Effect of Sintering Temperature on Crystal Structure and Conductivity of the CaCO₃-Doped Li₄Ti₅O₁₂ Anodes from Blood Clam Shells (*Anadara granosa*)

Marhan Ebit Saputra¹, Megawati Ayu Putri², Eka Febrianti¹, and Widodo Budi Kurniawan^{1*}

¹ Department of Physics, Engineering Faculty, Universitas Bangka Belitung, Indonesia

² Department of Chemistry, Engineering Faculty, Universitas Bangka Belitung, Indonesia

Email: widodokurniawan1@gmail.com

Article Info	ABSTRACT
Article History Received: Sept 3, 2021 Revised: Apr 26, 2022 Accepted: Apr 26, 2022	CaCO ₃ -doped Li ₄ Ti ₅ O ₁₂ was synthesized by solid-state method with sintering temperatures at 750 °C, 800 °C, and 850 °C. The source of CaCO ₃ was used from blood clam shells (<i>Anadara granosa</i>) with a content of 97.67%. The influence of sintering temperature on crystal structure and conductivity of CaCO ₃ -doped
Keywords: Blood Clam Shell Conductivity Li ₄ Ti ₅ O ₁₂ Sintering Temperature	Li ₄ Ti ₅ O ₁₂ are extensively studied. XRD results show there is no CaCO ₃ phase found, which indicates that the doping of Li ₄ Ti ₅ O ₁₂ with CaCO ₃ has been successful. The smallest crystallite size was obtained at a sintering temperature of 800 °C, which is 46.49 nm, which is beneficial for shortening diffusion length and facilitating the electron and ion transport, causing an increase in anode conductivity. The most optimal conductivity was obtained in samples with a sintering temperature of 800 °C with a conductivity of 2.46 x 10 ⁻⁴ S/cm. When the sintering temperature is increased to 850 °C, the particles tend to agglomerate and deteriorate the electrochemical properties.
	and deteriorate the electrochemical properties.

This is an open-access article under the <u>CC–BY-SA</u> license.

To cite this article:

M. E. Saputra, M. A. Putri, E. Febrianti, and W. B. Kurniawan, "Effect on Sintering Temperature on Crystal Structure and Conductivity of the CaCO₃-Doped Li₄Ti₅O₁₂ Anodes from Blood Clam Shells (Anadara granosa)," *Indones. Rev. Phys.*, vol. 5, no. 1, pp. 25–31, 2022, doi: 10.12928/irip.v5i1.4804.

I. Introduction

The development of lithium-ion (Li-ion) batteries is an interesting research focus as it is very useful in various applications such as mobile phones, computers, and other electronic devices [1]. Recently, many efforts have been made to improve its application to Hybrid Electric Vehicles (HEV) and effective energy storage systems [2]. The anode is one of the important components that play a role in creating the characteristics of Li-ion batteries [3].

Li₄Ti₅O₁₂ (Lithium Titanate Oxide) is a potential material as an anode for Li-ion batteries as it has several advantages over commonly used anode materials such as graphite, including during insertion/extraction of Li⁺ ions does not change the structure (zero strain), high operating voltage (1.55 V) ensure safe operation of li-ion batteries and long lifetime [4][5]. However, the poor conductivity of Li₄Ti₅O₁₂ (< 10⁻¹³ S/cm) is a problem that can limit its rate performance [6].

Many methods have been developed to improve the performance of $Li_4Ti_5O_{12}$, including coating with a

conductive material and atomic doping such as Ta, N, Br, Ag, Ca, Cu, Zr, and F [7]–[16]. Subhan et al. [3] synthesized Ca-doped Li₄Ti₅O₁₂ using chicken egg shells as Ca source by solid-state method, delivering Li_{3.9}Ca_{0.1}Ti₅O₁₂ had better electrochemical properties than the Li₄Ti₅O₁₂ sample. Priyono et al. also prepared Ca-doped Li₄Ti₅O₁₂ with various concentrations of dopant and explored the Ca²⁺ doping can significantly improve the electrochemical performance of Li₄Ti₅O₁₂ [17]. In this research, CaCO₃ from blood clam shells (*Anadara granosa*) was used as doping which had the same Ca content as chicken egg shells. It is known that the dominant content in blood clam shells is Ca [18].

The synthesis method and steps will affect the performance of the anode material, leading to various particle sizes and crystal structures [19]. Several methods can be used to synthesize $Li_4Ti_5O_{12}$ such as microwave, molten salt, hydrothermal, sol-gel, electrospinning, and solid-state method [20]–[29]. In this study, the solid-state method was chosen because the process is simple, low-

cost, and does not require many precursors [1]. The formation of phase and crystal structure is strongly dependent on process parameters, especially sintering temperature and holding time. In the present study, CaCO₃-doped Li₄Ti₅O₁₂ was synthesized by a solid-state method with various sintering temperatures. The influence of sintering temperatures on crystal structure and conductivity of CaCO₃-doped Li₄Ti₅O₁₂ was investigated systematically.

II. Theory

Anadara granosa or known as blood clams are a type of shellfish in the family Mollusca and are commonly found in Asia, such as Indonesia [30]. This shellfish has a high level of productivity and can be processed into various products. In the province of the Bangka Belitung Islands, especially the West Bangka region, it is known that the total production of blood clams was 445.13 tons/year in 2015 [31]. The high consumption of blood clams produces a lot of shell wastes. Clam shells are useful in many applications such as adsorbent, catalyst, and hydroxyapatite [32]–[34]. In addition, blood clams are natural ingredients that are abundantly available and economical.

Li₄Ti₅O₁₂ or Lithium Titanate Oxide (LTO) in an anode is known as "zero strain material" because it has negligible structure change during lithium-ion intercalation/deintercalation [35]. The structure of Li₄Ti₅O₁₂ is Face-Centered Cubic (FCC) spinel with lattice parameter sizes ranging from 8.352 to 8.370 Å [36]. The performance of Li₄Ti₅O₁₂ is known to have a good specific capacity and density of 175 mAh/g and 3.5 g/cm³, respectively. In addition, it also has a long life cycle of more than 10000 cycles [37].

III. Method

Materials

The precursors used in the synthesis of Li₄Ti5O₁₂ were LiOH.H₂O and TiO₂. Blood clam shells or *Anadara granosa* (see Figure 1) were used as CaCO₃ sources for doping. As a binder, the material used was Polyvinylidene Fluoride (PVDF), N-Methyl-2-Pyrrolidone (NMP) was applied as the solvent, and Acetylene Black (AB) was used as the conductive carbon.

Preparation of CaCO₃ Powder

First of all, the blood clam shells are cleaned with water and then dried in the sun. After that, clam shells were ground and sieved through a 200 mesh sieve. To ensure that the sample is completely dry, the white powders were heated in an oven at 100 °C for 12 hours. Finally, the CaCO₃ powders were obtained and characterized using X-Ray Fluorescence (XRF) analysis to determine the chemical composition of materials and X-Ray Diffraction (XRD) analysis for phase identification.

Synthesis of CaCO₃ Powder

CaCO₃-doped Li₄Ti₅O₁₂ were synthesized via the solid-state method. 0.1 mol of CaCO₃ was used for doping. Firstly, the precursors material which includes LiOH.H₂O and TiO₂ were grounded to pass through 200 mesh. A mixture of LiOH.H₂O, TiO₂, and CaCO₃ was mixed by mortar until homogeneous. The mixture was calcined at 700 °C with a holding time of 2 hours. Afterward, sintering was performed at temperature variations of 750 °C, 800 °C, and 850 °C with the same holding time for 4 hours. As a result, the CaCO₃-doped Li₄Ti₅O₁₂ was obtained and then characterized using XRD for crystal structure analysis (see Table 1)

Fabrication of CaCO₃.doped Li₄Ti₅O₁₂ Anodes

To fabricate the anodes, $CaCO_3$ -doped $Li_4Ti_5O_{12}$ powder, PVDF, and AB (80%: 10%: 10%) were uniformly mixed in NMP solvent. The resulting mixture is put into a mold container and heated in an oven at 50 °C until dry. For the EIS measurements, the anode samples were made into squares with a side length of 1.5 cm. Electrochemical Impedance Spectroscopy (EIS) analysis was used to determine the conductivity value of CaCO₃-doped $Li_4Ti_5O_{12}$.

IV. Results and Discussion

Characterization of CaCO₃ from Blood Clam Shells

XRF and XRD analyses were used to show the characteristics of CaCO₃ from blood clam shells. The elemental compositions of prepared CaCO₃ from blood clam shells were evaluated using XRF as shown in Table 2.

Figure 1. Blood clams or Anadara granosa

Table 1. Sample code of	CaCO ₃ -doped	$Li_4Ti_5O_{12}$
-------------------------	--------------------------	------------------

Formulation	Sintering Temperature (°C)	Sample Code
	750	L-1
Li3,9Ca0,1Ti5O12	800	L-2
	850	L-3

Table 2. Elemental	composition of	of CaCO ₃	powders
--------------------	----------------	----------------------	---------

Chemical element	Concentration (%)
Ca	97.67
Ag	0.91
Sr	0.35
Al	0.34
Other elements	0.73

Saputra, et al. Effect on Sintering Temperature on Crystal Structure

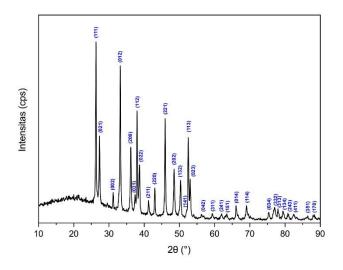


Figure 2. XRD patterns of CaCO₃ from blood clam shells

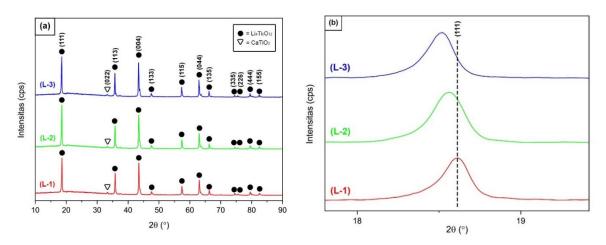


Figure 3. (a) XRD patterns of CaCO₃-doped Li₄Ti₅O₁₂ at different sintering temperatures. (b) Enlarged (111) plane of samples

XRF analysis showed the main component of blood clam shells is Ca, with a percentage content of 97.67%. The amount of impurities (Ag, Sr, Al, and other elements) is very low when compared to the Ca content, which proves that the blood clam shells have high purity. The results of this study were also proven by several studies that showed Ca content of blood clam shells in the range \geq 90% [38]–[40].

The XRD pattern of CaCO₃ from blood clam shells is shown in Figure 2, the analysis using software Match 2! results show that the phase obtained from the sample is aragonite (CaCO₃). The major diffraction peaks are observed at 2 θ values such as 26.31°, 33.21°, 37.98°, 45.95°, and 52.51° with miller index of (111), (012), (112), (221), and (113), respectively. All of the diffraction peaks are well agreed with the reference patterns of CaCO₃ (COD No. 4001361). In addition, the highest peaks of 26.31° correspond with the previous study showing the highest peaks at 2θ of 26.22° [18], and 26.10° [41]

Crystal Structure Analysis of CaCO3-doped Li4Ti5O12

Figure 3(a) shows the XRD patterns of CaCO₃-doped Li₄Ti₅O₁₂ with sintering temperatures at 750 °C, 800 °C, and 850 °C. The results of analysis using Match 2 software shows that the dominant phase in the sample is Li_{1.33}Ti_{1.67}O₄ (or spinel of Li₄Ti₅O₁₂). The planes at (111), (113), and (004) confirmed that Li₄Ti₅O₁₂ has a cubic structure and perfect accordance with corresponding COD No. 10111098. There is no CaCO₃ phase found, which indicates that the doping of Li₄Ti₅O₁₂ with CaCO₃ has been successful. However, there was CaTiO₃ phase formation in the samples marked at 2 θ values of 33.35° for L-1, 33.33° for L-2, and 33.35° for L-3. The presence of the CaTiO₃ phase is caused by Ca²⁺ ions that exceed the maximum

doping amount, following the previous study by Priyono et al. (2019) also has a CaTiO₃ peak at 2θ of 33.21° [17].

Figure 3(b) shows an enlarged (111) plane at different sintering temperatures. It can be observed that the (111) peak shifted to a lower angle with increasing the sintering temperatures, which is indicating an increase in lattice parameters [42]. To analyze the effect of sintering temperature on the crystal structure, several crystal parameters were calculated including average crystallite size, lattice strain, lattice parameters, and unit cell volume. The average crystallite size of CaCO₃-doped Li₄Ti₅O₁₂ is calculated by using Debye-Scherrer's equation:

$$D = \frac{0.9\,\lambda}{\beta\cos\theta} \tag{1}$$

Where β is Full Width at Half Maximum (FWHM) and λ is the wavelength of CuK α .

Table 3 shows the increase in sintering temperature will affect the enlargement of the lattice parameters and unit cell volume. This is because, during the sintering process, some ions are converted, leading to an increase in lattice parameters as the sintering temperature increases [43]. Furthermore, an increase in the sintering temperatures also leads to a decrease in crystallite size. The sintering temperature is proportional to the amount of energy the atoms receive which affects the crystallite size and atomic bonding [44]. At higher temperatures (850 °C), this facilitates diffusion and agglomeration, causing the crystallite size of L-3 samples to become larger than those of L-1 and L-2. The size of crystals gives space for the atoms in the crystal [45]. At larger crystallite size, the atoms are close together, so the lattice strain becomes smaller, as shown in Table 3.

Conductivity Analysis of CaCO3-doped Li4Ti5O12

Further analysis of electrochemical properties of $CaCO_3$ -doped $Li_4Ti_5O_{12}$ was performed by EIS. The EIS measurement aims to determine the conductivity of the anode. In the EIS measurement, using an AC voltage source of 1 V and test range frequency of 4 Hz to 5 MHz. Figure 4 represents the Nyquist plot of the samples and

equivalent circuits used for EIS data analysis. The value of charge transfer resistance (R_{ct}) was obtained by fitting the Nyquist plot with the Simplified Randless Cell model using Zview software.

In the Nyquist plot, it can be observed that the spectrum consists of semicircle patterns. The radius of the semicircle indicates the R_{ct} of CaCO₃-doped Li₄Ti₅O₁₂. The smaller the diameter of the semicircle, representing lower R_{ct} , the better the conductivity of samples [46]. Figure 4 shows the order of semicircle patterns from smallest to largest for L-2, L-1, and L-3, respectively. This indicates that L-2 has the highest conductivity data obtained from the fitting Nyquist plot shown in Table 4.

According to Table 4, the sintering temperature can affect the conductivity of the $CaCO_3$ -doped $Li_4Ti_5O_{12}$, in samples L-1 and L-2 the conductivity value increases, while in sample L-3 the conductivity value decreases. For higher temperatures (850 °C), agglomeration occurs in the sample so that crystallite size increases. The enlarged size of the crystallite increases the diffusion length and decreases the conductivity value [47].

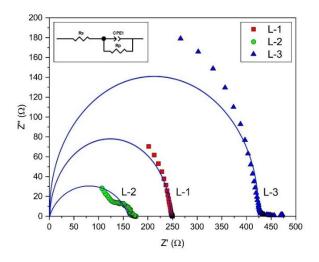


Figure 4. Nyquist plot of CaCO3-doped Li4Ti5O12

Sample Code	2θ (°)	Lattice Parameter (Å)	Unit Cell Volume (Å ³)	Lattice Strain (10 ⁻³)	Average Crystallite Size (nm)
L-1	18.58	8.26	563.73	0.39	46.49
L-2	18.56	8.27	566.11	0.41	41.25
L-3	18.49	8.30	572.75	0.31	55.14

 Table 3. Crystal parameters of CaCO₃-doped Li₄Ti₅O₁₂

Table 4.	The conductivity	of CaCO3-done	d Li4Ti5O12
1 and 7.	The conductivity	of Cacos-uopo	J L14 I 190 12

Sample Code	$\mathbf{R}_{\mathrm{ct}}\left(\Omega ight)$	Conductivity (S/cm)	
L-1	289	2.20 x 10 ⁻⁴	
L-2	269.7	2.46 x 10 ⁻⁴	
L-3	481.4	1.06 x 10 ⁻⁴	

Saputra, et al. Effect on Sintering Temperature on Crystal Structure

V. Conclusion

The effect of sintering temperature on crystal structure and conductivity of CaCO₃-doped Li₄Ti₅O₁₂ from blood clam shells was investigated. The smallest crystallite size was obtained at a sintering temperature of 800 °C, which is 46.49 nm, which is beneficial for shortening diffusion length and facilitating the electron and ion transport, causing an increase in anode conductivity. The most optimal conductivity was obtained in samples with a sintering temperature of 800 °C with a value of 2.46 x 10⁻⁴ S/cm. When the sintering temperature is increased to 850 °C, the particles tend to agglomerate and deteriorate the electrochemical properties.

VI. Acknowledgment

The authors gratefully acknowledge the research funding through the scheme of Exact Research Student Creativity (PKM-RE) 2021 by Directorate General of Higher Education, Ministry of Education, Culture, Research, and Technology.

References

- H. Yan, D. Zhang, Qilu, X. Duo, and X. Sheng, "A Review of Spinel Lithium Titanate (Li₄Ti₅O₁₂) as Electrode Material for Advanced Energy Storage Devices," *Ceram. Int.*, Vol. 47, No. 5, pp. 5870–5895, 2021, Doi: <u>10.1016/j.ceramint.2020.10.241</u>.
- B. Tian, H. Xiang, L. Zhang, Z. Li, and H. Wang, "Niobium Doped Lithium Titanate as a High Rate Anode Material for Li-Ion Batteries," *Electrochim. Acta*, Vol. 55, No. 19, pp. 5453–5458, 2010, Doi: <u>10.1016/j.electacta.2010.04.068</u>.
- [3] A. Subhan, D. Setiawan, and S. A. Saptari, "The 15th International Conference Quality In Research (QiR) 2017 Preparation and Ionic Conductivity of Li_{3.9}Ca_{0.1}Ti₅₀₁₂ Using Waste Chicken Eggshells as Ca Source for Anode Material of Lithium-Ion Batteries," *IOP Conf. Ser. Mater. Sci. Eng.*, Vol. 316, No. 1, pp. 0–10, 2018, Doi: 10.1088/1757-899X/316/1/012048.
- T. P. Zhou, X. Y. Feng, X. Guo, W. W. Wu, S. Cheng, and H. F. Xiang, "Solid-State Synthesis and Electrochemical Performance of Ce-Doped Li₄Ti₅O₁₂ Anode Materials for Lithium-Ion Batteries," *Electrochim. Acta*, Vol. 174, pp. 369–375, 2015, Doi: 10.1016/j.electacta.2015.06.021.
- [5] X. Guo *et al.*, "Solid-State Synthesis and Electrochemical Performance of Li 4Ti₅O₁₂/Graphene Composite for Lithium-Ion Batteries," *Electrochim. Acta*, Vol. 109, pp. 33–38, 2013, Doi: <u>10.1016/j.electacta.2013.07.058</u>.
- [6] Q. Zhang, M. G. Verde, J. K. Seo, X. Li, And Y. S. Meng, "Structural and Electrochemical Properties of Gd-Doped Li₄Ti₅O₁₂ as Anode Material with Improved Rate Capability for Lithium-Ion Batteries," *J. Power Sources*, Vol. 280, pp. 355–362, 2015, Doi: 10.1016/j.jpowsour.2015.01.124.
- [7] L. Cheng, J. Yan, G. N. Zhu, J. Y. Luo, C. X. Wang, and Y. Y. Xia, "General Synthesis of Carbon-Coated Nanostructure Li₄Ti₅O₁₂ as a High Rate Electrode Material for Li-Ion Intercalation," *J. Mater. Chem.*, Vol. 20, No. 3, pp. 595–602, 2010, Doi: <u>10.1039/B914604K</u>.
- [8] H. Park, T. Song, H. Han, and U. Paik, "Electrospun

Li₄Ti₅O₁₂ Nanofibers Sheathed with Conductive Tin/Tio_xn_y Layer as an Anode Material for High Power Li-Ion Batteries," *J. Power Sources*, Vol. 244, pp. 726– 730, 2013, Doi: <u>10.1016/j.jpowsour.2012.11.078</u>.

- [9] M. Guo, S. Wang, L.-X. Ding, C. Huang, and H. Wang, "Tantalum-doped Lithium Titanate with Enhanced Performance for Lithium-ion Batteries," *J. Power Sources*, vol. 283, pp. 372–380, Jun. 2015, doi: 10.1016/j.jpowsour.2015.02.154.
- B. Wang, J. Wang, J. Cao, H. Ge, and Y. Tang,
 "Nitrogen-Doped Li₄Ti₅O₁₂ Nanosheets With Enhanced Lithium Storage Properties," *J. Power Sources*, Vol. 266, pp. 150–154, 2014, Doi: 10.1016/j.jpowsour.2014.05.009.
- [11] Y. Qi, Y. Huang, D. Jia, S. J. Bao, and Z. P. Guo, "Preparation and Characterization of Novel Spinel Li₄Ti₅O_{12-x}Br_x Anode Materials," *Electrochim. Acta*, Vol. 54, No. 21, pp. 4772–4776, 2009, Doi: <u>10.1016/j.electacta.2009.04.010</u>.
- [12] S. Huang, Z. Wen, X. Zhu, and Z. Gu, "Preparation and Electrochemical Performance of Ag Doped Li₄Ti₅O₁₂," *Electrochem. Commun.*, Vol. 6, No. 11, pp. 1093–1097, 2004, Doi: <u>10.1016/j.elecom.2004.08.013</u>.
- [13] Q. Zhang, C. Zhang, B. Li, S. Kang, X. Li, and Y. Wang, "Preparation and Electrochemical Properties of Ca-Doped Li₄Ti₅O₁₂ as Anode Materials in Lithium-Ion Battery," *Electrochim. Acta*, Vol. 98, pp. 146–152, 2013, Doi: <u>10.1016/j.electacta.2013.03.006</u>.
- [14] X. Deng, W. Li, M. Zhu, D. Xiong, and M. He, "Synthesis of Cu-Doped Li₄Ti₅O₁₂ Anode Materials With a Porous Structure for Advanced Electrochemical Energy Storage: Lithium-Ion Batteries," *Solid State Ionics*, Vol. 364, No. March, pp. 115614, 2021, Doi: 10.1016/j.ssi.2021.115614.
- [15] L. Hou, X. Qin, X. Gao, T. Guo, X. Li, and J. Li, "Zr-Doped Li₄Ti₅O₁₂ Anode Materials With High Specific Capacity for Lithium-Ion Batteries," *J. Alloys Compd.*, Vol. 774, pp. 38–45, 2019, Doi: <u>10.1016/j.jallcom.2018.09.364</u>.
- [16] X. Bai, W. Li, A. Wei, Q. Chang, L. Zhang, and Z. Liu, "Preparation and Electrochemical Performance of F-Doped Li₄Ti₅O₁₂ For Use in the Lithium-Ion Batteries," *Solid State Ionics*, Vol. 324, No. April, pp. 13–19, 2018, Doi: 10.1016/j.ssi.2018.06.005.
- B. Priyono, D. K. Ibrahimi, A. Z. Syahrial, H. Jodi, A. Subhan, and M. R. Nugraha, "Synthesis and Characterization of Ca-Doped Li4TisO12 Using CaCo3 from Chicken Eggshell as a Dopant for Lithium-Ion Battery Anode Material," *IOP Conf. Ser. Mater. Sci. Eng.*, Vol. 547, No. 1, pp. 0–12, 2019, Doi: <u>10.1088/1757-899X/547/1/012040</u>.
- [18] P. M. Insani S and R. Rahmatsyah, "Analisis Pola Struktur Kalsium Karbonat (CaCO₃) pada Cangkang Kerang Darah (Anadara Granosa) di Bukit Kerang Kabupaten Aceh Tamiang [Analysis of Structural Patterns of Calcium Carbonate (CaCO3) in Blood Shells (Anadara Granosa) in Bukit Kerang, Aceh Tamiang Regency]," *J. Teor. dan Apl. Fis.*, Vol. 9, No. 1, pp. 23–32, 2021, Doi: 10.23960/jtaf.v9i1.2717.
- [19] C. Y. Lin and J. G. Duh, "Porous Li₄Ti₅O₁₂ Anode Material Synthesized By One-Step Solid-State Method for Electrochemical Properties Enhancement," *J. Alloys Compd.*, Vol. 509, No. 8, pp. 3682–3685, 2011, Doi: <u>10.1016/j.jallcom.2010.12.160</u>.
- [20] C. Qiu, Z. Yuan, L. Liu, N. Ye, and J. Liu, "Sol-Gel Preparation and Electrochemical Properties of La-Doped Li4Ti₅O₁₂ Anode Material for Lithium-Ion Battery," J.

Solid State Electrochem., Vol. 17, No. 3, pp. 841–847, 2013, Doi: <u>10.1007/s10008-012-1930-1</u>.

- [21] J. Y. Lin, C. C. Hsu, H. P. Ho, And S. H. Wu, "Sol-Gel Synthesis Of Aluminum Doped Lithium Titanate Anode Material For Lithium-Ion Batteries," *Electrochim. Acta*, Vol. 87, pp. 126–132, 2013, Doi: <u>10.1016/j.electacta.2012.08.128</u>.
- P. S. Yin, H. T. Peng, Y. Xiao, T. W. Lin, and J. Y. Lin, "Facile Synthesis of an Al-doped carbon-coated Li₄Ti₅O₁₂ Anode for High-Rate Lithium-Ion Batteries," *Rsc Adv.*, Vol. 6, No. 81, pp. 77151–77160, 2016, Doi: <u>10.1039/C6RA11353B</u>.
- [23] V. D. Nithya, R. Kalai Selvan, K. Vediappan, S. Sharmila, and C. W. Lee, "Molten Salt Synthesis and Characterization of Li₄Ti_{5-x}Mn_xO₁₂ (x = 0.0, 0.05 and 0.1) as Anodes for Li-Ion Batteries," *Appl. Surf. Sci.*, Vol. 261, pp. 515–519, 2012, Doi: 10.1016/j.apsusc.2012.08.047.
- [24] Y. Ge et al., "Copper-Doped Li₄Ti₅O₁₂/Carbon Nanofiber Composites as Anode for High-Performance Sodium-Ion Batteries," J. Power Sources, Vol. 272, pp. 860–865, 2014, Doi: <u>10.1016/j.jpowsour.2014.08.131</u>.
- [25] S. Abureden et al., "Multigrain Electrospun Nickel Doped Lithium Titanate Nanofibers With High Power Lithium-Ion Storage," J. Mater. Chem. A Vol. 4, No. 32, pp. 12638–12647, 2016, Doi: 10.1039/C6TA04046B.
- [26] F. Zhao, P. Xue, H. Ge, L. Li, and B. Wang, "Na-Doped Li₄Ti₅O₁₂ as an Anode Material for Sodium-Ion Battery With Superior Rate and Cycling Performance," *J. Electrochem. Soc.*, Vol. 163, No. 5, pp. A690–A695, 2016, Doi: 10.1149/2.0781605jes.
- [27] L. Wang *et al.*, "Structural and Electrochemical Characteristics of Ca-Doped 'Flower-Like' Li₄Ti₅O₁₂ Motifs as High-Rate Anode Materials for Lithium-Ion Batteries," *Chem. Mater.*, Vol. 30, No. 3, pp. 671–684, 2018, Doi: <u>10.1021/acs.chemmater.7b03847</u>.
- [28] T. F. Yi, S. Y. Yang, X. Y. Li, J. H. Yao, Y. R. Zhu, and R. S. Zhu, "Sub-Micrometric Li_{4-x}Na_xTi₅O₁₂ ($0 \le X \le 0.2$) Spinel as Anode Material Exhibiting High Rate Capability," *J. Power Sources*, Vol. 246, pp. 505–511, 2014, Doi: <u>10.1016/j.jpowsour.2013.08.005</u>.
- [29] H. Deng *et al.*, "High Rate Performance of Ca-Doped Li₄Ti₅O₁₂ Anode Nanomaterial for the Lithium-Ion Batteries," *J. Nanomater.*, Vol. 2018, pp. 1–7, 2018, Doi: 10.1155/2018/7074824.
- [30] T. Masindi and N. Herdyastuti, "Karakterisasi Kitosan dari Cangkang Kerang Darah (Anadara Granosa) [Characterization Chitosan from the Shells of Blood Clams (Anadara Granosa)]," J. Chem., vol. 6, no. 3, pp. 137–142, 2017, doi: 10.26740/ujc.v6n3.p%25p.
- [31] G. K. Saputra, Evahelda, and E. Bidayani, "Faktor-Faktor Sosial Ekonomi yang Mempengaruhi Usaha Budidaya Kerang Darah (Anadara Granosa) di Kabupaten Bangka Barat [Socio-Economic Factors Affecting Blood Shellfish (Anadara Granosa) Cultivation Business in West Bangka Regency]," *J. Integr. Agribus.*, Vol. 1, No. 2, pp. 67–81, 2019, doi: <u>10.33019/jia.v1i2.1017</u>.
- [32] Nurhayati, Muhdarina, A. Linggawati, S. Anita, and T. A. Amri, "Preparation and Characterization of Calcium Oxide Heterogeneous Catalyst Derived from Anadara Granosa Shell for Biodiesel Synthesis," *KnE Eng.*, vol. 1, Sep. 2016, Doi: <u>10.18502/keg.v1i1.494</u>.
- [33] S. N. F. Moideen *Et Al.*, "Wasted Cockle Shell (Anadara Granosa) as a Natural Adsorbent for Treating Polluted River Water in the Fabricated Column Model (FCM)," *Desalin. Water Treat.*, Vol. 57, No. 35, pp. 16395–16403, 2016, Doi: 10.1080/19443994.2015.1082939.

 [34] K. Dhanaraj and G. Suresh, "Conversion of Waste Sea Shell (Anadara Granosa) Into Valuable Nanohydroxyapatite (Nhap) for Biomedical Applications," *Vacuum*, Vol. 152, pp. 222–230, 2018, Doi: 10.1016/j.vacuum.2018.03.021.

30

- [35] X. Zhang *et al.*, "Influence of Sintering Temperature and Graphene Additives on the Electrochemical Performance of Porous Li₄Ti₅O₁₂ Anode for Lithium-Ion Capacitor," *Electrochim. Acta*, Vol. 246, pp. 1237–1247, 2017, Doi: <u>10.1016/j.electacta.2017.07.014</u>.
- [36] W. R. M. Saka, "Pengaruh Temperatur Hidrotermal Pada Proses Sintesis Li₄Ti₅O₁₂ Nanowire Terhadap Performa Elektrokimia [Effect of Hydrothermal Temperature on Li₄Ti₅O₁₂ Nanowire Synthesis Process on Electrochemical Performance]," Institut Teknologi Sepuluh Nopember, 2016.
- [37] H. Zhang, Y. Yang, H. Xu, L. Wang, X. Lu, and X. He, "Li4Ti₅O₁₂ Spinel Anode: Fundamentals and Advances in Rechargeable Batteries," *Infomat*, Vol. 4, No. 4, pp. 1–29, 2022, Doi: <u>10.1002/inf2.12228</u>.
- [38] F. Akbar *et al.*, "Sintesis Ca₂P₂O₇ dari Limbah Kerang sebagai Bahan Baku Limbah Cangkang Kerang dengan Metode Solvothermal [Synthesis of Ca₂P₂O₇ from Shellfish Waste as Raw Material for Shellfish Shell Waste by Solvothermal Method]," *J. Fis. Dan Apl.*, Vol. 15, No. 3, pp. 110, 2019, Doi: <u>10.12962/j24604682.v15i3.4707</u>.
- [39] K. N. Wahyusi, N. Karunia, and M. Satrya, "Precipitation Method in Calcium Phosphate Synthesis from Blood Clamshells (Anadara Granosa)," *J. Phys. Conf. Ser.*, Vol. 1899, No. 1, 2021, Doi: <u>10.1088/1742-</u> 6596/1899/1/012057.
- [40] H. Bharatham, M. Z. A. B. Zakaria, E. K. Perimal, L. M. Yusof, and M. Hamid, "Mineral and Physiochemical Evaluation of Cockle Shell (*Anadara granosa*) and Other Selected Molluscan Shell as Potential Biomaterials," *Sains Malaysiana*, Vol. 43, No. 7, pp. 1023–1029, 2014.
- [41] A. W. Harahap, Z. Helwani, Z. Zultiniar, and Y. Yelmida, "Sintesis Hidroksiapatit Melalui Precipitated Calcium Carbonate (PCC) Cangkang Kerang Darah dengan Metode Hidrotermal pada Variasi pH dan Waktu Reaksi [Synthesis of Hydroxyapatite Through Precipitated Calcium Carbonate (PCC) Blood Shells with Hydrothermal Methods at Variations in pH and Reaction Time]," *Jom FTEKNIK*, vol. 2, no. 2, pp. 1–8, 2015, [Online]. Available: <u>https://jom.unri.ac.id/index.php/JOMFTEKNIK/article/vie</u> w/8154.
- [42] H. S. Bhatti, S. Jabeen, A. Mumtaz, G. Ali, S. Qaisar, and S. Hussain, "Effects of Cobalt Doping on Structural, Optical, Electrical and Electrochemical Properties of Li₄Ti₅O₁₂ Anode," *J. Alloys Compd.*, Vol. 890, pp. 161691, 2022, Doi: <u>10.1016/j.jallcom.2021.161691</u>.
- [43] M. Harun-Or-Rashid, M. N. Islam, M. Arifuzzaman, and A. K. M. A. Hossain, "Effect of Sintering Temperature on the Structural, Morphological, Electrical, and Magnetic Properties of Ni–Cu–Zn And Ni–Cu–Zn–Sc Ferrites," J. Mater. Sci. Mater. Electron., Vol. 32, No. 2, pp. 2505– 2523, 2021, Doi: <u>10.1007/s10854-020-05018-7</u>.
- [44] H. Rofiko, Y. Iriani, and R. Suryana, "Pengaruh Suhu Sintering pada Pembuatan Strontium Titanat (SrTiO₃) Terhadap Konstanta Dielektrik Menggunakan Metode Co-Precipitation [Effect of Sintering Temperature on the Preparation of Strontium Titanate (SrTiO₃) on Dielectric Constant Using Co-Precipitation Method]," *Indones. J. Appl. Phys.*, Vol. 7, No. 1, pp. 27, 2017, Doi: <u>10.13057/ijap.v7i1.1778</u>.

- [45] S. uwarni, A. Zaidah, A. Supriyanto, A. Jamaluddin, and Y. Iriani, "Struktur Mikro dan Sifat Listrik Material Ferroelektrik Barium Titanat dengan doping Stronsium [Microstructure and Electrical Properties of Ferroelectric Materials Barium Titanate with Strontium Doping]," J. Fis. dan Apl., vol. 11, no. 3, pp. 99, Oct. 2015, doi: 10.12962/j24604682.v11i3.1067. [46] X.-C. Zhao *Et Al.*, "Hydrothermally Synthesized
- Li₄Ti₅O₁₂ Nanotubes Anode Material with Enhanced Li-

Ion Battery Performances," *J. Nanosci. Nanotechnol.*, Vol. 19, No. 11, pp. 7387–7391, 2019, Doi: 10.1166/jnn.2019.16668.

[47] A. Bouhamed, A. Al-Hamry, C. Müller, S. Choura, and O. Kanoun, "Assessing the Electrical Behaviour of MWCNTs/Epoxy Nanocomposite for Strain Sensing," *Compos. Part B Eng.*, Vol. 128, pp. 91–99, 2017, Doi: 10.1016/j.compositesb.2017.07.005.

Declarations

Author contribution	: Marhan Ebit Saputra was responsible for the entire research project. He also led the		
	writing of the manuscript and the collaboration with the other author. Megawati Ayu		
	Putri and Eka Febrianti participated in the data collection and analysis. Widodo Budi		
	Kurniawan participated in transcription and revised the manuscript. All authors		
	approved the final manuscript.		
Funding statement	: This research is funded by Directorate General of Higher Education, Ministry of		
C	Education, Culture, Research, and Technology through the scheme of Exact		
	Research Student Creativity (PKM-RE) 2021 with the contract no.		
	1949/E2/KM.05.01/2021/		
Conflict of interest	: All authors declare that they have no competing interests.		
Additional information	: No additional information is available for this paper.		