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Accelerated Adaptive Backstepping Control of the Chaotic
MEMS Gyroscope by Using the Type-2 Sequential FNN

Control acelerado del backstepping adaptativo del giroscopio caótico
MEMS por medio de la FNN secuencial de tipo 2

Le Zhao1, Shaohua Luo2, Guanci Yang3, and Junyang Li4

ABSTRACT
In this paper, we propose an accelerated adaptive backstepping control algorithm based on the type-2 sequential fuzzy neural network
(T2SFNN) for the micro-electromechanical system (MEMS) gyroscope with dead-zone and constraints. Firstly, the mathematical
model of the MEMS gyroscope is established to perform dynamical analyses and controller design. Then, the phase diagrams
and Lyapunov exponents are presented to reveal its chaotic oscillation, which is harmful to system stability. In order to suppress
oscillations derived from chaos and dead-zone, an accelerated adaptive backstepping controller is proposed wherein an adaptive
auxiliary is established to compensate the influence of nonsymmetric dead-zone on stability performance, along with the T2SFNN
designed to approximate unknown functions of dynamic systems. Furthermore, the speed function is introduced to accelerate
convergence speed of the control system, and the problem of complex term explosion in traditional backstepping is successfully
solved by a second-order tracking differentiator. Finally, simulation results show that the proposed control scheme can guarantee
asymptotic convergence of all signals in the closed-loop system, as well as satisfying states constraints and fulfilling the purposes of
chaos suppression and accelerated convergence.

Keywords: MEMS gyroscope, type-2 sequential fuzzy neural network, accelerated backstepping control, chaotic oscillation, speed
function

RESUMEN
En este artículo se propone un algoritmo de control acelerado y autoadaptado de backstepping basado en la red neural analgésica de
tipo 2 (T2SFNN) para giroscopios del sistema microeléctrico (MEMS) con zona muerta y limitaciones. En primer lugar, se establece
el modelo matemático del giroscopio MEMS para realizar análisis dinámicos y diseño de controladores. Luego, se presentan los
diagramas de fase y los exponentes de Lyapunov para revelar su oscilación caótica, que es perjudicial para la estabilidad del sistema.
Con el fin de suprimir las oscilaciones derivadas del caos y la zona muerta, se propone un controlador de backstepping adaptativo
acelerado en el que se establece un auxiliar adaptativo para compensar la influencia de la zona muerta no simétrica en el rendimiento
de estabilidad, junto con el T2SFNN diseñado para aproximar funciones desconocidas de sistema dinámico. Además, se introduce la
función de velocidad para acelerar la velocidad de convergencia del sistema de control, y el problema de la explosión de términos
complejos en el backstepping tradicional es resuelto exitosamente por un diferenciador de seguimiento de segundo orden. Finalmente,
los resultados de la simulación muestran que el esquema de control propuesto puede garantizar la convergencia asintótica de todas
las señales en el sistema de circuito cerrado, además de satisfacer las restricciones de los estados y lograr los propósitos de supresión
del caos y convergencia acelerada.

Palabras clave: giroscopio MEMS, red neuronal difusa secuencial de tipo 2, control acelerado de backstepping, oscilación caótica,
función de velocidad
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Introduction
In view of the advantages of measuring the angular velocity
of objects, low energy consumption, high integration, and
simple structure, the MEMS gyroscope is widely used in
vehicle navigation and positioning system, control, aerospace,
the social robot, and other fields (Lin, Li, and Yang, 2020;
Chong et al., 2016; Fang, Fei, and Yang, 2018; Rahmani,
2018; Rahmani and Rahman, 2018; Su, Li, and Yang, 2020).
Unfortunately, due to the influence of manufacturing errors
and working environment changes, the measuring accuracy
of the MEMS gyroscope will be greatly reduced. On top
of that, the inherent characteristics of MEMS gyroscopes,
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such as dead-zone hysteresis and chaotic oscillations, will
reduce its operational performance, and even cause serious
safety accidents. Therefore, it is of profound and lasting
significance to design an effective controller to improve the
robust performance of the MEMS gyroscope and suppress
the chaotic oscillations within it.

With continuous in-depth research, many practical and
effective strategies have been proposed, such as adaptive
control, backstepping control, sliding mode control, and fuzzy
control (Fei and Zhou, 2012; Luo and Song, 2016; Ouakad,
Nayfeh, Choura, and Najar, 2015; Xu, Zhang, Li, He, and
Shi, 2019). Aiming at a new 3-D chaotic system with an axe-
shaped curve of equilibrium points, Vaidyanathan, Sambas,
and Mamat (2018)constructed the analog circuits to reveal
the dynamic characteristics of this system, and then designed
an adaptive synchronization controller to carry out the stable
control of this system. For a new five-dimensional four-wing
hyperchatic system, they built the analog circuits to reveal
motion behavior, and then implemented the synchronisation
function via integral sliding mode control (Sambas, Chang,
Dolvis, Jacques, and Vaidyanathan, 2019). The integral sliding
mode control was designed to synchronize a new 2-scrill
chaotic system with four quadratic nonlinear terms, and
an analog circuit of the new 2-scroll chaotic system was
constructed to check the feasibility of the model (Sambas,
Vaidyanathan, Mamat, and Mohamed, 2020). For a three-
axis MEMS gyroscope, Fei and Zhou (2012) discussed a
robust adaptive control strategy through the coupling of
fuzzy and sliding mode controls. In order to address the
control problem of the MEMS resonator, Luo and Song
(2016) proposed an adaptive backstepping control method
based on RBF neural networks with output constraints and
uncertain time delays. For the MEMS gyroscope, Xu et al.
(2019) proposed a non-singular terminal sliding mode control
method based on compound neural learning. Ouakad et
al. (2015) designed a feedback controller to suppress the
nonlinear motion of the microbeam resonator, and then
used electronic circuits to build the controller to illustrate
the feasibility of the design scheme. The control methods
mentioned above have some disadvantages, such as slow
response speeds, poor robustness and poor anti-interference
ability.

The way to improve the robustness and enhance the anti-
jamming capability of the MEMS gyroscope is an open
issue. Sliding mode control is widely used in nonlinear
systems because it shows strong robustness to parameter
changes. The fractional sliding mode control method is
an effective control method that can effectively suppress
external disturbance and improve robustness of the controlled
system (Rahmani and Rahman, 2019). For the MEMS
gyroscope system, Fei and Chu (2016) proposed a dynamic
global proportional integral derivative (PID) sliding mode
control method and introduced a dynamic PID sliding surface
to reduce chattering. For the robot flexible connecting
rod system, Delavari et al. designed a fractional sliding
mode control method and introduced a particle swarm
optimization algorithm to adjust the controller parameters
to obtain better control performance (Delavari, Lanusse, and

Sabatier, 2013). By comparing with the traditional non-
singular sliding mode control, the fractional sliding mode
control has better convergence precision. Sun and Ma (2017)
presented a tracking fractional sliding mode terminal control
method for linear motors. For the grid-connected doubly-fed
induction generator system, Xiong, Wang, Mi, and Khan
proposed a fractional-order sliding mode control method
(2017). The simulation results show that the method can
not only guarantee the asymptotical stability of all signals of
the closed-loop system, but also has strong anti-interference
abilities . The main shortcoming of the proposed fractional
order sliding mode control is that the control target crosses
the approach equilibrium point back and forth on both sides
of sliding mode surface, which leads to chattering, thus
affecting the control accuracy and even causing the controller
performance to collapse.

In recent years, backstepping control has attracted wide
attention due to its recursive and systematic control process
(Li and Kang, 2010; T. Sun and Pan, 2019; Tong and Li,
2011). Unfortunately, there is an obvious flaw in traditional
backstepping technology; virtual control signal causes
“complex item explosions” due to repeated differentiation
(Gao et al., 2016; S. Gao, Dong, Ning, Tang, and Li, 2018). In
order to address this defect, Pan, Wang, Li, and Yu investigated
adaptive command-filtered backstepping control method
wherein a command filter is used to eliminate these explosions
(2017). Although the command filter can solve this issue,
it brings about the issue of controller accuracy degradation.
In view of this, a second-order tracking differentiator (Tian,
Shen, and Dai, 2014) is introduced into the recursive process
of traditional backstepping to solve the problem of “complex
term explosions” and ensure the accuracy of the controller.

Motivated by the afore-mentioned research works, we
developed an accelerated adaptive backstepping controller
for the MEMS gyroscope. The main contributions of the
accelerated adaptive backstepping control algorithm are
emphasized as follows:

1) In the process of the accelerated adaptive backstepping
controller design, the control input can reduce the
adverse dead-zone effect in practical engineering
applications, and a tracking differentiator is proposed
to prevent the complex explosion associated with
backstepping.

2) In order to accelerate the convergence speed and
ensure that the system reaches a steady state faster, the
speed function is integrated in the whole control policy.
And the T2SFNN is designed to eliminate the effects of
unknown functions and enhance the robustness of the
controlled system.

3) Our algorithm not only reduces the chattering of the
control input, but also improves the robustness of
the system against parameter uncertainty and external
interference.
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Modeling of the MEMS gyroscope
A conventional MEMS gyroscope is mainly composed of a
mass, a cantilever beam, a driving electrode, an induction
device, and a base, where the driving electrode applies a
driving force to the mass block to cause it to vibrate in the
direction of the drive shaft. The displacement and velocity of
the mass block in the direction of the detection axis can be
measured with the induction device. The schematic diagram
of the MEMS gyroscope is depicted in Figure 1.

Figure 1. Schematic diagram of the MEMS gyroscope.
Source: Authors

Based on Newtonian mechanics and Kirchhoff’s law, the
dynamical Equation of the MEMS gyroscope can be expressed
as follows (Fang, Yuan, and Fei, 2015; Yan, Hou, Fang,
and Fei, 2016):

mẍ + d∗xxẋ + d∗xy ẏ + k∗xxx + k∗xy y = u∗x + dx + 2mΩ∗z ẏ
mÿ + d∗xyẋ + d∗yy ẏ + k∗xyx + k∗yy y = u∗y + dy − 2mΩ∗zẋ

}
(1)

where m represents the mass; k∗xy, d∗xy are damping and
coupling coefficients; Ω∗z is the angular velocity along the
z-axes; d∗xx and d∗yy are the damping coefficients in the x-y
axis direction; k∗xx and k∗yy represent the spring constant in
the x-y axis direction; u∗x and u∗y are control inputs in x-y axis
direction; and dx and dy indicate unknown disturbance in x-y
axis direction, respectively.

Letx1 = x, x2 = ẋ, x3 = y and x4 = ẏ, the dimensionless
Equation governing the MEMS gyroscope is rewritten as
follows:

ẋ1 = x2
ẋ2 = −dxxx2 − dxyx4 − ω2

xx1 − ωxyx3 + 2Ωzx4
+dx + D (ux)

ẋ3 = x4
ẋ4 = −dxyx2 − dyyx4 − ωxyx1 − ω2

yx3 − 2Ωzx2

+dy + D
(
uy

)
(2)

In Equation (2), a set of new parameters are introduced, such
as:

dxx =
d∗xx

mω0
, dxy =

d∗xy

mω0

dyy =
d∗yy

mω0
,Ωz =

Ω∗z
mω0

, ω2
x = kxx

mω2
0

ωxy =
kxy

mω2
0
, ω2

y =
kyy

mω2
0
,ux =

u∗x
mω2

0q0
,uy =

u∗y
mω2

0q0

 (3)

where m, q0 and ω2
0 represent the quality of the mass, the

reference length, and the square of the x-axes and y-axes
resonance frequencies, respectively.

In practical engineering applications, friction and clearance
of the internal components of the MEMS gyroscope cause
asymmetrical dead-zone characteristics, which reduce control
accuracy and system performance (Juan and Fei, 2013;
Liu, Gao, Tong, and Li, 2015; Na, 2013).Therefore, it
is necessary to establish an adaptive auxiliary signal to
compensate the influence derived from the dead-zone input.
The asymmetrical dead-zone inputs of the x-axes and y-axes
can be defined as

hri (ui −mri) , ui ≥ mri
0,−mli < ui < mri, i = x, y,

hli (ui + mli) , ui ≤ mli

 = D (ui) (4)

where hrx and hlxare the right and left slopes of the x-axes;
hry and hlyare the right and left slopes of the y-axes; mrx
and mlxrepresent the breakpoints of the x-axes; mry and mly
represent the breakpoints of the y-axes; and hri, hli, mri and
mli, i = x, y are positive constants. The dead-zone inputs can
be rewritten as

D (ui) = hiui + mi, i = x, y, (5)

where
hrx, ux ≥ mrx
0, −mlx < ux < mrx
hlx, ux ≤ mlx

 = hx

and
−hrxmrx, ux ≥ mrx
0, −mlx < ux < mrx
hlxmlx, ux ≤ mlx

 = mx

are constants of the x-axes dead-zone input.

hry, uy ≥ mry
0, −mly < uy < mry
hlx, uy ≤ mly

 = hy

and
−hrymry, uy ≥ mry
0, −mly < uy < mry
hlymly, uy ≤ mly

 = my

are constants of the y-axes dead-zone input.

There is hi = min (hri, hli) ≤ |hi| ≤ hi = max (hri, hli),
|mi| ≤ mi = max (hrimri, hlimli), i = x, y.

Remark 1: Zhang, Zhang, Liu, and Kim et al. proposed
an adaptive control method based on neural networks for
the asymmetric dead-zone input in nonlinear system (2009).
However, it can only be applied to specific conditions without
universality, such as{

xi (k + 1) = xi+1 (k) , i = 1, . . . ,n − 1
xn (k + 1) = f (x (k)) + Γ (u (k)) + d1 (k),

and it has poor accuracy and robustness performance. The
proposed scheme not only greatly reduces the chatter
phenomenon, but also improves system performance and
enhances its robustness to parameter uncertainty and external
interference.
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Dynamical analysis
In order to reveal the nonlinear characteristics of the MEMS
gyroscope and explain the necessity of controller design,
the dynamic analysis of the MEMS gyroscope is carried
out when the dimensionless parameters of system are set
as ω2

x = 355, 3, ω2
y = 532, 9, ωxy = 70, 99, dxx = 0, 01,

dyy = 0, 01, Ωz = 0, 1 and dxy = 0, 002 (Rahmani and Rahman,
2019), and the initial values of the system states are set as
x1 (0) = 0, 4, x2 (0) = 0, x3 (0) = 0, 6 and x4 (0) = 0. The
sums of Lyapunov exponents x1, x2, x3, and x4 are 2, 8884,
−1, 6952, 1, 1066, and -3, 501, respectively. The Kaplan-Yorke
dimension of the MEMS gyroscope is calculated as 3, 6569
(Sambas, Mamat, Arafa, Mahmoud, and Sanjaya, 2019; Silva-
Juarez, Rodriguez-Gomez, de la Fraga, Guillen-Fernandez, and
Tlelo-Cuautle, 2019).

The phase diagrams and corresponding time histories are
shown in Figure 2. The Lyapunov exponent diagram is
shown in Figure 3. They reveal the dynamic characteristics
of the MEMS gyroscope. It is easy to tell that the MEMS
gyroscope exhibits chaotic motion. It is well known that
this reduces accuracy and affects the running stability of the
MEMS gyroscope. Meanwhile, this also fully illustrates thr
fact that it is necessary to design a suitable control scheme
to suppress the chaotic motion of the MEMS gyroscope
and ensure the global asymptotic stability of the closed-loop
system.

Figure 2. Phase diagrams and corresponding time histories.
Source: Authors

Figure 3. Lyapunov exponent diagram.
Source: Authors

Type-2 sequential fuzzy neural network
The T2SFNN is composed of fuzzy logic systems and neural
networks. It avoids shortcomings such as slow speed, low
precision, and high sample requirement of the fuzzy logic
language and neural network reasoning (Mohammadzadeh
and Ghaemi, 2018). The schematic diagram of the T2SFNN,
consisting of the input layer, the fuzzification layer, the
membership layer, the rule layer and the output layer, is
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shown in Figure 4. The operating mechanism of the T2SFNN
can be summarized as the following steps:

1) Based on the fuzzy theory, the upper input I
i
j and the lower

input Ii
j on the membership layer can be written as

I
i
j =

σ2
A j

cBi
j
+ σ2

B
i
j

I j

σ2
A j

+ σ2

B
i
j

Ii
j =

σ2
A j

cBi
j
+ σ2

Bi
j
I j

σ2
A j

+ σ2
Bi

j

, j = 1, 2, . . . ,n, i = 1, 2, . . . , l


(6)

where σ2
A j

and σ2

B
i
j

are the upper widths of the membership

functions; σ2
A j

and σ2
Bi

j
denote the lower widths of the

membership functions; and cBi
j
and I j represent the center

and input of the membership function, respectively.

For Equation (6), the upper membership function and the
lower membership function can be calculated as:

B
i
j = exp


−

∥∥∥∥I
i
j − cBi

j

∥∥∥∥2

σ2

B
i
j

 Bi
j = exp


−

∥∥∥∥Ii
j − cBi

j

∥∥∥∥2

σ2
Bi

j

 (7)

2) A series of fuzzy IF-THEN rules set of the fuzzy neural
network can be expressed in the following form:

IF I1 is Bi
1 · · · and I j is Bi

j and · · · In is Bi
n, j = 1, 2, . . . ,n,

i = 1, . . . , l, then
O ∈

[
θi, θi

]
, (8)

whereBi
j is the ith membership function for the jth input.

The upper and lower firing rules of the fuzzy neural network
can be expressed in the following forms:

ξi (t) = rξi (t − 1) + B
i
j

ξ
i
(t) = rξ

i
(t − 1) + Bi

j, i = 1, 2, . . . , l

 (9)

where ξi (t) and ξ
i
(t) are the upper and lower of the fuzzy

neural network ith rule at previous sample time, respectively;
ξi (t − 1) and ξ

i
(t − 1) indicate the upper and lower mapping

degrees of theithrule at the last sample time; r is the design
parameter; B

i
j and Bi

j are the upper/lower membership
functions.

3) The output of the T2SFNN can be written as:

O (t) =

∑l
i=1 θi (t) ξi (t) +

∑l
i=1 θi (t) ξ

i
(t)

2
(10)

where θi and θi are considered to be the upper and lower of
inputs, and they can be designed in the following forms:

θi = α0
i (t) + α1

i (t) I1 (t) + · · · + αn
i (t) In (t)

θi = α0
i (t) + α1

i (t) I1 (t) + · · · + αn
i (t) In (t) , i = 1, 2, . . . , l

 (11)

Figure 4. Schematic diagram of the T2SFNN.
Source: Authors

where α j
i (t) , α j

i (t), i = 1, . . . , l, j = 1, . . . ,n are the positive
constant.

Equation (9) can be re-expressed as follows:

O (t) = θT (t) ξ (t) (12)

where

θ (t) ≡

 α0
1, . . . , α

n
1 , . . . , α

0
l , . . . , α

n
l

α0
1, . . . , α

n
1 , . . . , α

0
l , . . . , α

n
l


is the weight vector,

ξ (t) =

 ξ1 (t) , . . . , ξ1 (t) In (t) , . . . , ξl (t) , . . . , ξl (t) In (t) ,

ξ
1

(t) , . . . , ξ
1

(t) In (t) , . . . , ξ
l
(t) , . . . , ξ

l
(t) In (t)


T

is the input of the neural network.

Remark 2: With the increase of the membership layers,
the approximation accuracy of the T2SFNN improves.
However, calculation complexity increases significantly,
which consumes too much computation time. Therefore, we
adopt the golden section method to select the appropriate
number of fuzzy layers. Then, the output accuracy meets the
design requirements, and the computational complexity is
acceptable.

Lemma 1 (Gao et al., 2016): For any continuous function f (x),
there is a T2SFNN that satisfies

sup
x∈Ω

∣∣∣ f (x) − f̂ (x, θ)
∣∣∣ ≤ ε (x) , (13)

where f̂ is the estimation of f and ε (x) is the approximate
error of the T2SFNN.

We defined an optimal parameter θ∗ being equal to

arg min
θ∈Ωθ

[
sup
x∈Ω

∣∣∣ f (x) − f̂ (x, θ)
∣∣∣], where Ωθ is a compact set

of x and Ωθ is a compact set of θ. Let θ̃ = θ∗ − θ̂ with
θ∗ being a virtual item. For any constant ε > 0, there is
|ε (x)| ≤ ε.
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Controller design
The rate function to accelerate convergence is introduced as
(Luo, Li, Li, and Hu, 2020):

T4κ(t)
(1−bϕ)(T−t)4+bϕT4κ(t)

, 0 ≤ t ≤ T

1/bϕ, t ≥ T

 = ϕ (t) (14)

where 0 < T < ∞ is the specified time, κ (t) represents any
monotone non-decreasing time smoothing function satisfying
κ (0) = 1 and κ̇ (t) ≥ 0. bϕ is a design parameter which
satisfies 0 < bϕ � 1. Let βϕ = ϕ̇ (t)

/
ϕ (t), where ϕ̇ (t) is a

continuous differentiable and bounded function. Additionally,
ϕ (t) is a positive and strictly monotone increasing function,
and it has an initial value of ϕ (0) = 1.

In order to avoid the explosion of differential complex terms
associated with traditional backstepping, a second-order
tracking differentiator is introduced (Tian et al., 2014):

ϑ̇1 = −r1 |ϑ1 − αr|
1/2 sign (ϑ1 − αr) + ϑ2

ϑ̇2 = −r2sign
(
ϑ2 − ϑ̇1

)  (15)

where r1, r2 are positive numbers; αr is the virtual control
law; and ϑ1 and ϑ2 stand for the tracking differentiator states.

Lemma 2: If the initial condition|ϑ1 (t0) − αr (t0)| ≤ ℘ with
℘ > 0, then, for any small positive numberslϑ1 and lϑ2 , the
following inequality holds:

|ϑ1 − αr| ≤ lϑ1 , |ϑ2 − α̇r| ≤ lϑ2 . (16)

Assumption 1: The desired tracking trajectories xid and their
derivatives are continuous and available, and they satisfy the
constraints, so that−ti ≤ xid ≤ ti, i = 1, 3.

Tracking errors are defined as

ei = xi − xid, i = 1, 3
ei = xi − αi, i = 2, 4

}
(17)

where xi, i = 1, . . . , 4 are control inputs; αi, i = 2, 4 stand
for virtual control laws; and ei, i = 1, . . . , 4 indicate tracking
errors.

At this time, the accelerated tracking compensation errors of
the controller can be designed as follows:

Si = ϕei, i = 1, . . . , 4, (18)

where Si, i = 1, . . . , 4 represent accelerated errors.

According to the idea of backstepping, the acceleration
adaptive backstepping controller design includes four steps:

Step 1: The derivation of S1 can be deduced:

Ṡ1 = ϕ
(
βϕe1 + e2 + α2 − ẋ1d

)
. (19)

Then the virtual control α2 is designed as

α2 = −
k1e1

M1 cos (πS1/2B1)
− βϕe1 + ẋ1d, (20)

where M1 = 2+πS1 tan(πS1/2B1)/2B1
cos(πS1/2B1) ; k1 is a positive constant;

and the parameter B1 > 0 satisfies the constraint of the
accelerated error as |S1| < B1.

The first Lyapunov candidate function can be designed

V1 =
S2

1

cos (πS1/2B1)
. (21)

Substituting Equation (20) into (19), the derivation ofV1can
be deduced as

V̇1 = −
k1S2

1

cos (πS1/2B1)
+ M1S1S2. (22)

Step 2: The derivation of S2 can be calculated as follows:

Ṡ2 = ϕ
(
βϕe2 + f2 (·) + dx + ux − α̇2

)
, (23)

where f2 (·) = −dxxx2 − dxyx4 −ω2
xx1 −ωxyx3 + 2Ω2x4 stands

for an unknown nonlinear term, since system parameters
such as dxx, dxy, ω2

x, ωxy, Ωz are uncertain. The T2SFNN has
strong nonlinear mapping abilities and can approximate any
unknown nonlinear term with high precision. Consequently,
one has

f2 (·) = θT
2ξ2 + ε2. (24)

The second Lyapunov candidate function is designed as

V2 = V1 +
S2

2

cos (πS2/2B2)
. (25)

From Equation (25), the derivation of V2 can be deduced as

V̇2 = V̇1 + S2Ṡ2M2. (26)

where M2 = 2+πS2/2B2 tan(πS2/2B2)
cos(πS2/2B2) .

According to Lemma 2, the derivative of α2 can be obtained
through a second-order tracking differential:

ϑ̇3 = −r3 |ϑ3 − α2|
1/2 sign (ϑ3 − α2) + ϑ4

ϑ̇4 = −r4sign
(
ϑ4 − ϑ̇3

)  (27)

where the bound filtering error satisfies |ϑ4 − α̇2| ≤ lϑ4 .

The control input with the corresponding adaptive law can
be designed as

ux = − θ̂T
2ξ2 − βϕe2 + ϑ4 (28)

˙̂θ2 = γ2S2M2ξ2 − 2λ2θ̂2, (29)

where the design parameter k2, γ2 and λ2 are positive
constants, and the parameter B2 > 0 satisfies the constraint
of the accelerated error as |S2| < B2.

Substituting Equations (22), (23) and (28) into (26) yields

V̇2 ≤ −

2∑
i=1

kiS2
i

cos (πS2/2B2)
+

M2
2d2

x

2

− ϕ2S2
2 + ϕS2M2

(
f2 (·) − θ̂T

2ξ2

)
+ S2M2ϕlϑ4 .

(30)
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Step 3: The derivative of S3 to time t can be calculated as

Ṡ3 = ϕ
(
βϕe3 + e4 + α4 − ẋ3d

)
. (31)

And the chosen virtual control input α4as

α4 = −
k3e3

M3 cos (πS3/2B3)
− βϕe3 + ẋ3d, (32)

where M3 =
2+ π

2B3
S3 tan(πS3/2B3)

cos(πS3/2B3) , the design parameter k3 is a
positive constant, and the parameter B3 > 0 satisfies the
constraints of the accelerated error as |S3| < B3.

The third Lyapunov candidate function can be designed as
follows:

V3 = V2 +
S2

3

cos (πS3/2B3)
. (33)

The derivation of V3 can be deduced as

V̇3 = V̇2 + S3Ṡ3M3. (34)

Substituting α4, Ṡ3 and V̇2 into V̇3 yields

V̇3 ≤ −

3∑
i=1

kiS2
i

cos (πSi/2Bi)
−
ϕ2S2

2

2
+

M2
2d2

x

2

+ M3S3S4 + ϕS2M2

(
f2 (·) − θ̂T

2ξ2

)
+ S2M2ϕlϑ4 .

(35)

Step 4: The last Lyapunov candidate function can be designed
as

V4 = V3 +
S2

4

cos (πS4/2B4)
. (36)

where the parameter B4 > 0 satisfies the constraints of the
accelerated error as |S4| < B4.

Calculating the derivative of S4 with respect to time t results
in

Ṡ4 = ϕ
(
βϕe4 + f4 (·) + dy + uy − α̇4

)
, (37)

where f4 (·) = −dxyx2 − dyyx4 −ωxyx1 −ω2
yx3 − 2Ω2x2 stands

for an unknown continuous function. We can employ the
T2SFNN to approximate it again as

f4 (·) = θT
4ξ4 + ε4. (38)

As in step 2, the derivative of α4 can be obtained through a
second-order tracking differential:

ϑ̇5 = −r5 |ϑ5 − α4|
1/2 sign (ϑ5 − α4) + ϑ6

ϑ̇6 = −r6sign
(
ϑ6 − ϑ̇5

)  (39)

where the bound filtering error satisfies |ϑ6 − α̇4| ≤ lϑ6 .

The control input with the corresponding adaptive law can
be designed as

uy = −θ̂T
4ξ4 − βϕe4 + ϑ6 (40)

˙̂θ4 = γ4S4M4ξ4 − 2λ4θ̂4, (41)

where the design parameters k4, γ4 and λ4 are positive.

The derivative of V4 can be computed as follows:

V̇4 = V̇3 + S4Ṡ4M4 (42)

where M4 =
2+ π

2B4
S4 tan(πS4/2B4)

cos(πS4/2B4) .

Substituting uy, Ṡ4 and V̇3 into V̇4 yields

V̇4 ≤ −

4∑
i=1

kiS2
i

cos (πSi/2Bi)

+
∑

j=2,4,k=x,y

M2
j d

2
k

2
−

∑
j=2,4

ϕ2S2
j

/
2

(43)

Stability analysis
Lemma 3: Consider the control equation of the MEMS
gyroscope described by Equation (2). The accelerated
adaptive backstepping control inputs are designed as
(20), (28), (32) and (40) with adaptive laws (29), (41).
If Assumption 1 holds, and the initial conditions of
the MEMS gyroscope with dead-zone inputs satisfy
x1(0) ∈ (−B1 + x1d(0),B1 + x1d(0)) and x3(0) ∈ (−B3 + x3d(0) ,
B3 + x3d(0)), then the following conclusions can be drawn:

1) All signals in the closed system are ultimately bounded in
a uniform way, and the output constraint is never violated.

2) The issues with chaos oscillation and asymmetric dead-
zone in the MEMS gyroscope system are solved, and the
transient response speed of the system is improved by
employing an acceleration function.

Proof: The whole Lyapunov function candidate is chosen as

V =

4∑
i=1

S2
i

cos (πSi/2Bi)
+

∑
i=2,4

1
2γi

θ̃T
i θ̃i. (44)

The derivation of V regard to the time is

V̇ ≤
∑

j=2,4

(
θ̃T

j

(
S jM jξ j −

1
γ j

˙̂θ j

)
+

M2
j ε

2
j

2

)
(45)

Substituting Equations (29) and (41) into (45) yields

V̇ ≤
∑

j=2,4

(
λ j

γ j

(
2θ∗Tj θ̂ j − 2θT

j θ̂ j

)
+

M2
j ε

2
j

2

)
(46)

From the Young’s inequality, the following can be obtained:

θ∗Tθ∗ + θ̂Tθ̂ ≥ 2θ∗Tθ̂

θ∗Tθ̂ − θ̂Tθ̂ ≤ 1
2θ
∗Tθ∗ − 1

2 θ̂
Tθ̂

 (47)

Substituting (47) into (46) yields

V̇ ≤ −
4∑

i=1

kiS2
i

cos (πSi/2Bi)
+

∑
j=2,4

M2
j l

2
ϑ j+2

2
+

∑
j=2,4,k=x,y

M2
j d

2
k

2

+
∑
i=2,4

λ j

γ j

(
−θ∗Tj θ

∗

j − θ̂
T
j θ̂ j

)
+

2λ j

γ j
θ∗Tj θ

∗T
j +

M2
jε

2
j

2

 . (48)

INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 1, APRIL - 2021 7 of 11



Accelerated Adaptive Backstepping Control of the Chaotic MEMS Gyroscope by Using the Type-2 Sequential FNN

From θ̃ = θ∗ − θ̂, it has

θ̃Tθ̃ = θ∗Tθ∗ − 2θ∗Tθ̂ + θ̂Tθ̂ ≤ 2θ∗Tθ∗ + 2θ̂Tθ̂. (49)

From (48), Equation (47) can be rewritten as

V̇ ≤ −
∑4

i=1
kiS2

i
cos(πSi/2Bi)

+
∑

j=,,4,k=x,y
M2

j d2
k

2

+
∑

j=2,4

(
2λ j

γ j
θ∗Tj θ

∗

j +
M2

j ε
2
j

2 −
λ j

2γ j
θ̃T

j θ̃ j

)
+

∑
j=2,4

M2
j l2ϑ j+2

2 = −a0V + b0 + c0.

(50)

where a0 = min {k1, k2, k3, k4, λ2, λ4}, b0 =
∑

j=2,4
M2

j ε
2
j

2 +∑
j=2,4

2λ j

γ2
θ∗Tj θ

∗

j and c0 =
∑

j=2,4

M2
j l2ϑ j+2

2 +
∑

j=2,4,k=x,y
M2

j d2
k

2 .

According to the general solution of the first-order linear
differential equation, the solution of (50) can be expressed as

V̇ (t) ≤ b0+c0
a0

+
(
V (t0) − b0+c0

a0

)
e−a0(t−t0)

(51)

thus defining a compact set as follows:

Ω ≡ {t |V (t) ≤ C0 } ∈ R. (52)

where C0 = V (0) + b0+c0
a0

.

From V̇ ≤ −a0V + b0 + c0 < 0, it can be obtained that all
signals of the closed-loop system are ultimately bounded in a
uniform way. There is(

S1,S2,S3,S4, θ̃2, θ̃4

)T
∈ R6×1. (53)

By integrating Equation (50) into interval [0,T], one has∫ T

0 V̇dt ≤ −
∫ T

0 a0
∑4

i=1
kiS2

i
cos(πSi/2Bi)

dt + Tb0 (54)

After a series of mathematical transformations, (54) can be
further expressed as

−
∑4

i=1

∫ T

0
kiS2

i
cos(πSi /2Bi)

dt ≤ 1
a0

(V (0) − V (T) + Tb0)

+ 1
a0

∫ T

0

(∑
j=2,4

M2
j l2ϑ j+2

2 +
∑

j=2,4,k=x,y
M2

j d2
k

2

)
dt.

(55)

Since −V(T)
a0
≤ 0, Equation (55) can be further expressed as

follows

−
∑4

i=1

∫ T

0
kiS2

i
cos(πSi/2Bi)

dt ≤ 1
a0

(V (0) + Tb0)

+
∫ T

0

(∑
j=2,4

M2
j l2ϑ j+2

2 +
∑

j=2,4,k=x,y
M2

j d2
k

2

)
dt.

(56)

The convergence results show that the accuracy of the
final error mainly depends on the upper bound of external
disturbances and approximation errors.

Numerical simulation
In this section, the results of the numerical simulation analysis
are provided to testify the effectiveness of our scheme.
Suppose that the initial values of the MEMS gyroscope are
chosen as x1 (0) = 0, 4, x2 (0) = 0, x3 (0) = 0, 6 and x4 (0) = 0,
the tracking trajectories are set as x1d = 0, 1 sin (4, 17t + 1) +
0, 1, and x3d = 0, 12 sin (5, 11t + 1, 2) + 0, 12. The external
disturbances can be defined as dx = x1 sin (t) and dy =
x3 sin (t). The parameters of the designed controller are set
as k1 = 112, k2 = 64, k3 = 128, k4 = 72, γ2 = 2, γ4 = 2,
λ2 = 1, 5, λ4 = 1, 5. Additionally, the center of membership
functions are chosen as [−1,−0, 5, 0, 0, 5, 1]. The parameters
of the T2SFNN are selected as σµi

j
= 1, σµi

j
= 0, 1, σ f j

= 0, 5,
σ f

j
= 0, 05 and r = 0, 05.

Trajectory tracking is shown in Figure 5. It is obvious that the
desired tracking trajectories almost match the actual signal
trajectories throughout the course of time, while it shows
that the proposed scheme can suppress chaotic motion.
Trajectory tracking errors of x-axis and y-axis for different
external disturbances are depicted in Figure 6. For different
external disturbances, tracking errors only have a small
fluctuation in the beginning. This shows that the designed
control scheme can eliminate the interference originated
from external disturbances. Control inputs for different Ωz
are depicted in Figure 7. From it, we can determine that
the control output is almost unaffected as parameter Ωz
changes. Obviously, the proposed control scheme has a
strong robustness to parameter perturbations.

Figure 5. Position tracking of x-axis and y-axis.
Source: Authors
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Figure 6. Position tracking errors of x-axis and y-axis for different
external disturbances.
Source: Authors

Figure 7. Control inputs of x-axis and y-axis for different Ωz.
Source: Authors

To show the superiority of our scheme, we made a
comparison with adaptive fuzzy dynamic surface control
(AFDSC) originated from (Lei, Cao, Wang, and Fei, 2017),
and the control input can be written as follows:

u = −θ̂Tξ (x) + α̇1 − c2z2 − ηsgn (z2) , (57)

where z2 = x2 − α1, c2 is a non-zone positive constant, the
sliding mode term ηsgn (z2) is a kind of compensation for the
error of the fuzzy approximation, and η is a positive constant.

Figure 8. Position tracking contrast of x-axis and y-axis between
adaptive fuzzy dynamic surface control and the proposed method.
Source: Authors

Figure 9. Control inputs contrast of x-axis and y-axis between adaptive
fuzzy dynamic surface control and the proposed method.
Source: Authors

Figures 8 and 9 illustrate the trajectory tracking performance
contrast between the adaptive fuzzy dynamic surface control
and the proposed method. In turn, from Figures 7 and 8, it
can be clearly concluded that the proposed control scheme
has better performance than the adaptive fuzzy dynamic
surface control.
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Conclusion
In this paper, an accelerated adaptive backstepping control
algorithm is proposed to address the control problem of the
MEMS gyroscope with chaotic behavior, unknown external
disturbances, and dead-zone inputs. In order to better reveal
chaotic behavior of the MEMS gyroscope, the phase diagram
and corresponding time history diagram are established. In
the controller design process, the Lyapunov energy function
is designed to make sure the output state of this system is
constrained, the dead-zone control inputs are established to
eliminate the adverse influence of the dead-zone input on the
performance of the MEMS gyroscopes and T2SFNN is used
to approximate unknown functions of the dynamic system.
In order to accelerate the convergence speed and ensure that
the system reaches a steady state faster, the speed function
is established. The problem of complex terms explosion
in traditional backstepping method is solved by combining
the tracking differentiator with backstepping method. The
stability analysis shows that the proposed scheme can ensure
the global asymptotic stability of the closed-loop system.
Finally, the simulation and comparison results show that the
proposed control scheme has better control performance. In
the near future, we will construct analog circuits to reveal the
dynamic behavior of the fractional order MEMS gyroscope,
and then design an effective controller to perform stable
control of the fractional order MEMS gyroscope.
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