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Semiconductor materials can be used as potential barriers to Tunnelling effects. In 
this study, four semiconductor materials are arranged in various ways to form a 
quadruple potential structure to analyze the value of the transmission coefficient. The 
analysis was conducted using the analytical and numerical matrix propagation method 
using Matlab2018a. The results confirmed that the inverted arrangement produces the 
same transmission coefficient value for each energy. So that there are 12 kinds of 
transmission coefficient values generated from 24 arrangements. The semiconductor 
material composition with the most considerable transmission coefficient value is 
ADCB and BCDA, which have a value of 0.8087. The variation of the arrangement 
affects the value of the transmission coefficient so that it can be used as a guideline 
for selecting the arrangement that produces the most optimum value of the 
transmission coefficient from various possible arrangements. 
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I. Introduction  

Previously, scientists believed that all the natural 
phenomena could be solved using Newtonian mechanics 
and Maxwell electromagnetics. Until the end of the 19th 
century, the belief that classical physics could explain all 
natural phenomena began to diminish when scientists 
discovered several new phenomena that could not be 
explained by classical physics concepts. This 
phenomenon mainly appears in microscopic physical 
objects such as elementary and atomic particles [1]. 

One of the interesting phenomena in quantum 
mechanics is the Tunnelling effect. The Tunnelling effect 
occurs when the particles pass through a barrier with an 
energy higher than the particles' energy. According to 
classical mechanics, particles with energy that propagate 
to the right and encounter a potential, then particles will 
be reflected the left [1]. Nevertheless, quantum 
mechanics believe that particles can pass through 
barriers. The ability of particles to penetrate this barrier is 
due to the wave's nature, which plays a more critical role 
than the nature of particles [2]. Particles have the 
probability of being able to break through a barrier even 
though the energy is less than the energy of the barrier. 
The magnitude of this probability is called the 
transmission coefficient [2]. 

The transmission coefficient can be analyzed using 
several methods, namely the variable separation method 
in the Schrodinger equation, the Propagation Matrix, and 
the WKB (Wentzel-Kramers-Brillouin). In this study, the 
transmission coefficient will be analyzed using the matrix 
propagation method because it is easy to use in cases with 
a relatively large number of obstructions. Abdulhalim's 

research on some layered structures' optical properties 
shows that the analytical expression derived from the 
matrix propagation method is more comfortable to apply 
than using direct computation [3]. The use of the matrix 
propagation method is divided into three main steps: first, 
calculating the propagation matrix to transmit a particle's 
wave function with energy  moving towards a single 
potential barrier. Second, compute the propagation matrix 
for the wave function between potential steps. Third, 
calculate the barrier's total propagation by multiplying 
each propagation of each potential [4]. 

The transmittance of electrons through potential 
barriers is a research topic that has caught by many 
researchers'. Martinz and Ramos [5] determine the 
transmission coefficient's value analytically and 
numerically on the potential triple barrier with two 
potential wells. Research on the potential triple barrier of 
GaN, SiC, and GaAs materials by Supriadi has a 
maximum transmission coefficient value of 0.819 [6], and 
Prastowo's research [7] on the potential triple barrier of 
Graphene material obtained a resonance phenomenon 
with the most considerable transmission coefficient value 
is 1.0000 at an energy of 0.9200 eV. 

Research on the effects of breakthroughs has 
contributed to developing electronic devices on the 
nanometer scale with increasingly impressive 
performance. Electronic devices use semiconductor 
materials as their main components. Each semiconductor 
material has characteristics of the size of the potential 
barrier or energy gap. The research aims to determine the 
transmission coefficient's value of Semiconductor 
materials of GaAs, GaSb, AlAs, and InP that arranged 
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with several variations to form a quadruple potential 
barrier structure. 

 

II. Theory 
Waves of Particles 

Maxwell's theory of light as a wave and 
electromagnetic theory flourished well into the late 19th 
century. However, Einstein in 1905 rejected the theory 
based on the phenomenon of the photoelectric effect. 
According to Einstein, light must be seen as a quantum 
particle called the photon. The energy of the photon is 

 , and momentum is  

     (1) 

This momentum characterizes the particle properties of 
light [8]. 

In 1924, Louis de Broglie proposed the hypothesis 
that particles have waves. A particle with momentum  
has a wavelength called the de Broglie wavelength,  

 
(2) 

The wave package fills a quantity capable of 
accommodating and representing the particles' and the 
wave's properties. The wave package is approached by 
combining two plane waves so that the wave function can 
be represented as follows: 

 
(3) 

N is the normalization constant [9]. 
 

Schrodinger's Equation 
Erwin Schrodinger introduced the equation in 1926 

to discuss particle waves' description in the atomic 
dimension that meets physics's principles and laws [1]. 
The form of the Schrodinger equation is a second-order 
partial differential equation. Solving the Schrodinger 
equation is by applying the variable separation method to 
get the solution. 

The Schrodinger equation must obey the law of 
energy conservation since the total energy- the kinetic 
energy and the potential energy of a particle is conserved. 
Besides, the Schrodinger equation must comply with de 
Broglie's postulate; the mathematical solution for a 
particle with momentum  must be in the form of a wave 

function with  the same wavelength as .  

Solving the Schrodinger equation must provide 
information about the probability of finding the particle 
that must exist in space. The wave function must be 
single and finite; otherwise, a particle's existence would 
be more than one possibility. The wave function must be 
continuous; it can be interpreted as a breakdown of the 

particles not to be accepted. The wave function's 
derivative concerning the position must also be 
continuous because it is related to the electron's 
momentum. The indicator of the nature of a well-behaved 
wave must have a wave superposition characteristic [10]. 

    (4) 

 
Tunnelling Effect 

The Tunnelling effect is a phenomenon in quantum 
physics when energetic particles  pass through a 
potential region  of a barrier on condition  
(Figure 1).  

 

 
Figure 1. Single potential barrier model ( ) 

 

In region I (x < 0), the particles act as free particles 
because they are not affected by any forces . 
The Schrodinger equation can be written: 

 

or 

 

with 

 

the equation has a solution: 

 (5) 

Figure 1 represented that the free particle moves 
from left to right when the particle enters the  
area, the particle encounters a potential equal to , 

so the Schrodinger equation can be written: 

 

or 
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with 

 

Since so,  it can be written 

 or ; . 

The equation above has a solution: 

 (6) 

When the particle manages to break through , 
the particle returns to a free particle  so that the 
Schrodinger equation can be written: 

 

or 

 

with 

 

It appears that the wavenumber of the particle returns to 
its original state and has a solution: 

 (7) 

The transmission coefficient can be defined as the 
probability that a particle can break through a potential 
barrier. The equation that can be used to obtain the value 
of the transmission coefficient on the breakthrough effect 
is: 

 
(8) 

Since the region I and III are the same, that is 

, so  and . 

With a mathematical solution using the elimination and 
substitution method, it is obtained: 

 

(9) 

 

Matrix Propagation Method 
The matrix propagation method is the spread or 

transmission of a wave using a matrix. The work with the 

matrix propagation method is divided into four parts, as 
ilustrated in the Figure 2 [4].  

 

 
Figure 2. Matrix propagation method 

 

First part: calculate the propagation matrix  for 

transmission and reflection and the wave function 
representing an energized particle  entering a ladder 

potential. The potential ladder in question is in the 
position   in Figure 2. In the area , the particles 

have a wave number  and a wave 

function 

 
(10) 

 
(11) 

Applying boundary conditions in the area  and , at 

  matrix equation can be written 

 

(12) 

This equation can be reduced to 

 
(13) 

 are a two × two matrices describing the wave 

propagation at the ladder potential , with the value ie  

 

(14) 

Second part: calculate the propagation matrix  

for the propagation of the wave function between two 
ladder potentials. The propagation in question is between 

 and . In Figure 2, the width of this propagation is 
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. The propagation between the potential 

ladder with the potential width 
 

carries information 

about the phase so that it is in the form of a matrix i.e. 

 

 

 (15) 

The propagation of the matrix over the area   

consists of free area propagation and ladder propagation. 

 
 

 

(16) 

 and   

With this symmetry, it can be written 

 
(17) 

The fourth part: calculate the total propagation 
matrix  for the total ladder potential by multiplying all 

the propagations of each potential area i.e. 

 

(18) 

When particles come from the left, then  and if no 
particles are reflected from the right then . 

 

 
 

 (19) 

Semiconductors as Potential Barriers 
A semiconductor is a material with electrical 

conductivity between the insulator and the conductor 
[11]. There is an empty area between the valence band 
and the conduction band called the bandgap energy in 
semiconductor materials. If the electrons in the 

semiconductor material have a high enough energy, they 
can jump from the valence band to the conduction band 
through the energy gap or forbidden band. These 
electrons leave an empty quantum state in the valence 
band called holes. The motion of electrons and holes in 
semiconductor materials is the same as free particles' 
motion [12]. Every semiconductor material has a 
different energy gap at a specific temperature [13]. In this 
research, the semiconductor material used is a type of III-
V semiconductor alloy. The semiconductor materials 
include GaAs, GaSb, AlAs, and InP. 

GaAs is a material with great potential for electronic 
and optoelectronic device applications because of its high 
electron mobility. GaAs is typically used for laser diodes 
and high-speed transistors. GaAs has an energy bandgap 
structure with a direct transition (direct bandgap) of 1.424 
eV with a width of 0.565 nm [14]. 

GaSb is an III-V semiconductor alloy with a direct 
bandgap with an energy band gap of 0.721 eV at room 
temperature [15] with a width of 0.610 nm [16]. 
Antimony-based alloy semiconductors have relatively 
high carrier mobility properties. With these properties, 
this material is interesting to be applied in electronic and 
optoelectronic devices such as lasers, infrared detectors, 
magnetic sensors, and high-speed switching devices [17]. 

AlAs is an III-V semiconductor alloy that is widely 
applied to optoelectronic devices such as laser diodes. 
AlAs has a reasonably large energy bandgap of about 
2.95 eV [16] with a width of 0.566 nm [18]. AlAs has 
less induced voltage, allowing high-performance 
electrons high mobility so that AlAs can also be applied 
to HEMT (High Electron Mobility Transistor) transistors 
[19]. 

InP is an III-V semiconductor alloy. InP has high 
electron mobility, so it is widely used for high-powered 
and high-frequency electronic devices such as 
pseudomorphic heterojunction bipolar transistors 
operating at 604 GHz. InP has a lattice constant of 0.587 
nm and a direct energy bandgap of 1.29 eV, so it can also 
be applied to optoelectronic devices such as laser diodes 
[20]. 

 

III. Method 
The semiconductor materials used as a potential 

barrier are Gallium Arsenide (GaAs), Gallium 
Antimonide (GaSb), Aluminum Arsenide (AlAs), and 
Indium Phosphide (InP), each of which has a potential 
energy of 0.721 eV, 1.424 eV, 2.95 eV, and 1.29 eV. The 
quantum particle such as an electron tries to pass through 
the potential barrier with energies in the range  
eV. The potential barriers are separated from each other 
by a gap of 1 nm width. 

The mathematical method used to determine the 
transmission coefficient is the matrix propagation 
method. The matrix propagation method is the spread or 
transmission of a wave using a matrix. The analytical 
calculates the free particles' transmission coefficient 
when experiencing a breakthrough effect using the matrix 
propagation method. In comparison, numerical is carried 
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out by applying the matrix propagation method to the 
Matlab2018a software. 

In the matrix propagation method, the potential area 
is divided into two parts: the ladder propagation ( ) 

and the free propagation ( ).  is the propagation 

in the area of potential change. Meanwhile,  it is 

propagation in areas with a constant potential. The ladder 
propagation  is divided into step up propagation and 

step down propagation. Propagation at the boundary from 
 to  is called step-up propagation ( ). 

Propagation at the boundary from  towards  

is called step-down propagation ( ). The free 

propagation ( ) is also divided into two as well as 

 

 

 
Figure 3. Quadruple potential barrier 

 

The solution to the Schrodinger equation for the 
potential change in the quadruple barrier from Figure 3  
is: 

 

(20) 

 
(21) 

 
(22) 

 
(23) 

 
(24) 

 
(25) 

 
(26) 

 
(27) 

 
(28) 

 
The propagation of the quadruple potential barrier 

consists of four steps up propagations, four free 
propagations, three propagations in the gap between the 
step-up potential, and four steps down propagations with 
the values: 

 
(29) 

 
(30) 

 
(31) 

 
(32) 

 
(33) 

 
(34) 

 
(35) 

 
(36) 

 
(37) 

 
(38) 

 
(39) 

 
(40) 

 
(41) 

 
(42) 

 (43) 

So that the propagation of each barrier and each gap can 
be written: 

 

 

 

 

 

 

 

Therefore, the calculation of the matrix propagation 
over the quadruple potential barrier is: 

 (44) 

The variation of the breakthrough effect results 
from organizing the arrangement of the semiconductor 
material as a barrier. The quadruple barrier has   a 

different arrangement or . To 

simplify the analysis, the semiconductor material AlAs is 
denoted A, GaAs is denoted B, GaSb is denoted C, and 
InP is denoted D. The arrangements formed are as Figure 
4. 
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Figure 4. Arrangement variations 

 

IV. Results and Discussion 
The transmission coefficient is analyzed due to 

variations in the barrier's potential arrangement. The 
occurrence of the Tunnelling effect is highly dependent 
on the width and height of the barrier. In this study, the 
barrier's width was reasonably uniform, ranging from 
0.565 to 0.610 nm. Meanwhile, the height of the barrier 
used was varied, namely three obstacles with a 
reasonably uniform height (B, C, and D) and other 
potential barriers, much higher than the other obstacles 
(A). These four barriers are the III-V semiconductor 
alloy. The barrier selection is based on its application, 
which is widely applied as electronic and optoelectronic 
devices. 

The Tunnelling effect happens when a particle 
breaks through a potential barrier that classical physics 
cannot occur. Electrons are represented by the wave 
function  in each potential region. The wave functions 
that represent electrons have different shapes in the 
regions  and . In the  area, the wave 

function in the complex exponential form with value  
is imaginary . However, when the electron is in the 
potential region , the wave function is 

exponential, and the value  is real . This 

happens because, in the region , electrons have 
material properties. According to de Broglie's postulate, 
when the electrons break through the barrier, the particle 
properties will change to wave properties. 

Electrons moving from the left direction are free 
particles that are not affected by potential, so they have 

momentum as considerable as  the electrons move 
towards the first barrier. When an electron encounters a 
potential region , it will experience a change in 

momentum is being the order of the barrier potential 
. Electrons that successfully break through the 

potential barrier will accelerate until their momentum 

returns to their value . After passing the last 
barrier, the transmittance or the number of electrons that 
have successfully penetrated the four barriers indicated 
by the transmission coefficient's value can be analyzed. 

The use of the matrix propagation method 
analytically results in the formulation of the transmission 

coefficient on the tunnelling effect of the quadruple 
potential barrier, namely 

 

 

with 

 

(45) 

 

(46) 

 

(47) 

 

(48) 

 
(49) 

 
(50) 

 
(51) 

 
(52) 

 
(53) 

 
(54) 

 
(55) 

 
(56) 

 
The use of the matrix propagation method in 

determining electrons' transmittance is beneficial for 
many barrier structures because the calculation is 
sufficient with matrix multiplication and a little 
mathematical manipulation. 

The transmission coefficient is the probability of the 
particle breaking through a potential barrier . 
The tunnelling effect variation is intended to arrange the 
semiconductor material to form a quadruple potential 
barrier with different barriers. The barrier is the potential 
energy of the area that blocks particles' motion when 
trying to breakthrough. Table 1 showed the transmission 
coefficient value using Matlab2018a. 
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Table 1. The transmission coefficient of the quadruple potential 
barrier 

E (eV) 
T 

ABCD ABDC ACBD ACDB ADBC ADCB 
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.1 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 
0.25 0.0000 0.0007 0.0008 0.0008 0.0007 0.0008 
0.5 0.2551 0.0607 0.6035 0.7695 0.0618 0.3000 
0.506 0.2502 0.0681 0.7100 0.8054 0.0697 0.2837 
0.518 0.2284 0.0851 0.8009 0.7082 0.0885 0.2434 
0.733 0.1205 0.3232 0.1669 0.1539 0.3613 0.1200 
0.75 0.1301 0.3317 0.1760 0.1644 0.3650 0.1303 
0.76 0.1368 0.3376 0.1825 0.1718 0.3683 0.1375 
1 0.7711 0.5466 0.5058 0.5547 0.5064 0.8087 
 BACD BADC BCAD BCDA BDAC BDCA 
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.1 0.0001 0.0001 0.0001 0.0000 0.0001 0.0000 
0.25 0.0007 0.0007 0.0007 0.0008 0.0006 0.0008 
0.5 0.0980 0.0274 0.0981 0.3000 0.0290 0.7695 
0.506 0.1120 0.0299 0.1132 0.2837 0.0321 0.8054 
0.518 0.1442 0.0357 0.1496 0.2434 0.0396 0.7082 
0.733 0.1831 0.2981 0.2021 0.1200 0.6991 0.1539 
0.75 0.1849 0.3208 0.2023 0.1303 0.6904 0.1644 
0.76 0.1870 0.3341 0.2035 0.1375 0.6794 0.1718 
1 0.4404 0.7329 0.4267 0.8087 0.5026 0.5547 
 CABD CADB CBAD CBDA CDAB CDBA 
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
0.25 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007 
0.5 0.0264 0.0290 0.0251 0.0618 0.0274 0.0607 
0.506 0.0291 0.0321 0.0274 0.0697 0.0299 0.0681 
0.518 0.0355 0.0396 0.0326 0.0885 0.0357 0.0851 
0.733 0.6592 0.6991 0.3244 0.3613 0.2981 0.3232 
0.75 0.6777 0.6904 0.3532 0.3650 0.3208 0.3317 
0.76 0.6805 0.6794 0.3697 0.3683 0.3341 0.3376 
1 0.5467 0.5026 0.7575 0.5064 0.7329 0.5466 
 DABC DACB DBAC DBCA DCAB DCBA 
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.1 0.0001 0.0001 0.0001 0.0000 0.0001 0.0000 
0.25 0.0007 0.0007 0.0006 0.0008 0.0007 0.0003 
0.5 0.0251 0.0981 0.0264 0.6035 0.0980 0.2551 
0.506 0.0274 0.1132 0.0291 0.7100 0.1120 0.2502 
0.518 0.0326 0.1496 0.0355 0.8009 0.1442 0.2284 
0.733 0.3244 0.2021 0.6592 0.1669 0.1831 0.1205 
0.75 0.3532 0.2023 0.6777 0.1760 0.1849 0.1301 
0.76 0.3697 0.2035 0.6805 0.1825 0.1870 0.1368 
1 0.7575 0.4267 0.5467 0.5058 0.4404 0.7711 

 
 The results show that the inverted arrangement 

produces the same transmission coefficient value for each 
energy. There are 12 kinds of transmission coefficient 
values generated from 24 arrangements. Even though the 
24 arrays consist of the same four semiconductor 
materials, it turns out that different arrangements produce 
different transmission coefficient values, except for the 
reverse arrangement, which results in the same 
transmission coefficient value for each energy. It can be 
observed in Table 1 that an arrangement that has identical 
transmission coefficients are ABCD with DCBA, CDBA 
with ABDC, etc. 

Based on Table 1, it can be analyzed that the 
increase of the electron energy resulting in increased 
electron transmittance. The simulation results show that 
the transmission coefficient increases with increasing 
electron energy until it reaches the maximum value but 
decreases. This decrease occurs because the transmission 
coefficient's essential function is hyperbolic 
trigonometry, which causes the transmission coefficient 

to be periodic. At some point, the value will reach a 
maximum, then drop to a minimum, and rise again. 

According to the Figure 5, the composition of 
semiconductor materials with the most considerable 
transmission coefficient value is ADCB and BCDA, 
valued at 0.8087. This means that 80.87% of the electrons 
can pass through the potential barrier. The arrangement of 
ADCB and BCDA has a reasonably large coefficient 
value than other arrangements because the three potential 
barriers whose potential heights are quite symmetrical are 
close together. This arrangement of the barrier causes a 
resonance so that the probability of the electron passing is 
high. However, this probability cannot reach the 
maximum because the electrons have to return through 
the potentially high barrier. 

From the Figure 6, the smallest transmission 
coefficient value generated by the BCAD and DACB 
arrangements is 0.4267. This means that only 42.67% of 
the electrons can pass through the potential barrier. In this 
arrangement, the symmetrical potential barrier is 
separated by one barrier, which has enormous potential. 
Furthermore, the adjacent barrier is not symmetrical 
enough so that the resonance phenomenon that occurs 
cannot be maximized. Therefore, it can be analyzed that 
one potential barrier affects another potential barrier. The 
variation of the arrangement affects the value of the 
transmission coefficient so that it can be used as a 
guideline for selecting the arrangement that produces the 
most optimum value of the transmission coefficient from 
various possible arrangements. 

 
Figure 5. ADCB arrangement that produces the maximum 

transmission coefficient value 

 
Figure 6. BCAD arrangement that produces the minimum 

transmission coefficient value 
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V. Conclusion 
The transmission coefficient of the quadruple 

potential barrier using the matrix propagation method can 
be formulated as follows. 

 

 
The variation of the Tunnelling effect on the quadruple 
barrier potential is as many as 24 arrays. The research 
shows that 24 potential arrangements of the quadruple 
barrier produce 12 variations in the value of the 
transmission coefficient, with the reverse arrangement 
resulting in the same transmission coefficient value for 
each energy. The semiconductor material composition 
with the enormous transmission coefficient value is 
ADCB and BCDA, which have a value of 0.8087. 
Moreover, the smallest transmission coefficient value 
generated by the BCAD and DACB arrangement is a 
value of 0.4267. This variation of the breakthrough effect 
occurs because one potential barrier affects another 
potential barrier. 
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