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A B S T R A C T S  A R T I C L E   I N F O 

Emotion can be inferred from tonal and verbal 
information, where both features can be extracted from 
speech. While most researchers conducted studies on 
categorical emotion recognition from a single modality, 
this research presents a dimensional emotion 
recognition combining acoustic and text features. A 
number of 31 acoustic features are extracted from 
speech, while word vector is used as text features. The 
initial result on single modality emotion recognition can 
be used as a cue to combine both features with 
improving the recognition result. The latter result 
shows that a combination of acoustic and text features 
decreases the error of dimensional emotion score 
prediction by about 5% from the acoustic system and 
1% from the text system. This smallest error is achieved 
by combining the text system with Long Short-Term 
Memory (LSTM) networks and acoustic systems with 
bidirectional LSTM networks and concatenated both 
systems with dense networks. 
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1.   INTRODUCTION 
 
The demand for recognizing emotion 

in speech has grown increasingly as a 
human emotion can be expressed via 
speech, and many applications, such as 
call center, telephone communication, 
and voice messages, can benefit from this 
speech emotion recognition. The study 
of speech emotion recognition was 
established some decades ago using 
unsupervised learning and a small 
amount of data. Advancements in 
computation hardware and in the 
development of larger speech corpus 
have enabled us to analyze emotion in a 
speech 

Detecting emotion is useful to 
investigate whether a student is 
confused, engaged, or certain when 
interacting with a tutorial system or 
whether a caller to help a line is 
frustrating or not (Jurafsky et al., 2014). 
By gaining knowledge of emotion from 
student and caller in both cases, proper 
action can be taken to avoid the worse 
condition. The degree of emotion (in the 
numeric score) in both cases is more 
relevant than the category of emotion 
(joy or sad, for example). These are two 
examples where dimensional emotion is 
more informative than categorical 
emotion. 

Although research on emotion 
recognition has been conducted 
progressively, most re- search are 
focused on recognition of categorical 
emotion such as in (Griol et al., 2019; 
Chen et al., 2018; Atmaja et al., 2019). As 
shown by the previous two examples, a 
dimensional approach of emotion 
recognition is more informative in such 
cases. Recognizing the degree of emotion 
is a more challenging task as it tries   to 
predict the numerical score rather than a 
category. This type of task is a class of 
logistic regression. 

Research investigating dimensional 
emotion recognition in a text is reported 

by Calvo et al., 2020. They found by using 
the same classifier, i.e., non-negative 
matrix factorization (NMF), both 
categorical and dimensional emotion 
recognition obtain a similar result. They 
used emotional terms from an affective 
dictionary as text features for the 
dimensional task. In speech emotion 
recognition, the study of dimensional 
emotion recognition is reported by 
(Giannakopoulos et al., 2009) using a small 
dataset from videos, ten dimensions of 
acoustic features, and k-Nearest Neighbor 
(kNN) to estimate emotion degree. The 
results indicate that the resulting 
architecture can estimate emotion states of 
speech from movies with sufficient 
accuracy (Valence: 24%, Arousal: 35%, in 
terms of R2 statistics). Both dimensional 
text and speech emotion recognition above 
used a non-deep neural network (DNN) 
method due to the time and size of data. 

Another challenge in speech emotion 
recognition, besides a dimensional 
approach, is the strategy for extracting 
features. The features are the input of an 
emotion recognition system, and the 
performance of the system depends on 
those features. An issue to be considered 
when extracting features for speech 
emotion recognition is the necessity of 
combining speech (acoustic feature) with 
other types of features (El Ayadi et al., 
2011). We choose text features as it can be 
extracted from speech via automatic 
speech recognition (ASR). The combination 
of these acoustic and text features is 
expected to improve the performance of 
the emotion recognition rate compared to 
the use of single modality i.e., acoustic 
feature or text feature only. 

This paper presents a dimensional 
speech emotion recognition from a 
multimodal dataset. The purposes of this 
work are (1) to examine whether the fusion 
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of two related features can decrease the 
error of dimensional emotion recognition 
and (2) to find the best DNN architecture 
for a list of DNN layer combination. A deep 
learning-based classifier from the category 
of recurrent neural network has been built 
for this purpose. Two types of features are 
used: acoustic and text features. For each 
feature, a set of networks is stacked. The 
two networks from acoustic and text 
features are then concatenated using late 
fusion architecture. The result shows that 
the proposed method can improve the 
performance compared to the method that 
used acoustic or text features only. The 
evaluation is presented in terms of mean 
squared error (MSE), mean absolute error 
(MAE), and mean absolute percentage 
error (MAPE). To extend this work, a 
discussion to evaluate the metric used in 
this research is summarized at the end of 
the paper. 

2.   DATASET 

 The IEMOCAP (interactive emotional 
dyadic motion capture) database 
developed by the University of Southern 
California was used in this research (Busso 
et al., 2008). A number of 10039 turns 
(utterances) are recorded and measured, 
including included speech, visual, text, and 
motion capture (face, head, and hand 
movement). From those modalities, speech 
signal and text transcription are used. The 
dimension labels are given for valence, 
arousal, and dominance (VAD) in a range 
of 1 to 5 via self-assessment manikins 
(SAMs). All utterances on this dataset are 
used in this research. From these data, 80% 
is used for training, and 20% is used for the 
test. Twenty percent of the training data is 
used for validation. 

 
 

 
Fig. 1. Proposed dimensional speech emotion recognition from acoustic and text 

features. The dash line between label and dataset means that label is obtained 
from dataset directly. 

 
  3.   PROPOSED METHOD 

A proposed method of this research 
paper can be split into two parts: feature 
extraction and dimensional emotion 
classifier. A block diagram of the proposed 
system is shown in Fig. 1. From the dataset, 
two features are extracted: acoustic and 

text features. The extracted feature then is 
fed into a classifier where the regression 
process is performed by combining those 
two features using the late fusion method. 
Finally, the classifier produces the 
predicted emotion dimension, which will 
be compared to the true value label. The 
difference between true value label and 
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predicted emotion dimension is the error, 
which is measured in three different ways. 

 
3.1 Feature Extraction  

Two sets of features from acoustic and 

text are used to extract emotion from 

speech. The following is the description of 

those two sets of features. 

3.1.1 Acoustic Feature Extraction 

A number of 31 acoustic features are used 
in this research. These features are,  

• three time-domain features: 
zerocrossing rate (ZCR), 
energy, the entropy of energy.  

• five spectral-domain features: 
spectral centroid, spectral 
spread, spectral entropy, 
spectral flux, spectral roll-off. 

• 13 MFCC coefficients.  

• five fundamental frequencies 
(for each window).  

• five formants (for each 
window). 

We limit the number of windows for 
each utterance to 100 with 20 ms window 
length and 10 ms overlap. The resulting 
size of the acoustic feature then is (100, 31) 
for a single utterance. The total size of 
acoustic features for all utterances within 
the dataset is (10039, 100, 31).     

 
3.1.2 Text Feature Extraction  

Text features can be obtained in many 
ways. One of the simple yet powerful 
methods is by word embedding 
(Penningtonet al., 2014). A word 
embedding is a vector representation of a 
word. A numerical value in the form of a 
vector is used to make the computer to be 
able to process text data as it only processes 
numerical value. This value is the points 
(numeric data) in the space of dimension, 
in which the size of the dimension is equal 
to the vocabulary size. The word 

representations embed those points in a 
feature space of lower dimension 
(Goodfellow et al., 2016). In the original 
space, every word is represented by a one-
hot vector, a value of 1 for the 
corresponding word, and 0 for others. This 
element, with a value of 1, will be 
converted into a point in a range of 
vocabulary size. 

To obtain a vector of each word in an 
utterance, that utterance in the dataset 
must be tokenized. Tokenization is a 
process to divide an utterance to the 
number of constituent words. The 
following is the example of a single 
utterance from IEMOCAP dataset with its 
tokenization and a resulted text vector for 
each word. 
text = "Excuse me."  

tokenized_text = ["Excuse", 

"me"] text_vector = [832, 18] 

To obtain the fixed length of a vector 
for each utterance, a set of zeros can be 
padded before or after the obtained vector. 
The size of this zeros sequence can be 
obtained from the longest sequence, i.e., an 
utterance within the dataset, which has the 
longest words, subtracted by the length of 
a vector in the current utterance. We set the 
longest sequence for the IEMOCAP dataset 
for 554 sequences. 

A study to vectorize certain words 
has been performed by several researchers 
(Mikolov et al., 2013; Penningtonet al., 
2014; Mikolov et al., 2017). The vector of 
those words can be used to weight the 
word vector obtained previously. The size 
of the dimension of each word for pre-
trained word vectors is 300 (in the example 
above is one), shaping the size of (554, 300) 
text feature for each utterance, or (10039, 
554, 300) for all utterances in the IEMOCAP 
dataset.  
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4. DIMENSIONAL EMOTION 
CLASSIFIER  

Recurrent neural network (RNN) is 
one of the variants of the neural network 
that are designed to handle sequential 
information. These networks introduce 
state variables to store past information 
and determine the current output based on 
the current input. Let H is the output of 
hidden layer, X is the input and W is the 
weight of layer with bias b. Then, 

H = φ(XWxh + bh).   (1) 

is the output of hidden layer H with φ is 
non- linear function (activation). Having a 
recurrent hidden state (Ht) whose 
activation at each time is dependent on that 
of the previous time (Ht−1), the output of 
current hidden layer now is defined as, 

Ht = φ(XtWxh + Ht−1Whh + bh).  (2) 

The problem with that RNN is it 
always takes past time into consideration. 
A situation may be encountered when the 
early observa- tion is more/less significant 
to predict the fu- ture. To tackle this 
situation and adding some enhancements, 
several methods have been pro- posed by 
some researchers (Cho et al., 2014;  
Hochreiter et al., 1997). In this paper, those 
two RNN methods are implemented as 
dimensional emotion classifier. 

4.1 Gated Recurrent Unit 

Gated recurrent unit (GRU) enables 
the gating of the hidden state in RNN. This 
is a mechanism that is enabled for when the 
hidden state should be updated and when 
it should be reset. It is learned and 
addressed some limitations   of RNN e.g., 
whether an early observation is  highly 
significant for predicting all future 
observations. If the first observation is 
likely of  great importance, it will learn not 
to update the hidden state after the first 
observation. Like- wise, it will learn to skip 
irrelevant temporary observations. Finally, 

it will learn to reset the latent state 
whenever needed (A. Zhang et al., 2019). 

Reset unit, Rt, and update unit, Zt, are 
the new additional units in GRU. Together 

with candidate  unit,  Ĥt,  it  updates  the  

GRU  in  the following order. 

    Rt = σ(XtWxr + Ht−1Whr + br)    (3) 

    Zt = σ(XtWxz + Ht−1Whz + bz)     (4) 

H    ̃  
t  = tanh(XtWxh +(Rt      Ht−1) Whh + 

bh)      (5)      

Ht = Zt     Ht−1 + (1 − Zt)     H̃ 
t.      (6) 

where Ht now is the final update of 
GRU rather than reset gate of the output of 
RNN hidden layer unit. 

4.2 Long Short-Term Memory 

While GRU using two additional units, 
reset and update, long short-term memory 
(LSTM) network uses three different units 
to control data from current time (Ht) and 
past time (Ht−1): input, forget, and output 
gates. These three gates are defined as 
follows, 

    It = σ(XtWxi + Ht−1Whi + bi), (7)  

    Ft = σ(XtWxf + Ht−1Whf + bf ),(8)          

Ot = σ(XtWxo + Ht−1Who + bo),(9) 

Wx ∈     d×h and Wh ∈     h×h is the weight 

parameters with bias b ∈     1×h 

The complete sequence to update 
hidden state is defined as follow, 

C̃ 
t  = tanh(XtWxc + Ht−1Whc + bc) (10) 

Ct = Ft      Ct−1 + It      C          ̃  
t.                (11) 

Ht =  Ot     tanh(Ct).                         (12) 

C̃ t and Ct are candidate memory 

cell and memory cell, respectively. GRU 
and LSTM are very similar both in 
implementation and its result. GRU is 
faster due to less gates and LSTM, in many 
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cases, slightly better than GRU due to its 
complexity to handle flow of data. 

4.3 Model Architecture 

The implementation of the regression 
classifier for dimensional emotion 
recognition can be built by stacking some 
RNN layers from acoustic and text input 
and merge both to obtain the final 
dimensional emotion prediction. For each 
modality, acoustic, and text, we varied two 
dense, two GRU, and two LSTM layers. For 
RNNs (GRU and LSTM) we also 
implement a bidirectional version of those 
networks to allow distribution of 
information from the past and future time 
(GRU and LSTM only roll information from 
the current and past time, see Eq. 3–6 and 
Eq. 10–12). Those dense, bidirectional GRU 
(BGRU), and bidirectional LSTM (BLSTM) 
layers from each modality is stacked 
together using two dense layers. Fig. 2 
shows one of the architectures for 
combining acoustic and text features to 
obtain three emotional dimensions. 

To minimize the risk of overfitting, a 
number  of  dropouts  are  used  with  value  
0.4  for each acoustic and text network  and  
0.3  for  the last dense network. Rectified 
linear unit (ReLU) activation is used for 
both dense layers in the combined 
network. The final dense layer with three 
nodes used  linear  activation function to 
obtain the score of valence, arousal, and 
dominance. The  whole  network is trained 
with RMSProp (Dauphin et al., 2015). 
optimizer with mean squared error (MSE) 
as a loss function. Beside MSE, we use 
mean absolute error (MAE) and mean 
absolute percentage error (MAPE) as 
evaluation metrics. The implementation of 
this deep learning architecture is available 
in public repository, 
https://github.com/bagustris/dimension
al_ser_rnn,for research reproducibility 

 

Fig. 2.  Architecture of deep 

learning system combining 

acoustic and text features. The 

number in bracket shows the 

size of units/nodes on the 

layer. 

5. RESULTS 

5.1 Comparison of Acoustic, Text and 
Combined System 

To begin our discussion, we presented 
the result for each different modality. Table 
1 shows the performance of dimensional 
speech emotion recognition from the 
acoustic feature. Two layers of the same 
models are stacked and added with final a 
dense layer. For each model, the value of 
each metric is an average of five 
experiments (to minimize the effect of 
uncertainty computation due to 
randomness). The dense network is chosen 
as the baseline model. For this speech 
emotion recognition, the LSTM model 
shows modest improvement from the 
dense baseline layer in terms of MSE and 
MAE. However, other metrics i.e., MAPE, 
shows the different result which leads 
GRU/BGRU to obtain a better result. As 
MSE is used as a loss function, the result in 
MSE is relevant in this context. MAE 
metrics also show consistency with MSE. 
The MAPE metric can be used for 

https://github.com/bagustris/
https://github.com/bagustris/dimensional_ser_rnn
https://github.com/bagustris/dimensional_ser_rnn
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comparison to other datasets as it has the 
same scale from 0 to 100. 

Table 1. Performance comparison 
of dimensional speech emotion 

recognition from acoustic feature (in 
term of MSE, MAE, and MAPE) 

among different models. 
Modela MSE MAE MAPE (%) 

Dense 0.652 0.66 24.188 

GRU 0.648 0.655 23.69 

LSTM 0.636 0.651 24.014 

BGRU 0.647 0.653 23.675 

BLSTM 0.656 0.66 24.109 

aEach model is a stack of two same models. 

 

For text-based emotion recognition, 
the result is shown in Table 2. As reported 
by other researchers (Poria et al., 2017; 
Tripathi et al., 2018). we obtained better 
performance on emotion recognition for 
IEMOCAP dataset by utilizing text 
features. In this text emotion recognition, 
the LSTM model shows modest 
improvement from the baseline and other 
models. This result from some experiments 
can be considered when combining 
acoustic and text features for the fusion of 
two networks. For this text emotion  
recognition,  all metrics show almost 
consistent with each other (except GRU and 
BGRU, which is 0.02 different). MAE and 
MAPE show consistency in the order of the 
score among models. 

Table 2. Performance comparison 
of dimensional speech emotion 

recognition from text feature (in term 
of MSE, MAE, and MAPE) among 

different models 

Modela MSE MAE MAPE 
(%) 

Dense 0.493 0.559 20.436 

GRU 0.48 0.549   19.888 

LSTM 0.465 0.538 19.554 

BGRU 0.482 0.548 19.881 

BLSTM 0.487 0.55 19.588 

aEach model is a stack of two same models. 

 

Finally, we presented the result of the 
fusion of acoustic and text features in Table 
3. Clearly, a decrement of error is shown 
for all MSE, MAE, and MAPE metrics. For 
example, using the same dense layers, the 
error (MAPE) decreases from acoustic 
(24.188%) and text (20.436%) to combined 
acoustic and text system (19.97%). To obtain 
the more decrement of error, not only the 
architecture of each network modalities is 
important but also the strategy for 
combining the modalities is also important  
(Poria et al., 2017). Although we tried 
several different layers after concatenation 
of two networks (acoustic and text), we 
focus on selecting the combination for each 
modality while keeping the use of dense 
layer after a combination of two networks. 
This focus is based on some 
experimentation we obtained; the simple 
dense layers after concatenation perform 
better than the more sophisticated layers 
(GRU, LSTM, and attention models). 

Table 3. Performance comparison 

of dimensional speech emotion 

recognition from combination of 

acoustic and features (in term of 

MSE, MAE, and MAPE) among 

different models 

Model MSE MAE MAPE 
(%) 

Dense + Dense 0.45

7 

0.546 19.97 

Dense + BGRU 0.44 0.533 19.585 

BGRU + Dense 0.45

4 
0.543 19.81 

LSTM + LSTM 0.42

8 
0.525 18.929 

BLSTM + 
BLSTM 

0.43

8 
0.531 19.423 

BLSTM + LSTM 0.41

9 
0.517 18.713 

BGRU + GRU 0.42

9 
0.527 19.139 
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5.2 Design of System Architecture and 
Its Result 

On designing the system architecture 
for dimensional speech emotion 
recognition, we rely on initial experiments 
using the unimodal feature, and other 
researcher results (Atmaja et al., 2019; 
Tripathi et al., 2018). From Tables 1 and 2, 
it is shown that the text feature gives better 
result on dimensional emotion recognition 
than acoustic feature. For both features, 
LSTM performs better than any other 
model. Using this result, we build LSTM-
based networks for those two modalities 
and combine them with dense layers. 

On choosing hyperparameters, we 
manually add more units to text networks 
as it gives a better result. The choice of 
using 50 units and 40 units of nodes on each 
LSTM layer on each modality is also 
obtained from experimentation; we use 
larger units first and decrease this number 
until the smaller one without decreasing 
the performance (error metrics). For the 
dense layers, the number of 30 units for 
each layer is also based on the experiment. 
The ReLU and tanh activation function in 
those layers perform a similar result. To 
avoid overfitting, we use the callback 
strategy besides  putting the dropout layer 
on each network branches (acoustic, text, 
and combination layers). Two methods are 
used for callback (to stop the iteration of 
training): early stopping and model 
checkpointing. For early stopping, we use 

a number of 10 patiences to monitor 
validation loss. This means, if no 
decrement of validation loss (MSE) after 
ten epochs, the training process will stop 
and uses the best weight for the 
evaluation/prediction. The model check- 
pointing is a similar method to save the 
model (which can also be ignored if we do 
not want  to save the model). Finally, 
although we obtain the best prediction of 
emotion dimension with BLTSM and LSTM 
networks, there is a room for improvement 
for experimenting and designing a better 
model architecture. In some runs, the 
combination of GRU performs better; 
however, the average result shows that  a  
combination of LSTM is the best one. The 
hyperparameters optimization on future 
research will be done  on training and 
development set instead of manually hand-
crafted. 

For the obtained improvement, a 
decrement of MAPE from acoustic feature-
based emotion recognition is achieved up 
to 5.5 % when using a combined feature. 
For MSE and MAE, the decrement is in a 
range of 0.14-0.17 and 0.09- 0.11, 
respectively. From the text feature, the 
decrement of error is in range of 0.08-0.046, 
0- 0.02, and 0-0.84% for MSE, MAE, and 
MAPE, respectively. The excerpt of the 
result of VAD score from the model 
obtained using BLSTM, and LSTM 
networks are presented in Table 4. 

 

Table 4. Sample of true and predicted VAD score from model using BLSTM and 

LSTM Networks 

 Utterances VAD 

 True Predicted 

Oh, totally. Yeah. [4, 3, 2.5] [3.21, 2.67, 2.60] 

The craziest thing just happened to me. [4, 3, 2.5] [3.35, 3.02, 2.97]  

This girl; she just offered me fifty 

thousand dollars to marry her. 

[3.5, 3.5, 3] [3.32, 3.3, 3.34]  
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5.3 Evaluation of Loss Function and 
Metrics 

One of the challenging problems in 
dimensional emotion recognition is to 
choose the proper metrics for evaluation. In 
this  paper,  we used standard regression 
metrics i.e., MSE, MAE, and MAPE. 
However, when running some experiments 
on the same condition (system 
architecture), when a metric decrease, an- 
other increase the score. For example, in the 
second experiment, after the first, MSE gets 
lower, but MAPE gets higher, and so on. 

Table 5 shows the raw result obtained 
in Table 1 for dense acoustic network. As 
shown in that table, the  consistency  of  
each  metric  is changing when re-running 
the experiment. In the second experiment, 
when MSE score decreases, MAPE score 
increases. In the last experiment, the MSE 
score increases, while MAE and MAPE 
decrease. To evaluate metrics, we perform a 
simple analysis by  changing  the  lost 
function from MSE (default) to MAE and 
MAPE. Table 6 shows that by changing the 
loss function from MSE to MAE, the error 
result decreases slightly. 

Table 5. Results of five 
experiments on the same models 

(dense layers) from speech features 

Experiment# MSE MAE MAPE  

1 0.659 0.663 24.12 

2 0.644 0.660 24.41 

3 0.645 0.651 23.44 

4 0.652 0.663 24.94 

5 0.656 0.662 24.01 

 

If we compare this result (our best 
MAE) with other research which also used 
acoustic and linguistic information, but 
with different approach (Karadoğan et al., 
2012). our MAE is better than them (their 
best MAE is 1.28 for arousal). However, 
comparing the same metric across the 
dataset is not sufficiently comparable as the 
upper level bound of MAE is different  for  
each  dataset. In this case, MAPE might be 
more useful than MSE and MAE. 
Moreover, using another metric such as 
concordance coefficients correlation (ρc) as 
used in (Tzirakis et al., 2017) is more 
relevant as it has the same scale 0-1 for any 
datasets to measure the agreement. 

Table 6. Results of BLSTM and LSTM networks from acoustic and text 
features with different loss function 

Loss Function MSE MAE MAPE  

MSE 0.43 0.523 18.87 

MAE 0.42 0.519 18.631 

MAPE 0.469 0.543 18.835 
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6. CONCLUSION 

We presented our work on 
dimensional speech emotion recognition 
by combining acoustic and text features 
using recurrent neural networks. Thirty-
one acoustic features are used as input to 
acoustic networks, and 554- word vectors 
are fed to text networks. The result from 
unimodal shows that text-based emotion 
recognition performs better on IEMOCAP 
dataset compared to acoustic emotion 
recognition. The combination of acoustic 
and text features decreases the error of 

MAPE up to 5% from acoustic features only 
and near 1% from text feature only. For the 
combination among DNN layers, the use of 
BLSTM for acoustic network and LSTM for 
text network with con- catenated dense 
layers to combine those two features 
performs better compared to a list of given 
DNN layer combination. The choice of 
more advanced metric for loss function and 
evaluation in dimensional emotion 
recognition should be considered on the 
future  research for consistency and 
benchmarking with other dimensional 
emotion recognition studies. 
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