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The magnitude of the damping force of the mathematical pendulum swinging on a 
medium is usually proportional to the speed of the pendulum. In this research, the 
pendulum oscillation parameters oscillating on an air medium under the influence of a 
magnetic field of 1.8 G will be investigated. In the initial stage, the effect of the 
magnetic force on the damping coefficient of ferrite pendulum oscillations with an 
initial deviation of 15 degrees observed. Furthermore, the study continued with 
varying the angle of deviation from 5 degrees to 25 degrees. The results of the data 
fitting amplitude (xi) at various swing times (ti) are using to analyze the effect of the 
angle of deviation on the maximum amplitude. The results showed that for the 
deviation angle of 15o the coefficient of damping of the medium affected by the 
magnetic force was 0,0022 greater than the coefficient of air damping 0,00006. It 
affects the amplitude, which decreases faster than the pendulum amplitude without 
the influence of magnetic force. Variation in the angle of deviation also affects the 
amplitude of the pendulum. In the deviation angle below 10, the pendulum motion is 
more influenced by the magnetic force, whereas in the deviation above 10, the 
pendulum motion is more dominated by gravity. 
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I. Introduction 
There are two types of vibrations, namely 

harmonized vibration and damped vibration. Damped 
oscillations consist of various kinds, namely dumped, 
overdamped, and underdamped. The type of dropped 
occurs if there is attenuation, over dumped occurs if the 
attenuation is maximum so that objects cannot vibrate 
anymore, underdamped vibrations arise under the 
influence of force. 

Swing pendulum vibrations with weights made of 
ferrite material [1] under the influence of permanent 
magnetic fields [2], [3], [4] are examples of underdamped 
vibrations. This type of swing is seen as a rather specific 
swing because the pendulum vibration is limited by the 
influence of the coercive force, which is a combination of 
magnetic attraction and magnetic repulsion forces. The 
spectacle occurs when the pendulum polarity is opposite 
to the permanent magnet polarity, and the repulsion 

occurs when the pendulum polarity is the same as the 
permanent magnet. The pull and push forces and the 
force of gravity produce a swing that is only slightly 
damp. It can be observed from the amplitude of the 
oscillation that changes only slightly so that the swing 
pattern is still like a harmonic vibration [5]. This 
condition runs in a few moments. When the gravitational 
run is no longer able to compensate the attractive and 
repulsive magnetic forces, the magnetic force is more 
dominant so that the swing is no longer harmonious. The 
amplitude of the oscillation decreases dramatically and 
finally stops. Therefore, in this study, the solution of 
differential equations with dumping force derived from 
the interaction between the ferromagnetic pendulum and 
the permanent magnet. By varying the angle of 
displacement of the oscillator then it can be seen its effect 
on the maximum deviation after there is a dumping 
magnetic force. 
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II. Theoretical  
Damped oscillation 

Vibration is a back and forth repetitive movement 
that repeats through the equilibrium point [6], [7]. The 
harmonic vibration equation is given [8] in the eq. (1): 
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Theoretically on harmonious vibrations, the 

pendulum will oscillate with a fixed amplitude. But in 
reality, the object will stop oscillating after a particular 
time due to air attenuation [9] and other things such as 
magnetic fields. The equation for damped swing where 
the damping force is proportional to the swing speed [10] 
is 
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Where x displacement, m pendulum mass, b 

damping coefficient, and k string constants. For swing 
under the influence of the magnetic force, there is a 
damped force that works period so that it will affect the 
oscillation frequency and maximum deviation [11]. For a 
driving force, F cos t  the  [12] eq. (3) can be written as 
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The magnitude of the interaction force between the 

ferromagnetic pendulum (a) and the permanent magnet 
(b) at distance r is expressed by eq. (4), [13], [14], [15]. 
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Where ma and mb is the pendulum magnetic moment 

of a and b, and 
ˆ

am ˆ
bm

 the unit magnetic moment ma and 

mb, r the distance from a to b, and r̂ the position vector a 
from b. The magnitude interaction force between a and b 
is dependent on the interval [16] and the orientation of 
the magnetic moment of the two magnets. 

 

Ferrite rod pendulum swing 
Figure 1 shows the ferrite rod an as a pendulum 

swinging under the influence of a permanent magnet b. 
At the beginning of pendulum, a deviated at an 

angle . When the pendulum is released, the gravitational 
force causes the pendulum to swing near the magnetic 
pole b, for example, the North pole (U). At the same time, 
the ferrite pendulum is magnetized by the magnetic field 
b so that the magnetic dipole moments a near the North 
pole b become the south pole (S). In this condition, the 
driving force comes from 2 sources, namely the 
gravitational force and the magnetic interaction force. 
Assume that the gravity force is greater than the magnetic 
force. 

Furthermore, when a is near the centre of mass of 
the permanent magnet b, the status of pendulum a leaves 
the north pole of magnet b and goes to the south pole of 
magnet b. In this case, the pendulum is affected by both 
permanent magnetic poles b. Towards the north pole of 
stable magnet b, the pendulum is pulling, and this pull is 
inhibiting motion. Once it is released from the magnetic 
north pole, the pendulum is induced by the magnetic 
South pole so that its polarity reverses to become the 

north pole due to the pull of the magnetic north pole on 
the south pole of the pendulum deviation to be reduced. 
The same pendulum motion occurs in the opposite 
direction so that the pendulum deviation decreases over 
time and finally stopped. 

It should be noted that when the pendulum is near 
the magnet, the swing becomes less regular, which is 
slightly away from the line. It is because of the magnetic 
repulsion force on the pendulum when the polarity of the 
pendulum is the same as the magnetic polarity. By 
viewing the magnetic force by magnet b as a damped 
force, the solution eq. (3) is stated by [17]: 
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Figure 1. The pendulum system under the influence of 

magnetic forces. 
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For frequency of damped force  that equals 

to natural rate 0  then 

 

     



   t

A
tAetx t cos

2
sin   (6) 

 
Where A is oscillation amplitude. The 

quantities  and  in the sin term differ from those 
in the cos term, except under certain conditions. 

 

III. Method 
Tools and materials 

The material used in this study consisted of 
ferrite rods with a mass of 0.0258 kg, a diameter of 
0.955 cm, length of 3 cm, a thread of 1 m, 
rectangular neodymium magnets with a size of 2 
cm' 5 cm' 0.2 mm of 2 pieces. This magnet has an 8 
mT measured at a distance of 1 cm from it one 
pole. The tools needed include a protractor to 
measure the angle of deviation, a 50 cm support 
rod, a video to record the movement of the 
pendulum, tracker software to obtain pendulum 
position data at any time. 

 

Data collection  
The ferrite pendulum is hanging on a 38 cm 

long string then placed on a 40.5 cm high statif. 
Neodymium magnets as permanent magnets 0.5 cm 
thick are mounted on the base so that the distance 
from the end of the ferrite pendulum to the 
permanent magnet is 2 cm. Furthermore, the ferrite 
pendulum is deviated at an angle of 5 degrees and 
then released. The oscillation of the pendulum is 
recorded with the video until the pendulum stops 
swinging. This experiment was carried out in a 
confined space so that the disturbance from the 
environment can be minimized. 

 

Data analysis  
From the pendulum swing video tracking the 

pendulum data set of the position of a pendulum at 
any time (ti, yi) is obtained. The data is then fitted 
according to the eq. (7): 
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Where X is pendulum deviation, A, , , and 

D are fitting constants. From this data, fitting also 
obtained RMSE and R2 values. A right R2 is more 
than 0.95. That the value of R2 is still far from 0.95 
so that the fitting parameters are corrected with 
solver parameters software. 

IV. Results and Discussion 
Damping coefficient of the magnetic field 

Figure 2 shows an example of the appearance 
of the ferrite pendulum tracking results for an angle 
of 15 degrees without the influence of a magnetic 
field. Data sampling was performed at every 0.02s. 
We are tracking data in the form of time as x and 
position as y. From this tracking data, then an x(t) 
curve is drawn. The same thing is done for the 
swing with the influence of the magnetic field. The 
x(t) curve together shown in Figure 2. 

 

 

Figure 2. Display of the tracking process on ferrite 
pendulum swing to get it to a position at any time. 

 
Figure 3 shows the curved pendulum ferrite 

pendulum tracking results for swing without the 
damping, with air attenuation and with the damping 
from permanent magnets. 

From Figure 3, it appears that in general, the 
longer the oscillation, the deviation is decreasing. 
For oscillations without damping, the amplitude of 
the pendulum does not change for oscillations with 
air attenuation the variance of the amplitude 
decreases. Table 1 shows the oscillation parameters 
of the ferrite pendulum fittings. 

From Table 1 it appears that the deviations in 
the three types of vibrations were initially the same, 
namely 17.75 cm. But after swinging, the 
pendulum influenced by magnetic force tends to be 
(A + E) smaller than the pendulum with air 
attenuation or without damping that is A. In 
contrast, the damping coefficient   of the three 
types are different. From the value of , it appears 
that the swing with attenuation from the magnetic 
force has  = 0,022 higher than the swing without 
the magnetic force that is  = 0.00006. It shows the 
role of the magnetic force on the ferrite pendulum 
swing, especially when leaving the equilibrium 
position, the pull force between the ferrite 
pendulum and the magnet can inhibit the 
pendulum's motion so that the deviation becomes 
reduced. However, the pendulum still swings at the 
same frequency on all swing types that is 4.61 
rad/s. 
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 Figure 3. Swing of the ferrite pendulum at an angle of deviation of 15 degrees (a) without damping, (b) with air attenuation, 
c) with magnetic field attenuation. 

 
Table 1. Fitting constants in various swing conditions 

Type of oscillation Equation of pendulum Position Fitting constants 

Undamping  
(theoretically) 

   tAey sin  

A = 17.75 cm 
  = 4.61 rad/s 
  = 0 
°

Air damping     tAey t sin  

A = 17.75 cm 
 = 4.61 rad/s 
  = 0.00006 
° 

Magnetic force  
damping  

      tEtAey t cossin  

A = 17.75 cm 
E = 0.13 cm 
 = 6.61 rad/s 
 = 0.02200 
° 

 
 

Effect of angle of deviation on the 
amplitude 

 

 

Figure 4. The amplitude of ferrite pendulum at various 
deviation angles. 

From Figure 4, the damping magnitude for air 
and magnet are displayed at various angles of 

pendulum deviation. At an angle of 5 degrees to 10 
degrees, the pendulum amplitude curve for 
magnetic attenuation coincides with the pendulum 
amplitude with air attenuation. At small angles, the 
gravitational force that moves the pendulum toward 
the horizontal is almost not present so that the 
magnetic force dominates the pendulum driving 
force. Assume that the pendulum moves from the 
right to the left. When the position pendulum at 
slightly the right of the magnet, the pendulum 
pulled to the left by the magnet. Once it passes 
through the equilibrium, the magnetic induction 
process occurs so that the polarity of ferrite 
pendulum reversed. As a result, the pendulum is 
pulled back from the left position to the equilibrium 
point. This movement only occurs a few times, and 
after that, the pendulum will stay in the place 
closest to the magnet. 

For deviation angles above 10 degrees, the 
amplitude of the ferrite pendulum with a magnetic 
field damper is smaller than the amplitude of the 



R. Adi  et al. / Indonesian Review of Physics 3(1), 2020, 1-5 5 
 

 

http://journal2.uad.ac.id/index.php/irip p-ISSN: 2621-3761 
e-ISSN: 2621-2889 

 

ferrite pendulum with an air damper. At an angle of 
deviation above 10 degrees, the gravitational force 
can play a more significant role in moving the 
pendulum. In contrast, the magnetic force is still 
small because the magnetic distance to the 
pendulum is further away. When the pendulum 
released to the equilibrium point, the pendulum 
moves quickly because of the influence of the 
gravitational force, and this driving force increased 
when the pendulum approaches the magnet because 
the arising the magnetic force. After the pendulum 
passes the equilibrium point, the polarity changes 
due to magnetic induction, and this inhibits the 
pendulum's motion. As a result, the amplitude is 
reduced. The same mechanism occurs in the swing 
in the opposite direction until the pendulum stops. 
Thus at an angle of more than 10 degrees, the 
presence of a magnetic field can reduce the 
amplitude of the pendulum swing compared to if 
there is no magnetic field. 

 

V. Conclusion 
The ferrite pendulum that swings under the 

influence of the magnetic force has a characteristic 
in its swing profile. The damping coefficient is 
higher than the air damping coefficient, so the 
amplitude decreases so that the pendulum stops 
faster. The air attenuation coefficient is 0.00006, 
while the magnetic damping coefficient is 0.0022. 
At an angle deviation, less than 10 degrees the 
force motion in the pendulum more dominated by 
the magnetic force whereas in the deviation above 
10 degrees the force of gravity more dominates the 
force of movement. But the swing is inhibited by 
the magnetic force so that the amplitude decreases. 
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