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para Obtener Puntos Extremos no Negativos y no Repetidos
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ABSTRACT
Multi-Objective and Many-objective Optimization problems have been extensively solved through evolutionary algorithms over a few
decades. Despite the fact that NSGA-II and NSGA-III are frequently employed as a reference for a comparative evaluation of new evolutionary
algorithms, the latter is proprietary. In this paper, we used the basic framework of the NSGA-II, which is very similar to the NSGA-III, with
significant changes in its selection operator. We took the first front generated at the non-dominating sort procedure to obtain non-negative
and non-repeated extreme points. This open-source version of the NSGA-III is called EF1-NSGA-III, and its implementation does not start
from scratch; that would be reinventing the wheel. Instead, we took the NSGA-II code from the authors in the repository of the Kanpur
Genetic Algorithms Laboratory to extend the EF1-NSGA-III. We then adjusted its selection operator from diversity, based on the crowding
distance, to the one found on reference points and preserved its parameters. After that, we continued with the adaptive EF1-NSGA-III
(A-EF1-NSGA-III), and the efficient adaptive EF1-NSGA-III (A2-EF1-NSGA-III), while also contributing to explain how to generate different
types of reference points. The proposed algorithms resolve optimization problems with constraints of up to 10 objective functions. We
tested them on a wide range of benchmark problems, and they showed notable improvements in terms of convergence and diversity by
using the Inverted Generational Distance (IGD) and the HyperVolume (HV) performance metrics. The EF1-NSGA-III aims to resolve the
power consumption for Centralized Radio Access Networks and the Bi-Objective Minimum Diameter-Cost Spanning Tree problems.

Keywords: evolutionary algorithm, many-objective optimization problem

RESUMEN
Los problemas de optimización de varios objetivos se han resuelto ampliamente usando algoritmos evolutivos durante algunas décadas.
A pesar de que los algoritmos NSGA-II y NSGA-III se emplean con frecuencia como referencia para evaluar nuevos algoritmos evolutivos,
este último es propietario. En este artículo, utilizamos el marco NSGA-II, similar al NSGA-III, con cambios en su operador de selección.
Tomamos el primer frente generado por ordenamiento no dominante para obtener puntos extremos no negativos y no repetidos. Esta
versión del NSGA-III se llama EF1-NSGA-III, y su implementación no comienza desde cero; eso serıa reinventar la rueda. En lugar de
eso, tomamos el código NSGA-II de los autores en el repositorio del Laboratorio de Algoritmos Genéticos Kanpur para extender el
EF1-NSGA-III. Luego ajustamos su operador de selección de la diversidad en función de la distancia de hacinamiento al que se encuentra
usando los puntos de referencia y preservamos sus parámetros. Después continuamos con el EF1-NSGA-III adaptativo (A-EF1-NSGA-III),
y el eficiente adaptativo EF1-NSGA-III (A2-EF1-NSGA-III) contribuyendo en la explicación de cómo generar diferentes tipos de puntos de
referencia. Los algoritmos propuestos resuelven problemas de optimización con restricciones de hasta 10 funciones objetivos. Los
probamos en una amplia gama de problemas de referencia, y mostraron mejoras notables en términos de convergencia y diversidad
utilizando las métricas de rendimiento de Distancia Generacional Invertida (IGD) e Hipervolumen (HV). El EF1-NSGA-III tiene como
objetivo resolver el consumo de energía para las redes de acceso de radio centralizado y los problemas del árbol de expansión de
diámetro mínimo bi-objetivo.
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Introduction
Genetic algorithms (GAs) are random-based evolutionary
methods. They are preferred over classical optimization
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due to their versatility in solving complex problems and
finding multiple solutions without a priori information
(Deb, 1999). They are inspired by fundamental genetic
laws such as natural selection, first introduced by Fraser
(1957), and further popularized by Holland (1975). When we
study GAs, we contemplate an initial population of pseudo-
random solutions that pass through genetic functions such
as selection, crossover, and mutation to recombine and
perturb solutions. Then, we evaluate these solutions with a
fitness function in the hope of creating the fittest ones that
will survive and evolve to the next generation. Finally, this
process ends when we use a predefined termination criterion.

GAs then evolved to Multi-Objective and Many-objective
Evolutionary Algorithms (MOEAs and MaOEAs) to optimize
Multi-Objective or Many-Objective Optimization Problems
(MOOPs and MaOPs) for fields such as engineering, business,
mathematics, and physics (Li, Wang, Zhang, and Ishibuchi,
2018). They search for multiple solutions simultaneously
on different non-convex and discontinuous regions next to
the approximated Pareto front. Initially, research focused
on solving MOOPs, but recently, there is an increasing
interest in solving MaOPS. However, for MaOPs, we
have a significant number of non-dominated solutions that
exponentially increase with the number of objective functions.
This is due to the selection operator and the dominant
resistance caused by the dimensionality curse (Purshouse
and Fleming, 2007).

The practical motivation of this paper is the implementation
of an open-source version of the proprietary NSGA-III (Deb
and Jain, 2014; Jain and Deb, 2014) called the EF1-NSGA-III
(Ariza, 2019) that alleviates the above-mentioned issue of
dimensionality. This algorithm solves problems with more
than two objective functions, checks the feasibility of the
population to fill the non-dominated sort procedure, and then
uses the first front to generate non-negative and non-repeated
extreme points during the normalization procedure. It has
already been employed to reduce the power consumption
for Cloud Radio Access Networks (Ariza, 2020), and resolve
the Bi-Objective Minimum Diameter-Cost Spanning Tree
problem (Prakash, Patvardhan, and Srivastav, 2020). The
authors who solved the latter used the EF1-NSGA-III as a
basis to generate a new algorithm called the Permutation-code
NSGA-III (P-NSGA-III).

The EF1-NSGA-III uses a non-parametric method for diversity
and executes faster when we take the renowned and efficient
NSGA-II code, with prominent features such as simplicity, and
an elitist approach. This algorithm, found at the repository of
the Kanpur Genetic Algorithms Laboratory (KanGAL, 2011),
is the core of the EF1-NSGA-III, but with significant changes
to the selection operator. Our strategy for this paper is
borrowed from professor Kalyanmoy Deb and researchers at
Michigan State University. It helped them create and unify
the NSGA-III to solve any mono-objective, multi-objective,
and many-objective problem (Seada and Deb, 2015).

After we finished the extension of the EF1-NSGA-III, we
continued with the adaptive EF1-NSGA-III (A-EF1-NSGA-III),
and the efficient adaptive EF1-NSGA-III (A2-EF1-NSGA-III),

which use different schemes of adaptive reference points to
increase their associated number of population members and
accomplish a better distribution of solutions. The last two
new algorithms are inspired by the A-NSGA-III and A2-NSGA-
III. These algorithms have already been implemented by
referenced authors (Jain and Deb, 2013). Also, we contribute
to explain how to generate reference points using the Das
and Dennis (1998), two-layer, and adaptive methods.

The above contributions are the smoothest way we found to
create a robust algorithm, rather than starting from scratch,
as did Yarpiz (Matlab) (2018), jMetal (Java) (2018), nsga3cpp
(C++) (Chiang, 2014), nsga3 (Python) (Marti, 2016), and
PlatEMO (Matlab) (Tian, Cheng, Zhang, and Jin, 2017).
Recently, a Multi-objective Optimization framework in python
called pymoo was created, and its NSGA-III implementation
is available (Blank and Deb, 2020). This implementation is
employed to compare the NSGA-III and the EF1-NSGA-III in
terms of some performance metrics.

In the remainder of this paper, we present a revision of
related works. Then, we describe our extensions of the non-
dominated sorting genetic algorithms EF1-NSGA-III, A-EF1-
NSGA-III, and A2-NSGA-III. After that, we present a detailed
performance evaluation using statistical analysis. Finally, we
draw conclusions.

Related work
Many real-life problems are MaOPs, and a whole army of
evolutionary algorithms (Seada, Abouhawwash, and Deb,
2017, 2018) is waiting to be utilized to solve them. For
example, some representative algorithms are the MOEA/D
(Zhang and Li, 2007), the knee point-based algorithm (KnEA)
(Zhang, Tian, and Jin, 2015), the HypE (Bader and Zitzler,
2011), and the NSGA-III. They are based on decomposition,
convergence enhancements, indicators, and reference points,
respectively. Any evolutionary algorithm mentioned before or
even another extension of them has the chance to be improved
considering different stages such as the generation of the
parents and offspring populations, as well as the use of novel
genetic functions that recombine and perturb solutions, the
information feedback of individuals from previous iterations
(Wang and Tan, 2019), or the evaluation of population
members (the fitness allocation method) that allow solutions
passing to the next generation.

Some of the already implemented learning methods to
improve evolutionary algorithms are also inspired by nature,
but, in this case, they mimic a herd or colony’s behavior. We
can mention some swarm intelligence methods as examples,
such as chaotic krill herds (Wang, G., Guo, Gandomi,
Hao, and Wang, H., 2014), elephant herds (Li,, Wang, and
Alavi,, 2020), bee colonies (Wang and Ji, 2017), monarch
butterflies (Wang et al., 2019), and moth colonies (Wang,
2016). These methods simulate the clustering behavior of
chaotic krills, elephants, and also other insect behaviors
such as migration and phototaxis. These algorithms imitate
how groups of animals cooperate and learn by themselves
or use information from other members to do a specific
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task such as finding food. Some NP-hard problems that
benefited from those improvements are scheduling, image,
feature selection, detection, path planning, cyber-physical
social system, texture discrimination, saliency detection,
classification, object extraction, economic load dispatch,
global numerical optimization, multi-objective optimization,
knapsack problem, and fault diagnosis problems.

As can be seen, there are many options to improve
evolutionary algorithms including the NSGA-III algorithm.
Some new extensions of the NSGA-III algorithm have been
developed since 2013. These are the A-NSGA-III and A2-
NSGA-III, which allocate adaptive reference points to improve
the distribution of solutions (Jain and Deb, 2013). Another
example is the U-NSGA-III, which uses the NSGA-III as the
basis for implementing a unified algorithm to solve problems
with up to 15 objective functions (Seada and Deb, 2015). The
θ-NSGA-III trades off the diversity and the convergence of
problems with more than four objective functions focused
on the improvement of the non-dominated sort procedure
(Yuan, Xu, and Wang, 2014).

Other works are the EliteNSGA-III, which increases the
accuracy and diversity of the NSGA-III by maintaining an
elite population archive to preserve previously generated elite
solutions that would probably be eliminated by the original
NSGA-III (Ibrahim et al., 2016). The E-NSGA-III utilizes
extreme solutions in the population generation module to
improve the overall quality of solutions (Wangsom, Bouvry,
and Lavangnananda, 2018). The IFM-NSGAIII solves large-
scale problems, instead of the small-scale problems, as
the NSGA-III does, and introduces information feedback
to influence the offspring population (Gu and Wang, 2020).
The P-NSGA-III that modifies the elitist framework of the
NSGA-III uses preferred vectors to improve local search (Shu,
Wang, W., and Wang, R., 2018). Also, the Permutation-coded
NSGA-III encodes chromosomes as permutations of graph
vertices (Prakash et al., 2020).

Two more developments are the set of NSGA-III SBXAM,
NSGA-III SIAM, and NSGA-III UCAM algorithms, which use
an adaptive mutation operator and evaluate simulated binary
crossover (SBX), uniform crossover (UC), and single-point
crossover (SI) operators in large-scale and online problems (Yi,
Deb, Dong, Alavi, and Wang, 2018; Yi et al., 2020). Finally,
there is the B-NSGA-III, which converts continuous NSGA-III
into binary NSGA-III modifying the initialization, crossover, and
mutation operators for band selection in cloud contaminated
hyper-spectral images (Gupta and Nanda, 2019).

The EF1-NSGA-III, A-EF1-NSGA-III, and A2-EF1-
NSGA-III algorithms
The basic framework of the proposed EF1-NSGA-III is similar
to the KanGAL NSGA-II and inherits its parameters (Jain and
Deb, 2013, 2014; Deb and Jain, 2014; Blank and Deb, 2020).
It resolves MOOPs or MaOPs with conflicting objectives
and inequality constraints focused on finding non-dominated
solutions. Mathematically, the definition of the optimization
problem is:

Minimize fi(x) i = 1, 2, . . . ,M (1)

Subject to g j(x) ≥ 0 j = 1, 2, . . . , J (2)

hk(x) = 0 k = 1, 2, . . . ,K (3)

x(L)
l ≤ xl ≤ x(H)

l , l = 1, 2, . . . ,n (4)

Algorithm 1 EF1-NSGA-III procedure
Input: H structured reference points Zs, initial random parent

population Pt, | Pt |= the population size N
Output : Pt + 1

1: if (The remainder when N is divided by 4) then
2: Start algorithm
3: else
4: Abort algorithm

end if
5: for 1 to a number of generations defined by the user do
6: St = ∅, i = 1
7: Qt = Tournament selection+Mutation+crossover (Pt)
8: Rt = Pt ∪Qt
9: (F1,F2, . . .) = Non-dominated-sort(Rt)

10: repeat
11: St = St ∪ Fi and i = i + 1
12: until | St |≥ N
13: Last front to be included: Fl = Fi
14: if (| St |= N) then
15: Pt+1 = St, continue
16: else
17: Pt+1 = ∪l−1

j=1F j

18: Points to be chosen from Fl : K = N− | Pt+1 |

19: Normalize objectives and create reference set Zr : Normalize
( f n, St,F1,Zr,Zs)

20: Associate each member s of St with a reference point:
[π(s, d(s)] = Associate (St,Zr): closest reference point, d: distance
between s and π(s)

21: Compute niche counts of reference point j ∈ Zr: ρ jSt/Fl
=∑

s∈St/Fl ((π(s) = j)?1 : 0), and ρ jFl
=

∑
s∈Fl ((π(s) = j)?1 : 0)

22: Choose K members one at a time from Fl to construct Pt+1:
Niching (K, ρ jSt/Fl

, ρ jFl
, π, d,Zr,Fl,Pt+1)

end if
end for

where x is a vector with p decision variables, M is the
number of conflicting objectives, J is the number of inequality
constraints, K is the number of equality constraints, and l is
the number of bounds from low (L) to high (H).

We propose the EF1-NSGA-III, where individuals in the first
front (F1) are contemplated to obtain non-negative and non-
repeated extreme points and guide the evolution of the
algorithm. Algorithm 1 resumes the procedure.

The EF1-NSGA-III first checks if the remainder of N is divided
by four to make systematic application pair-wise selection
and pair-wise recombination operations (Seada and Deb,
2015). Then, it runs a finite number of generations defined
in a loop by the user. In the beginning, the population Pt is
generated randomly, and its size is N (afterwards, the parent
population comes from the last generation). Its offspring
Qt is generated using tournament selection, mutation, and
crossover operations, and its size is N. The combined parent
and offspring population Rt = Pt + Qt has a size of 2N.
Population Rt is sorted according to different non-dominated
sorting levels or fronts (F1,F2, . . . ,Fl), where Fl is the last
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front. All members of each front are selected one at a time
to build Population St. If front members reach the size
of the population Pt, there is nothing more to do for that
generation and St = Pt+1. If St population plus the last front
exceeds the size of Pt, then the last front Fl is accepted
partially, and l + 1 onward fronts are rejected. The last
front Fl selects members for population St that maximize
its diversity through the niching operator. This operator
requires the determination of reference points on a hyper-
plane and adaptive normalization of population members,
association operator until reaching the niching preservation
operation. Finally, the next generation parent population
Pt+1 is St, plus members from the niching operator, improve
better the diversity until reaching the size N. There is no
difference between the EF1-NSGA-III and the NSGA-III relay
on normalization, niching procedures, and selection.

In the following section, we explain our implementations to
generate reference points using simple algebraic principles.
They are the well-known Das and Dennis, two-layer, k-layer,
adaptive, and efficient adaptive methods (1998).

Reference Point Generators
Das and Dennis approach

We used the Das and Dennis method (1998) for EF1-NSGA-III,
A-EF1-NSGA-III, and A2-EF1-NSGA-III algorithms to generate
well-distributed reference points and ensure diversity in
obtained solutions. This method is the basis to generate
different types of reference points such as two-layer, k-layer,
adaptive, and efficient adaptive.

The predefined Das and Dennis approach places reference
points on a normalized hyper-plane equally to all axis and has
an intercept of one on each axis. If p divisions are considered
along the M axis, the total number of reference points H is
determined by

H =

(
M + p − 1

p

)
(5)

This reference point generator is used for problems with up to
five objective functions. An example can be seen in Figure 1a,
for M = 3 and p = 12. High-dimensional problems with more
objective functions require a different approach because the
number of reference points increases exponentially with the
number of objective functions.

Two-layer of Reference Points

This alternative reduces the number of reference points for
high-dimensional problems compared to the Das and Dennis
method. This approach is divided into the following steps:

1. Generate reference points of the boundary layer: Use
the Das and Dennis approach. The boundary layer
must satisfy the plane equation x1 + x2 + · · ·+ xnobj = 1,
where nobj = M.

2. Generate reference points of the inside layer: Use
the Das and Dennis approach again, but reference

points of the inside layer should be on the plane
x1 + x2 + · · · + xnobj = 1 − 1

ndiv−1 . The number of
divisions of the inside layer is ndiv− 1, where ndiv = p.

3. Move reference points from the inside layer to the
boundary layer: Reference points of the inside layer
are moved to the boundary layer by adding the value
d = 1

(ndiv−1)∗nobj in all dimensions. Figure 1b, right side,
depicts the distribution of reference points.

K-layer of Reference Points

It follows the two-layer reference points procedure, but with
more than one inside layer. Additional information can be
revised in Jiang and Yang (2017). Figure 1b, on the left side,
shows the reference point distribution.

Adaptive Reference Points

First of all, this method requires the identification of useful
or crowded reference points in cases where the niche count
ρ jSt/Fl

> 1( j ∈ {0, 1, . . . ,H−1}); and second, the generation of
adaptive reference points around jth. Before a new adaptive
reference point is accepted, it must be non-repeated and lie
on the positive orthant. After the adding task, the niche value
of all reference points is updated, and adaptive reference
points with niche count ρ jSt/Fl

= 0 are deleted. In the next
generations, adaptive reference points are added and deleted
as long as useful reference points exist. The procedure for
each crowded reference point is described below:

1. Generate initial adaptive reference points for one
division: Initial adaptive reference points x1 =
( 1

ndiv , 0, . . . , 0), x2 = (0, 1
ndiv , . . . , 0) and xnobj =

(0, 0, . . . , 1
ndiv ) are generated using the Das and Dennis

approach to satisfy the plane equation x1 + x2 + · · · +
xnobj = 1

ndiv .

2. Move adaptive reference points to the plane x1 + x2 +
· · · + xnobj = 0: it is necessary to project the point
p = (0, 0, . . . , 0) onto the plane x1+x2+· · ·+xnobj = 1

ndiv .
Any reference point of the plane can be chosen, for
example, r=( 1

ndiv , 0, . . . , 0). With this vector in mind,
vector h = p − r = (0, 0, . . . , 0) − ( 1

ndiv , 0, . . . , 0) =

(− 1
ndiv , 0, . . . , 0) is obtained. Immediately, the unit

normal vector is ~u = 1
2
√

nobj
(1, 1, . . . , 1). The vector to

add initial adaptive reference points is:

~d =| h.u | ∗~u =
1

ndiv ∗ nobj
∗ (1, 1, . . . , 1) (6)

3. Move adaptive reference points to the crowded
reference point jth: In this step, after niching values
ρ jSt/Fl

are updated, we identify crowded reference
points with niche values ρ jSt/Fl

> 1. After that, we
add to the adaptive reference point near the crowded
reference point. In the end, for a three-dimensional
case, the last three reference points create the inner
triangle around each crowded reference point, as
shown in Figure 1c on the left side.
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4. Repeat previous tasks for all crowded reference points.

Efficient Adaptive Reference Points

This method has the following steps:

1. Generate efficient adaptive reference points for one
division: Initial efficient adaptive reference points
x1 = ( 1

λ∗ndiv , 0, . . . , 0), x2 = (0, 1
λ∗ndiv , . . . , 0), and

xnobj = (0, 0, . . . , 1
λ∗ndiv ) are generated using the Das

and Dennis approach (λ is a positive number called
the scaling factor; its value is 1 for this work). They
satisfy the plane equation x1 + x2 + · · · + xnobj = 1

λ∗ndiv

2. Move efficient adaptive reference points to the plane
x1 + x2 + · · · + xnobj = 0: Initial efficient adaptive
reference points are moved a distance d = 1

λ∗ndiv∗nobj in
all dimensions.

3. Subtract efficient adaptive reference points: One of
the previous efficient adaptive reference points is
subtracted. In a three-dimensional case, this task
is executed three-fold to obtain nine points (three of
them are the same vector (0,0,0)).

4. Move efficient adaptive reference points to the crowded
reference point jth: The final structure of reference
points is moved next to the crowded reference point
at a distance d = 1

λ∗ndiv∗nobj in all axes. Considering
a three-dimensional example, the efficient adaptive
reference points create three triangles connected to
the crowded reference point as depicted in Figure 1c
on the right side.

5. Repeat for all crowded reference points.

In next subsections, we show the procedures for the EF1-
NSGA-III, except the associate one that is the same as the
one from the NSGA-III authors.

Normalization of Population Members
We normalized the objective values of population members
to have the same range of the reference points as presented in
Algorithm 2. The normalization procedure has the following
steps:

First, we construct the ideal vector z̄ =
{
zmin

1 , zmin
2 ,

zmin
j , . . . , zmin

M

}
of the population St which is determined by

identifying the minimum value from each objective function.
Second, we translate each objective f j(x) by subtracting
zmin

j , denoted as f ′j (x) = f j(x) − zmin
j . Third, we determine

M extreme points to constitute a M-dimensional hyper-
plane that makes the Achievement Scalarization Function
(ASF) minimum (Blank, Deb, and Roy, 2019), expressed
as z j,max = f ′n(x) | minn∈F1 {ASF j

} where j ∈ {1, 2, . . . ,M},
and n is the population size of the first front F1. The
ASF j function finds the maximum translated objective value
divided by the scalarization value in all dimensions, denoted
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(a) Das and Dennis reference points distribution for M = 3 and
p = 12.
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(b) Left side, k-layer of reference points. Right side, two-layer of reference
points.
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(c) Left side, adaptive reference points. Right side, efficient adaptive
reference points.
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(d) Left-side, adaptive reference points. Right-side, efficient reference points.

Figure 1. Reference points approaches for NSGA-III, A-NSGA-III, and
A2-NSGA-III.
Source: Authors

as ASF j = maxmin M{ f ′m(x)/s j
m}. For example, in a three-

objective problem, we have the scalarization vector s1 =
(1,ε,ε) for j = 1, s2 = (ε, 1, ε) for j = 2, s3 = (ε, ε, 1) for j = 3,
where ε is a small value such as 0,0000000001.

Fourth, we find the matrix zmax−1 =
[
[z1,max]; [z2,max];

[z3,max]; [· · · ]; [zM,max]
]−1

.

Finally, the objectives f n
j (x) =

f ′j (x)

a j
are normalized

using a j =
∑M

i=1 as the intercept (elements of zmax−1 j
column). Eventually, repeated or negative intercepts can
appear. Therefore, we use the zmax−1 =

[
[zmax

1 ]; [zmax
2 ];

[zmax
3 ]; [· · · ]; [zmax

M ]
]−1

vector composed of the maximum
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value of each function to generate, intercept, and then
normalize the functions (the last generation positive intercept
can be utilized as well). Recently, authors have revealed how
to handle degenerate cases and negative intercepts (Blank
et al., 2019) to avoid the algorithm getting stuck, but that
solution remains as future research.

Algorithm 2 Normalize ( f n, St,F1) procedure
Input: St, F1
Output : f n, Zr (Das and Dennis reference points)

1: for j = 1 to M do
2: Compute ideal point: Zmin

j =minS∈St f j(s)

3: Translate objectives: f ′j (s) = f j(s) − zmin
j ∀s ∈ St

4: Compute extreme points: (z j,max, j = 1, . . . ,M) of F1
end for

5: Compute intercepts a j for j = 1, . . . ,M

6: Normalize objectives f n: f n
j (x) =

f ′i (x)
ai

Niche-preservation Operation
The niching procedure is presented in Algorithm 3. It identifies
the reference point set JminSt/Fl

= j : argmin j∈ZrρSt/Fl having
minimum ρSt/Fl (Deb and Jain, 2014). If there are multiple
associated reference points, one member of the set called
j̄ ∈ JminSt/Fl

is chosen at random (the EF1-NSGA-III takes
the first associated reference point, but any of them at
random is valid).

For each generation, we neglect the reference point j which
has population members associated with neither St/Fl nor
Fl. Also, j is excluded if ρ jFl

= 0 and ρ jSt/Fl
> 0. The above

conditions guarantee that the niching function runs K times
to fill all Pt+1 vacancies.

Algorithm 3 Niching (K, ρ jSt/Fl
, ρ jFl

, π, d,Zr,Fl) procedure
Input: K, ρ jSt/Fl

, ρ jFl
, π(s ∈ ST), d(s ∈ ST),Zr,Fl,Pt+1

Output : Pt+1

1: k = 1
2: while k ≤ K do
3: Jminρ jSt/Fl

= { j : argmin j∈Zrρ jSt/Fl
}

4: j̄=Select the first member of (Jminρ jSt/Fl

)

5: I j̄ = {s : π = j̄, s ∈ Fl}

6: if I j̄ , 0 then
7: if ρ jSt/Fl

= 0&&ρ jFl
= 0 then

8: Pt+1 = Pt+1 ∪ (s : argmins∈I j̄
d(s))

9: else
10: Pt+1 = Pt+1∪ first member of (I j̄)

end if
11: ρ j̄ = ρ j̄ + 1,Fl = Fl\s
12: k = k + 1
13: else
14: Zr = Zr

\{ j̄}
end if

end while

After excluding some useless reference points, no matter
how many St/Fl members are associated with the reference
point j̄, the one Fl member having the shortest perpendicular
distance from the reference line j̄ is added to Pt+1. Finally,
the niche count ρ j̄St/Fl

for reference point j̄ is incremented

by one and ρ j̄Fl
is subtracted by one. Remember that, after

niching,
∑
|H|
j=1 ρ jSt/Fl = N.

The next subsection explains the A-EF1-NSGA-III, and A2-EF1-
NSGA-III algorithms and their procedures to add and delete
adaptive reference points.

Adaptive EF1-NSGA-III and Efficient Adaptive EF1-
NSGA-III
Several MOOPs and MaOPs that are solved using the NSGA-
III might have some reference points that will never be
associated with the population. We address this fact through
adaptive and efficient adaptive reference points that enhance
the distribution of solutions.

We extended the A-EF1-NSGA-III and the A2-EF1-NSGA-
III - more details about their algorithms in Jain and Deb
(2013). The last one has a higher adaptive reference point
density, modulated by the scaling factor λ. It goes close to
the Pareto-optimal front in smaller regions, allows adding
reference points in the hyperplane corner, improves the
deletion routine, and reduces the premature introduction of
reference points in undesirable regions. The two adaptive EF1-
NSGA-III algorithms define reference points with niche counts
ρ j̄St/Fl

> 0 as useful, and reference points with ρ j̄St/Fl
= 0 as

useless. The following procedures are added after the niche
count of all reference points are updated:

Add adaptive or efficient adaptive reference points

This task generates new reference points based on the
adaptive and efficient adaptive reference points studied before,
which are plotted in Figure 1d at the end of the IDTLZ1
optimization process (the left-side corresponds to adaptive
reference points and the right-side to efficient adaptive
reference points). One of the NSGA-III termination criteria is
to have all reference points associated with each population
member (ρ j̄St/Fl

= 1), thus indicating a well-distributed Pareto
front. Notwithstanding, sometimes that is impossible because
the amount of reference points is higher than the population
size, and some of them have niche counts ρ j̄St/Fl

= 0. They
are relocated next to crowded reference points, and their
capacity to capture a well-widespread Pareto front depends
on the scaling factor λ and the settled down condition.

Delete adaptive or efficient adaptive reference points

This task deletes existing reference points. It is required
to associate the added reference points to the population
and update the niche value ρ j̄St/Fl

(do not forget that
∑
|H|
j=1

ρ j̄St/Fl
= N for Pt+1). The deletion function is computationally

more expensive than the adding one. In this case, before
deleting useless reference points, we need to repeat the
association and niching procedures and steady-state new
reference points insertion routines.

The subsections below depict the constraint handling and the
complexity discussion of EF1-NSGA-III algorithms.
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Constraint Handling
We extended the constraint domination principle adopted
in the NSGA-II algorithm for EF1-NSGA-III, A-EF1-NSGA-
III, and A2-EF1-NSGA-III. It is handled automatically by
the initialization process, where all population members
satisfy the bounds. Also, the creation of offspring solutions
must be within lower and upper bounds. The evaluation
of each individual considers inequality constraints, which
are configured in the problem definition function at the
beginning of the simulation. When the non-dominated
sorting procedure starts, all individuals within the combined
population Rt = Pt ∪ Qt are categorized as feasible and
infeasible. x(1) is constraint-dominate x(2) if one of the
following conditions is true. First, if x(1) is feasible and
x(2) is infeasible. Second, if x(1) and x(2) are infeasible and x(1)

has the smaller constraint violation. Third, if x(1) and x(2) are
feasible and x(1) dominates x(2) with the usual domination
principle.

There are four cases for the non-domination sort function
in the tournament procedure to select individuals for the
crossover function:

• First, all solutions are infeasible; solutions are sorted
by minimum violation values and copied to the next
generation.

• Second, the number of feasible individuals is lower
than the population size; all feasible individuals are
copied to the next generation.

• Third, the number of infeasible individuals equals twice
the population size; the unconstrained non-domination
sorting procedure is followed.

• Finally, the number of feasible individuals is higher
or equal to the population size; the unconstrained
non-domination sorting procedure is carried out with
feasible individuals.

Complexity discussion
The NSGA-III and EF1-NSGA-III have a similar complexity
because the EF1-NSGA-III inherits some of the NSGA-
III procedures. The niche complexity requires O(N)
computations, and the rest is bounded by the maximum
between O(N2 logM−2 N) and O(MN2). However, if M >
N2 logM−2 N, then he generation-wise complexity of the EF1-
NSGA-III is O(MN2). The A-EF1-NSGA-II and A2-EF1-NSGA-III
have a higher complexity, thus requiring more computations
for each generation. In those cases, the complexity of the
niche function is 2 ∗O(N).

Performance evaluation
In this section, we provide the performance results of EF1-
NSGA-III, A-EF1-NSGA-III, and A2-EF1-NSGA-III to solve the
DTLZ test (Deb, Thiele, and Laumanns, 2005) and real (water
and car-side impact) problems handling constraints on three
to ten objective functions. The employed hardware is a 3rd

generation Intel core i7-3700x4 with 8 GBs of RAM, and the
utilized software in Ubuntu 16.04, kernel 4.13.0-45-generic,
and GCC version 5.4.0. We ran all the simulations using 20
realizations with the same random seeds for each problem.

Additionally, we took the population and the number of
reference points for each DTLZ test problem reported in
Table I of the work by Deb and Jain (2014) and in Table 1
of this work. For tuning purposes, we used the NSGA-III
parameters employed by authors. They are shown in Table II
of Deb and Jain (2014), as well as here in Table 2.

Table 1. Reference points and population sizes used for EF1-NSGA-III,
A-EF1-NSGA-III, and A2-EF1-NSGA-III algorithms. Nobj is the number
of objective functions, and Boundary ndiv is the number of divisions of
the boundary plane built with reference points. Within ndiv is the
number of division of the inside plane built with reference points, and
Popsize is the population size.

Nobj Boundary ndiv Inside ndiv H Popsize

3 12 0 91 92

5 6 0 210 212

8 3 2 156 156

10 3 2 275 276

Source: Authors

Table 2. Parameter values used in EF1-NSGA-III, A-EF1-NSGA-III, and
A2-EF1-NSGA-III algorithms.

Parameters A/A2/EF1-NSGA-III

Simulated binary crossover probability ρc 1

Polynomial mutation probability ρm 1/n

Distribution index for crossover ηc 30

Distribution index for mutation ηm 20

Source: Authors

Traditionally, the ZDT (Zitzler, Deb, and Thiele, 2000),
DTLZ (Deb et al., 2005), WFG (Huband, Hingston, Barone,
and While, 2006), and LZ/UF (Li and Zhang, 2009)(Zhang
and Li, 2007) test suites are commonly-used benchmark
multi-objective test problems. They are employed to
validate MOEAs and MaOEAs under some difficulties,
such as objective scalability, complicated Pareto sets, bias,
disconnection, or degeneracy (Li et al., 2018). There are
even more tests and real problems to evaluate evolutionary
algorithms (Surjanovic and Bingham, 2013). However, we
concentrated our effort to benchmark DTLZ test problems
with different versions of the NSGA-III. Along with the
proposed algorithms, we compared our results with those
reported by authors and some publicly available open-source
versions in terms of Inverted Generational Distance (IGD)
and HiperVolume (HV) performance metrics (Chiang, 2014;
Tian et al., 2017; Bi and Wang, 2017; Blank and Deb, 2020).

Normalized DTLZ1-4 Test Problems
The original NSGA-III implementation (Deb and Jain, 2014;
Jain and Deb, 2014), and others found in references of
this work (Ariza, 2019; Chiang, 2014; Tian et al., 2017;
Blank and Deb, 2020) find well-distributed solutions when
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solving MaOPs. We noticed that there is a small difference
between them regarding the IGD performance metric on
three-objective to ten-objective normalized DTLZ1-4 test
problems, as summarized in Table 3. It shows that the
EF1-NSGA-III outperforms most scenarios, followed by the
proposals by Deb and Jain (2014), Blank and Deb (2020),
Chiang (2014), and Tian et al. (2017). Nevertheless, it has
poor performance when solving normalized eight-objective
DTLZ1 test problems and above.

Table 3. Best, Worst and Median IGD values for NSGA-III

Problem M MaxGen EF1-NSGA-III Deb and J, 2014 Chiang, 2014 Tian, 2017 Blank, 2020

DTLZ1 3 400

1,419x10−4 4,880x10−4 7,593x10−4 2,0567x10−1 4,86x10−4

1,527x10−3 4,880x10−3 2,053x10−1 2,1505x10−1 5,519x10−3

3,686x10−4 1,308x10−3 2,845x10−3 2,0643x10−1 1,429x10−3

DTLZ1 5 600

1,077x10−4 5,116x10−4 7,718x10−4 5,27x10−1 5,23x10−4

3,437x10−4 1,979x10−3 4,733x10−1 5,35x10−1 2,513x10−3

1,361x10−4 9,799x10−4 2,05x10−3 5,27x10−1 1,121x10−3

DTLZ1 8 750

5,223x101 2,044x10−3 3,454x10−3 9,6773x10−1 2,34x10−3

5,876x101 8,721x10−3 4,290x10−1 2,5829x10−1 1,0268x10−1

5,554x101 3,979x10−3 5,279x10−3 9,7509x10−1 3,804x10−3

DTLZ1 10 1 000

8,033x101 2,215x10−3 2,257x10−3 0,998x10−1 2,419x10−3

9,744x101 6,869x10−3 2,744x10−1 1,541x10−1 5,443x10−3

8,256x101 3,462x10−3 4,235x10−3 1,101x10−1 3,098x10−3

DTLZ2 3 250

9,993x10−4 1,262x10−3 1,585x10−3 5,4468x10−1 1,137x10−3

3,451x10−3 2,114x10−3 6,911x10−3 5,4524x10−1 2,212x10−3

1,591x10−3 1,357x10−3 2,731x10−3 5,4485x10−1 1,385x10−3

DTLZ2 5 350

2,610x10−3 4,254x10−3 4,701x10−3 1,612x10−1 4,372x10−3

6,582x10−3 5,862x10−3 1,547x10−1 1,6523x10−1 5,948x10−3

2,890x10−3 4.982x10−3 6,299x10−3 1,6517x10−1 4,897x10−3

DTLZ2 8 500

5,582x10−3 1,371x10−1 1,54x10−1 3,0123x10−1 1,368x10−1

9,013x10−3 1,811x10−1 2,002x10−1 5,9472x10−1 1,754x10−1

7,001x10−3 1,571x10−1 1,740x10−1 3,1599x10−1 1,502x10−1

DTLZ2 10 750

5,297x10−3 1,350x10−1 1,384x10−1 2,123x10−1 1,194x10−1

6,560x10−3 1,697x10−1 2,004x10−1 7,011x10−1 1,813x10−1

5,444x10−3 1,528x10−1 1,727x10−1 5,319x10−1 1,528x10−1

DTLZ3 3 1 000

5,189x10−4 9.751x10−4 1,374x10−3 5,4495x10−1 3,295x10−3

8,251x10−3 6,665x10−3 1,129x10−1 5,4955x10−1 1,379x10−1

1,927x10−3 4,007x10−3 4,757x10−3 5,4627x10−1 5,647x10−3

DTLZ3 5 1 000

5,342x10−4 3,086x10−3 3,462x10−3 1,659x10−1 1,839x10−3

7,759x10−3 1,196x10−1 1,04x10−1 3,656x10−1 9,898x10−3

1,103x10−3 5,960x10−3 9,447x10−3 1,722x10−1 6,487x10−3

DTLZ3 8 1 000

2,200x10−3 1,244x10−1 1,564x10−1 3,1355x10−1 1,668x10−1

1,044x10−1 9,649x10−1 1,386x10−1 3,346x10−1 8,799x10−1

3,243x10−3 2,375x10−1 3,014x10−1 3,1965x10−1 3,429x10−1

DTLZ3 10 1 500

1,383x10−3 8,849x10−3 2,014x10−1 2,224x10−1 9,186x10−3

2,255x10−3 2,083x10−1 4,817x10−1 7,897x10−1 6,517x10−1

1,764x10−3 1,188x10−1 3,092x10−1 5,3427x10−1 1,221x10−1

DTLZ4 3 600

4,059x10−4 2,915x10−4 2,447x10−4 5,3578x10−1 2,01x10−4

5,319x10−1 4,286x10−1 5,33x10−1 5,279x10−1 9,50x10−1

5,317x10−4 5,970x10−4 5.778x10 −4 5,452x10−1 3,30x10−4

Problem M MaxGen EF1-NSGA-III Deb and J, 2014 Chiang, 2014 Tian, 2017 Blank, 2020

DTLZ4 5 1 000

3,632x10−4 9,849x10−4 4,305x10−4 1,64x10−1 4,08x10−4

5,319x10−1 1,721x10−3 1,108x10−3 1,659x10−1 1,595x10−3

6,182x10−4 1,255x10−3 7,294x10−4 1,651x10−1 5,65x10−4

DTLZ4 8 1 250

2,200x10−3 5,079x10−3 3,406x10−3 3,151x10−1 3,334x10−3

1,044x10−1 6,051x10−1 5,496x10−3 6,5476x10−1 5,476x10−3

3,243x10−3 7,054x10−3 4,345x10−3 3,1532x10−1 4,046x10−3

DTLZ4 10 2 000

1,642x10−3 5,694x10−3 3,633x10−3 4,19x10−1 3,626x10−3

2,254x10−3 1,076x10−1 5,301x10−3 4,761x10−1 5.601x10−3

1,764x10−3 6,337x10−3 4,601x10−3 4,401x10−1 4,413x10−3

Source: Authors

We visualized some three-objective problems solved with
EF1-NSGA-III, A-EF1-NSGA-III, and A2-EF1-NSGA-III in
Figure 2. They are DTLZ2 (Figure 2a), C2-DTLZ2 (Figure 2b),
DTLZ5 (Figure 2c), DTLZ7 (Figure 2d), DTLZ1 (Figure 2e),
DTLZ4 (Figure 2f), IDTLZ1 (Figure 2g), and Car-Side Impact
(Figure 2h) problems, respectively. At first glance, The EF1-
NSGA-III seems to achieve well-distributed and well-spread
solutions for those problems. Also, the A2-EF1-NSGA-III
performs better than the A-EF1-NSGA-III, and the latter is
better than the EF1-NSGA-III for some DTLZ test problems
with difficulties, for instance, in normalized DTLZ5, DTLZ7,
and IDTLZ1 test problems.
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(a) 3D DTLZ2 test problem.
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(b) 3D C2-DTLZ2 test problem.
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(c) 3D DTLZ5 test problem.

Figure 2. From left to right: Using the EF1-NSGA-III, EF1-A-NSGA-III
and EF1-A2-NSGA-III to solve three dimensional problems.
Source: Authors
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(d) 3D DTLZ7 test problem.
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(e) 3D DTLZ1 test problem.
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(f) 3D DTLZ4 test problem.
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(g) 3D IDTLZ1 test problem.
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(h) 3D Car-Side Impact problem.

Figure 2. Continuation

High dimensional problems are depicted in Figure 3 as
well. In this case, we employed parallel coordinates
plots to visualize the solutions for ten-objective DTLZ4
(Figure 3a), five-objective Water (Figure 3b), five-objective
DTLZ1 (Figure 3c), and five-objective DTLZ2 (Figure 3d)
problems, respectively.
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(a) 10D DTLZ4 test problem.
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(b) 5D Water problem.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

N
o
rm

a
liz

e
d
 O

b
je

c
ti
v
e
 V

a
lu

e

Objective Number

(c) 5D DTLZ1 test problem.
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(d) 5D DTLZ2 test problem.

Figure 3. EF1-NSGA-III solving High dimensional problems.
Source: Authors

Normalized DTLZ5 and DTLZ7 Test Problems
DTLZ5 and DTLZ7 test problems have irregular Pareto fronts
that reveal the diversity maintenance of reference point
adaption.

The DTLZ5 is a degenerate test problem whose Pareto Front
lies on a dimension curve independent of the number of
objectives. On the contrary, the DTLZ7 problem examines
the algorithm’s ability to sustain sub-population in different
Pareto-optimal regions. Figures 2c and 2d depict the Pareto
fronts of three-objective DTLZ5 and DTLZ7 problems. Other
algorithms, such as Adaw (Li and Yao, 2020), have a
consistently better distribution of solutions when solving
both problems mentioned before. We observed that the
EF1-NSGA-II is slightly better than other proposals in terms
of the IGD metric, as shown in Table 4.
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Table 4. Average and Standard Deviation IGD values for NSGA-III

Problem M MaxGen EF1-NSGA-III Tian, 2017 Bi, 2017 Blank, 2020

DTLZ5 3 1 000 6,6588x10−2 1,195x10−2 1,438x10−2 1,468x10−2

4,114x10−2 3,07x10−3 2,19x10−3 1,589x10−3

DTLZ5 5 1 000 1,585x10−1 1,515x10−1 9,654x10−2 9,912x10−2

4,67x10−2 6,582x10−2 3,60x10−2 2,35x10−2

DTLZ5 8 1 000 3,007x10−1 4,1928x10−1 3,473x10−1 3,712x10−1

4,376x10−2 5,07x10−1 9,93x10−2 9,042x10−2

DTLZ5 10 1 500 1,902x10−1 2,487x10−1 4,548x10−1 5,114x10−1

3,932x10−2 5,96x10−2 8,49x10−2 7,712x10−2

DTLZ7 3 1 000 1,108x10−1 9,063x10−2 7,794x10−2 1,308x10−1

6,186x10−2 6,64x10−2 1,59x10−3 1,151x10−1

DTLZ7 5 1 000 2,955x10−1 2,782x10−1 2,853x10−1 2,955x10−1

1,227x10−2 1,64x10−2 5,83x10−3 5,642x10−3

DTLZ7 8 1 000 5,679x10−1 7,746x10−1 7,441x10−1 6,242x10−1

3,182x10−2 5,36x10−2 1,68x10−2 2,994x10−2

DTLZ7 10 1 500 6,525x10−1 9,250x10−1 9,850x10−1 7,579x10−1

3,218x10−2 2,40x10−2 1,00x10−1 4,293x10−2

Source: Authors

DTLZ1-5 and DTLZ7 Statistical benchmark
We made a statistical benchmark between EF1-NSGA-III and
PYNSGA-III (Pymoo NSGA-III algorithm) in terms of IGD and
HyperVolume (HV) performance metrics for DTLZ1-5 and
DTLZ7 problems. Their statistical boxplots are shown in
Figures 4 and 5 for three-objective and five-objective DTLZ
problems running 20 realizations with the same random
seeds. First, from an IGD perspective, we see in Figures
4a, 4b, 4c, 4d, 4e, and 4f, that the EF1-NSGA-III performs
better than the PYNSGA-III and provides lower IGD values
and dispersion. Notwithstanding, Figures 4g, 4i, 4j, 4k, 4l,
and 4h depict a different scenario, where the PYNSGA-III
performs better than the EF1-NSGA-III.

Then, when we analyzed the boxplots of Figure 5 related to
the HV performance metric, we notice the same behavior
obtained concerning the IGD performance metric. In this
scenario, high HV values mean a better performance of
convergence and distribution of solutions. That validation
helps us be confident of the performance of the EF1-NSGA-III
with respect to the PYNSGA-III. For example, Figures 5a,
5b, 5c, 5d, 5e, and 5f, accomplish a better performance in
terms of HV for the EF1-NSGA-III rather than the PYNSGA-III.
Hovewer, the PYNSGA-III performs better than the EF1-NSGA-
III for DTLZ4, DTLZ5 and DTLZ7, as seen in Figures 5g, 5h,
5i, 5j, 5k and 5l.

Exceptionally, the EF1-NSGA-III strives to solve the DTLZ4 test
problem for five objectives and above, and those drawbacks
are represented with a significant data dispersion, as shown
in Figures 4h and 5h. This kind of convergence difficulty
occurs for some seeds, so the idea is to increase the number
of realizations to reduce this effect.

(a) 3D DTLZ1 test problem. (b) 5D DTLZ1 test problem.

(c) 3D DTLZ2 test problem. (d) 5D DTLZ2 test problem.

(e) 3D DTLZ3 test problem. (f) 5D DTLZ3 test problem.

(g) 3D DTLZ4 test problem. (h) 5D DTLZ4 problem.

(i) 3D DTLZ5 test problem. (j) 5D DTLZ5 problem.

(k) 3D DTLZ7 test problem. (k) 5D DTLZ7 problem.

Figure 4. Boxplots in terms of IGD.
Source: Authors
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(a) 3D DTLZ1 test problem. (b) 5D DTLZ1 test problem.

(c) 3D DTLZ2 test problem. (d) 5D DTLZ2 test problem.

(e) 3D DTLZ3 test problem. (f) 5D DTLZ3 test problem.

(g) 3D DTLZ4 test problem. (h) 5D DTLZ4 problem.

(i) 3D DTLZ5 test problem. (j) 3D DTLZ7 test problem.

(k) 5D DTLZ5 problem. (l) 5D DTLZ7 problem.

Figure 5. Boxplots in terms of HV.
Source: Authors

Inverted-DTLZ1 Test Problem
The inverted-DTLZ1 problem is an unconstrained test problem
that modifies the DTLZ1 problem. The DTLZ1 transformation
requires fi(x) = 0, 5(1 + g(x)) − fi(x), for i = 1, . . . ,M
objectives. We can see that the A2-EF1-NSGA-III distributes
the population better than the A-EF1-NSGA-III and the EF1-
NSGA-III. The Hyper-volume values are shown in Table 5
and visually confirmed in Figure 2g. We employed the same
algorithm from reference (Blank and Deb, 2020) to evaluate
the HV. It takes the obtained Pareto front from EF1-NSGA-III
and PYNSGA-III and a reference point. We used the point
[0,6, 0,6, 0,6] for the three-objective IDTLZ1 problem, the
point [39,4, 12,5] for the Car-side impact problem, and the
point [75000, 1400, 2900000, 6700000, 26000] for the water
problem to obtain HV values. Sometimes, for instance, the
Car-side impact problem solved with the EF1-NSGA-III has
better HV values than the A2-EF1-NSGA-III and the A-EF1-
NSGA-III. It remains as future work where the number of
realizations should be increased.

Table 5. Best, Worst and Median Hyper-volume values obtained for
A2-NSGA-III, A-NSGA-III and NSGA-III

Problem M MaxGen A2-NSGA-III A-NSGA-III NSGA-III

Car-Side Impact (EF1-NSGA-III) 3 500
3,7771 2,6168 4,4349
4,8367 4,6992 4,6179

4,1767 3,9892 4,5316

Water (EF1-NSGA-III) 5 500
2,9195x1024 2,7388x1024 2,7656x1024

3,0128x1024 2,895x1024 2,901x1024

2,967x1024 2,847x1024 2,8444x1024

IDTLZ1 (EF1-NSGA-III) 3 400
5,905x10−2 5,799x10−2 5,782x10−2

6,191x10−2 6,182x10−2 6,189x10−2

6,032x10−2 6,037x10−2 5,987x10−2

IDTLZ1(Deb and Jain, 2014) 3 400
6,374x10−2 6,094x10−2 6,111x10−2

6,621x10−2 6,54x10−2 6,305x10−2

6,569x10−2 6,540x10−2 6,229x10−2

IDTLZ1 (Tian et al., 2017) 3 400
N/A 2,191x10−1 2,063x10−1

N/A 2,127x10−1 1,978x10−1

N/A 2,153x10−1 2,018x10−1

Water (Jain and Deb, 2013) 5 500
0,545 0,540 0,534

0,540 0,5349 0,528

0,543 0,5365 0,531

Source: Authors

Normalized constrained DTLZ test problems
We considered three cases of constrained DTLZ test problems.
The first is the C1-DTLZ1 problem that uses the constraint
c(x) = 1− fM(x)

0,6 −
∑M−1

i=1
fi(x)
0,5 ≥ 0. The second is the C1-DTLZ3

problem that employs the constraint c(x) = (
∑M

i=1 fi(x)2
−

16)(
∑M

i=1 fi(x)2
− r2)) ≥ 0, where r = {9, 12, 5, 12, 5, 15, 15}

is the radius of the hyper-sphere for M = {3, 5, 8, 10, 15}.
Finally, the C2-DTLZ2 problem that utilizes the constraint

c(x) = −min{
M

min
i=1

[( fi(x)− 1)2 +
∑M

j=1, j,i f 2
j − r2], [

∑M
i=1( fi(x)−

1
√

M
)2
− r2)]} ≥ 0, where r = 0, 4 for M = 3 and 0, 5 otherwise.
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Table 6 shows a consistently better performance of the
EF1-NSGA-III in terms of IGD for the studied constrained
problem, except for C1-DTLZ1 on eight-objective to ten-
objective problems, where the EF1-NSGA-III gets stuck. The
approximated Pareto-front of C2-DTLZ2 is depicted in Figure
2b that shows a good distribution of solutions.

Table 6. Best, Worst and Median IGD values obtained for NSGA-III.
Constrained DTLZ problems

Problem M MaxGen U/H EF1-NSGA-III Deb and J, 2014 Tian, 2017

C1-DTLZ1 3 500

2,996x10−4 1,229x10−3 2,002x10−2

91/91 1,389x10−2 2,256x10−2 2,139x10−2

2,948x10−3 4,932x10−3 2,026x10−2

C1-DTLZ1 5 600

1,393x10−4 2,38x10−3 5,092x10−2

210/210 2,215x10−3 1,024x10−2 5,259x10−2

1,165x10−4 4,347x10−3 5,203x10−2

C1-DTLZ1 8 800

7,010x10−1 4,843x10−3 9,006x10−2

156/156 7,072x10−1 4,140x10−2 9,684x10−2

7,037x10−1 1,361x10−2 9,548x10−2

C1-DTLZ1 10 1 000

7,300x10−1 3,042x10−3 1,078x10−1

275/275 7,3323x10−1 2,762x10−2 1,095x10−1

7,315x10−1 6,358x10−3 1,086x10−1

C2-DTLZ2 3 250

4,158x10−4 1,581x10−3 4,703x10−2

58/91 1,780x10−3 6,733x10−3 4,866x10−2

6,631x10−4 2,578x10−3 4,823x10−2

C2-DTLZ2 5 350

6,955x10−4 2,762x10−3 1,382x10−1

80/210 1,0801x10−3 7,596x10−3 1,397x10−1

9,173x10−4 3,873x10−3 1,386x10−1

C2-DTLZ2 8 500

1,066x10−3 1,404x10−2 2,363x10−1

72/156 2,591x10−3 8,662x10−1 8,596x10−1

1,410x10−3 2,352x10−2 2,406x10−1

C2-DTLZ2 10 750

4,929x10−4 1,978x10−2 2,648x10−1

110/275 8,234x10−4 3,491x10−2 5,118x10−1

5,894x10−4 2,694x10−2 2,716x10−1

C1-DTLZ3 3 1 000

5,189x10−4 8,649x10−4 N/A

91/91 8,251x10−3 (13) N/A

2,184x10−3 8,139x10−3 N/A

C1-DTLZ3 5 1 500

2,189x10−4 1,028x10−3 N/A

210/210 2,384x10−3 (15) N/A

5,260x10−4 5,101x10−2 N/A

C1-DTLZ3 8 2 500

3,002x10−4 1,656x10−3 N/A

156/156 2,257x10−4 (14) N/A

4,538x10−4 0,196x10−2 N/A

C1-DTLZ3 10 3 500

3,347x10−4 2,437x10−3 N/A

275/275 7,117x10−4 (18) N/A

3,747x10−4 1,445x10−2 N/A

Source: Authors

Car-Side Impact and Water Problems
The Car-Side Impact problem optimizes the frontal structure
of the vehicle for crash-worthiness. It minimizes the weight,
the pubic force experienced by a passenger, and the V-Pillar’s

average velocity to resist the impact load. Its mathematical
formulation can be consulted in Jain and Deb (2014). We
can see, in Figure 2h, that the A2-EF1-NSGA-III has a better
distribution of solutions compared to the A-EF1-NSGA-III and
EF1-NSGA-III. Nevertheless, in Table 5, we notice that the EF1-
NSGA-III achieves better HV values than the A2-EF1-NSGA-III
or the A-EF1-NSGA-III. It is necessary to use statistical analysis
with more realizations to better understand the distribution
of solutions.

Conversely, as shown in Table 5 and Figure 3b, the Water
problem has better performance when it is solved with the A2-
EF1-NSGA-III, A-EF1-NSGA-III, and the EF1-NSGA-III, which
is expected. This problem has five objective functions, three
design variables, and seven constraints. Its mathematical
formulation is found in the work by (Jain and Deb, 2014).

Variation of convergence metrics
We used IGD and Υ values in each generation to visualize
the convergence. IGD convergence is depicted in Figure 6
and the Υ convergence in Figure 7. The IGD convergence
plot is divided into two cases. The first (Figure 6 on the left
side) contains better IGD decreasing performance for DTLZ1,
DTLZ3, DTLZ4, DTLZ5, and DTLZ7 problems. However,
the DTLZ1 is the fastest. In contrast, the second (Figure 6,
on the right side) shows bad decreasing IGD performance
for IDTLZ1, DTLZ5, and DTLZ7 problems. They will not
achieve good performance even though we increase the
number of generations. High dimensional DTLZ3 and DTLZ4
problems probably will achieve a good IGD value, but they
require significantly more generations. We also divided the
Υ convergence plot in two cases. The first (Figure 7, top
side) for low dimensional cases, and the second, for high
dimensional cases (Figure 7, bottom side). We noticed
that this metric is representative for problems up to eight
objectives. We also saw that the DTLZ1, DTLZ2, DTLZ3,
and DTLZ4 problems exhibit better Υ convergence, but
DTLZ3 and DTLZ4 problems require more generations to
accomplish similar Υ values. Finally, high dimensional test
problems did not provide good Υ values, as shown in Figure 7,
bottom part.
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Figure 6. IGD convergence. Seed = 0,5.
Source: Authors
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Conclusions
We successfully extended the NSGA-II algorithm from the
KanGAL’s Code to the EF1-NSGA-III, the A-EF1-NSGA-III, and
the A2-EF1-NSGA-III. These algorithms have been applied
to solve constrained and unconstrained Many-objective
optimization problems (up to ten-objective problems). Our
proposals have shown their niche in finding a set of well-
converged and well-diversified solutions repeatedly over
multiple runs. They are susceptible to be employed as a
reference for a comparative evaluation of new evolutionary
algorithms because they yield consistently better results than
those reported in references (Deb and Jain, 2014; Jain and
Deb, 2014; Bi and Wang, 2017; Tian et al., 2017; Chiang,
2014; Blank and Deb, 2020).
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