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Abstract 
Stress is a general adaptive reaction crucial for survival and basically positive that involves the 

neuroendocrine and the immune systems. In all bilaterian metazoans, the molecular mediators of the 
stress response, i.e., corticotrophin-releasing hormone, corticotrophin, catecholamines and 
glucocorticoids, have been preserved during evolution, even if the increased complexity of animals 
have corresponded to a more articulated stress response that, following the eco-immunology 
perspective, we speculate to be hierarchically organized along three levels.  
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Eustress and distress, not simply “stress” 

 
Among the general public, the word stress 

evokes a concept of negativity, which is maintained 
even among those that have, or should have, 
knowledge of biology. This situation becomes even 
more embarrassing when considering that the 
scientific concept of stress has had the good fortune 
to become very popular, but at the same time the 
misfortune to be insufficiently understood. 
Moreover, the use of the term stress in the field of 
advertising has certainly not clarified its meaning. 

The present paper aims to provide a correct 
interpretation of the concept of stress, and 
especially to emphasize the importance of its 
positivity, i.e., the role played by stress response in 
the survival of all animal species on the Earth and 
maintained during evolution. 

The phenomenon of stress was identified and 
conceptualized by Hans Selye who in 1936 
published a paper, entitled: "A syndrome produced 
by different nocuous agents ". 

Before describing the mechanisms of this 
phenomenon, we should underline some semantic 
details. Stress is fundamentally characterized by 
two moments and aspects, i.e., the “stimulus” and 
the “response”. The word stress can indicate both, 
so creating a possible semantic ambiguity. Selye 
(1978) suggested the word “stressors” (stressogenic 
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agent) to indicate the causal agent, while keeping 
the word “stress” and “stress response” (response 
to stress) to indicate the final outcome. Moreover, 
according to Selye (1978), the word “stress” has 
meaning only if related to specific biological 
situations.  

Regarding the mechanisms of the response to 
stress, in mammals different organs belonging to 
the nervous and endocrine systems, such as the 
hypothalamus, the pituitary and adrenal glands, are 
involved (Selye, 1978). The response triggers 
physiological processes that operate along two 
routes. The first is the nervous pathway involving 
the autonomic nervous system and the medullar 
portion of adrenal glands leading to the release of 
catecholamines (CA) (epinephrine and 
norepinephrine). These molecules provoke a very 
rapid response, inducing physiological changes, 
such as the degradation of glycogen to glucose and 
its increase in the blood, so improving the quality of 
the life. This situation is further improved with 
activation of the second track, the endocrine 
pathway, in which the cortex portion of adrenal 
glands is involved. Schematically, the different 
stimuli that cause stress induce the release of the 
corticotrophin-releasing hormone (CRH) by the 
hypothalamus. In turn, the CRH provokes 
corticotrophin (ACTH) release from the pituitary. 
This hormone enters the bloodstream and binds 
specific receptors for ACTH present on the cells of 
the cortical portion of the adrenal glands and results 
in the release of steroid hormones such as 
glucorticoids (GC). These hormones (cortisol in 
humans and corticosterone in mice) have different 
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Fig. 1 Presence of the molecules involved in the stress response in the most representative taxa of Bilatera.  
 
 
 
effects; in particular they are involved in regulating 
the biosynthesis and release of CA. 

Altogether, it emerges that the stress pathway 
involves molecules in the following order: CRH, 
ACTH and CA. 

This complex mechanism that improves the 
quality of life by means of the release of CA, 
hormones and steroids is called “eustress” that 
means beneficial, positive stress. However, stress 
response must be of short duration. Indeed, 
prolonged exposure to stressors leads to a 
sustained release of CA and cortisol associated with 
psychological, functional and pathological 
symptoms (including bleeding and ulcers) described 
by Selye (1978). This overrun of the stress 
response is better defined as “distress” that means 
negative stress. 
 
The relationship between neuroendocrine and 
immune systems 

 
Stressor and stress response, by one side, and 

antigens and immune response, on the other, have 
always been considered as two distinct phenomena, 
having been discovered and studied separately and, 
consequently, having become the topics of specific 
disciplines. However, this division is inconsistent 
with reality, and the distinction between stressor and 
antigen or stress and immune response, is to be 
considered only quantitative and semantic. This 
dualism was first overcome in experiments 
undertaken by Hugo Besedovsky and colleagues 
(1987). They showed that interleukin (IL)-1, a 
classic mediator of the immune system, is able to 
activate the hypothalamus-pituitary-adrenal axis. 
This observation indicates that stressors that induce 
an immune response (bacteria, viruses, etc.) must 

also be inserted in the list of the stressogenic 
agents, suggesting that there is a deep correlation 
between the immune system and response to 
stress. Edwin Blalock and Eric Smith demonstrated 
that cells from the immune system, such as 
lymphocytes and macrophages may play a central 
role in the induction of stress (Blalock and Smith, 
1985; Blalock et al., 1985; Blalock, 1989). Indeed, 
lymphocytes and macrophages, well-known 
producers of cytokines, have also to be considered 
as neuroendocrine cells being able to synthesize a 
variety of hormones (i.e., classical molecules 
produced by the endocrine system) and 
neuropeptides (i.e., classical molecules produced by 
the nervous system). Furthermore, lymphocytes and 
macrophages may, in turn, respond to hormones 
and neuropeptides produced by cells from the 
neuroendocrine system (Blalock and Smith, 1985; 
Blalock et al., 1985; Blalock, 1989). 

In summary, various levels of integration 
between the immune and neuroendocrine systems 
can be traced:  
• classical products from the immune system, 

i.e., cytokines, can act on cells from the 
neuroendocrine system, modifying the latter's 
functions; 

• immune stimuli and hypothalamic releasing 
factors induce immune cells to synthesize 
neuropeptides which, in turn, may influence 
the activity of the neuroendocrine system; 

• classical hormones and neurotransmitters 
bind to specific receptors on immune cells 
and modulate their activity;  

• cytokines and cytokine-like peptides that are 
potentially able to modulate immune cell 
activity are produced by cells from the 
nervous system. 

 2



These observations suggest that the three 
systems (immune, endocrine and nervous) should 
be considered as anatomically distinct components 
of a single integrated immuno-neuro-endocrine 
system involved in the maintenance of the body 
homeostasis, justifying the conclusion that the 
response to stress is essential for survival. 
Accordingly, It should be underlined that this 
interplay between the immune and neuroendocrine 
systems is not restricted to mammals or other 
vertebrates, but can be retrieved also in 
invertebrates (Ottaviani and Franceschi, 1996), 
where the molecular cascade of stress response 
described in the previous paragraph has been 
observed in immune-competent cells. 
 
CRH and ACTH 

 
CRH has been isolated and characterized by 

hypothalamic extracts of sheep by Vale’s group 
(1981). Later searches showed the presence of 
CRH also in not nervous tissue (Seasholtz et al., 
2002). A similar picture has been detected in 
cartilaginous and bony fish as well as in tetrapods, 
i.e., in all vertebrates (Fig. 1) (Sato and George, 
1973; Petrusz et al., 1983; Waugh et al., 1985; 
Panzica et al., 1986; Roubos, 1997; Lovejoy and 
Balment, 1999; Summers, 2001; Engelsma et al., 
2002; Seasholtz et al., 2002; Malagoli et al., 2004; 
Huising et al., 2005). CRH-like molecules were also 
found in the nervous system of different invertebrate 
taxa, such as molluscs (Sonetti et al., 1986), 
annelids (Rèmy et al., 1982) and insects (Verhaert 
et al., 1984; Malagoli et al., 2002), as well as in the 
immunocytes and hemolymph of molluscs (Ottaviani 
et al., 1990). Unfortunately, no data are at present 
available for echinoderms, urochordates and 
cephalochordates, that represent the most important 
invertebrate taxa sharing the deuterostomian 
lineage with vertebrates (Fig. 1). 

ACTH is a small peptide enclosed within the 
pro-opiomelanocortin (POMC) precursor that was 
initially found in the human pituitary gland (Phifer et 
al., 1974; Eberle, 1988). Subsequently, ACTH was 
also detected in mammalian extra-pituitary areas 
(Ottaviani et al., 1997). As noted above for CRH, 
ACTH-like molecules were also found in intra- and 
extra-pituitary areas in other vertebrate taxa, namely 
fish, amphibians, reptiles and birds (Fig. 1) 
(Ottaviani et al., 1997; Roubos, 1997; Engelsma et 
al., 2002). Also different invertebrate taxa (molluscs, 
annelids, insects, urochordates and 
cephalochordates) contain immunoreactive ACTH 
molecules (Ottaviani et al., 1997). No data are 
available for echinoderms (Fig. 1).  
 
GC, CA and cytokines 
 

In 1985, David Norris identified the source of 
GC, in particular, of cortisol and corticosterone, in 
the cells of the adrenal cortex of mammals. Non-
mammalian vertebrates also produce GC (Fig. 1) 
(Summers, 2001; Engelsma et al., 2002; Wada, 
2008), but the typical adrenal glands found in 
mammals are not present in these animals. Fish 
present a group of cells homologue to 
adrenocortical and chromaffin mammalian tissue, 

and these two tissues are joined in various ways in 
tetrapods. The presence of GC-like molecules has 
also been detected in invertebrates, even if few 
studies are reported in literature. Cortisol 
immunoreactive molecules were detected in 
immunocytes from molluscs using an 
immunocytochemical method (Ottaviani et al., 
1998), and cortisol and corticosterone have been 
recorded in the insect Calliphora vicina by 
autoradiography (Bidmon and Stumpf, 1991). No 
further data are available for other invertebrate taxa. 

As far as the presence of CA is concerned, 
these molecules were detected in all vertebrates 
(Leboulenger et al., 1984; Korte et al., 1997; Reid et 
al., 1998; Summers, 2001; Tsigos and Chrousos, 
2002). In invertebrates CA were found in molluscs 
(Ottaviani and Franceschi, 1996; Lacoste et al., 
2001; Hooper et al., 2007; Adamo, 2008), annelids 
(Díaz-Miranda et al., 1982; Fleming, 1993), 
arthropods (Murdock, 1971; Klemm, 1983; Adamo, 
2008), echinoderms (Huet and Franquinet, 1981), 
urochordates (Kimura et al., 2003) and 
cephalochordates (Moret et al., 2004). 

Finally, as for CA, cytokines have been 
observed in all vertebrate lineages (Cohen and 
Haynes, 1991; Myers et al., 1992; Abbas et al., 
1994; Scapigliati et al., 2000; Engelsma et al., 2002; 
Kaiser et al., 2004) and in some invertebrate taxa. 
With regard the latter, either cytokines or cytokine-
like molecules were found in molluscs (Ottaviani et 
al., 2004; De Zoysa et al., in press), annelids 
(Ottaviani et al., 2004), arthropods (Morisato and 
Anderson, 1994; Agaisse et al., 2003; Kauppila et 
al., 2003; Söderhäll et al., 2005; Ottaviani et al., 
2004; Lemaitre and Hoffmann, 2007; Malagoli et al., 
2007) and urochordates (Parrinello et al., 2008; 
Zhang et al., 2008). 
 
A refined orchestra with the same players 
 

All the actors that play a role in the stress 
response must have appeared quite early in 
animals, since they can be retrieved in different 
bilaterian lineages (Fig. 1). It should be underlined 
that the cascade of molecular events involved in the 
stress response is the same in all the bilaterians 
analyzed so far, i.e., CRH, ACTH and CA. However, 
since invertebrates lack the organs usually related 
to vertebrate stress-response, i.e., hypothalamus, 
pituitary and adrenal glands, it remains to be 
established how invertebrate stress response can 
occur in such a simplified scenario. Our experiments 
in molluscs let us to speculate that in less complex 
organisms the stress response involves the 
circulating and phagocytic immunocyte endowed 
with the same molecules that are released and act 
in the same order described above (Ottaviani et al., 
1997). 

However, if the primitive organization of stress 
response was restricted to single cells, how it came 
that it has been split up in different organs in 
vertebrates? In experiments in the catfish Ameiurus 
nebulosus we have observed that fish exposed to 
lipopolysaccharide (LPS) for 15 and 120 min 
showed an increase in proCRH-like molecules in the 
brain after 15 min but not after 120 min, while the 
increase in proCRH levels in the peripheral organs 
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such as the liver and head kidney persisted for the 
entire treatment. These findings suggest that stress 
response is hierarchically- and time-regulated 
(Malagoli et al., 2004). More precisely, the first and 
simpler level is the “cell” level by which circulating 
immunocytes and some cells in various organs, 
have maintained the capability to resume the stress 
response. The “cell” level can be taken to represent 
the persistence of the “ancestral” version of stress 
response in complex organisms. The second level is 
the “organ” level, representing a local stress 
response in which cells distributed within a whole 
organ are involved. In this case, other organs may 
not be interested by the stress response that is 
therefore managed by single components. Finally, 
the third level is the “body” levels, involving different 
organs connected in a functional net, coordinating 
the entire system, as it is for the hypothalamus-
pituitary-adrenal gland axis (Ottaviani et al., 1998). 
This level represent the most complex machinery in 
stress response, but not necessary its activity is 
overlapped to that of the other levels (Malagoli et 
al., 2004). It may be surmized that during evolution 
of vertebrates, while circulating cells maintain their 
capability of promoting an immune-neuroendocrine 
response to stressor (“cell level”), some cells were 
specialized to respond to stressor within organs, 
thus constituting the “organ” level. The organization 
of a “system” or “body” level could derive form the 
constitution of a functional net between organs that 
were progressively specialized for the intertwined 
relations between increasingly complex nervous and 
endocrine systems. This concept of “hierarchy” is in 
agreement with the fundamental tenet of ecological 
immunology, i.e., to minimize the cost of biological 
responses (Lochmiller and Deerenberg, 2000). In 
this respect, the “organ” level described above 
represents a paradigmatic example. Fish challenged 
with LPS increased their expression of proCRH-like 
molecules in the brain after 15 min but not after 120 
min, while after 120 min the increase in proCRH 
levels persisted in the liver and head kidney. In 
terms of energy expenditure, we can speculate that 
it is more convenient for the organism to face the 
stressor at first also with the “body” level, then, if the 
stressor does not change its intensity, the stress 
response is mainly transferred to the periphery and 
to the “organ” level, thus limiting the involvement of 
the central nervous system to just the first phase of 
the stress (Malagoli et al., 2004; Ottaviani et al., 
2008). 

 
Conclusions 
 

In their response to agents that are potentially 
able to alter their homeostasis and threaten their 
survival, living organisms exploit a complex and 
integrated mechanism involving the immune-
neuroendocrine system and molecules that have 
been preserved during evolution, though differently 
located as a consequence of the increasing 
complexity of the organisms. 
Stress is a general, adaptive reaction that is crucial 
for survival and basically positive. Most of the 
negative effects reported in the literature derive from 
the general perception of stress and refer to 
extreme conditions of excessive stress. The most 

common stress of moderate magnitude must be 
considered physiological and, as Seyle (1978) 
reported, represents “the spice of life”.  
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