracting 
the reference signal yΓ  from boolean output 2yl . Notice 
that this type of coded aperture cannot be implemented 
directly. That means that the implementation of these coded 
apertures requires one additional FPA CASSI measurement 

and the noise in the emulated measurements yi is 5 times 
higher than the noise in the original measurements 2yl .


