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Abstract 

The biological diversity of molluscs and their adaptation to highly diverse environments offer a 
unique opportunity for studying the evolution of the innate immune system in invertebrates. This 
review provides an updated account about the progresses made over the past few years in the study 
of the molecular players involved in the recognition of pathogen associated molecular patters 
(PAMPs), in the transduction of immune signaling and in the elimination of potentially pathogenic 
microbes in gastropod and bivalve molluscs. A major focus will be put on the differences and 
peculiarities of the molecular immune system of the two major molluscan classes, which have 
developed specific adaptations to cope with diverse living environments, pathogenic and non-
pathogenic microbes over the course of several hundred million years of independent evolution. 
Intriguing but still poorly understood aspects, such as antiviral response and immune priming, will be 
also explored, highlighting the present challenges and opportunities connected to the application of 
modern genomics techniques to the study of the immune system in these fascinating metazoans. 
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Introduction 

 

The phylum Mollusca is one of the largest and 
most diverse group of metazoans, only second to 
Arthropoda in number of described species. 
Molluscs are highly heterogeneous in terms of size, 
morphology, adaptations to diverse habitats 
(terrestrial, freshwater and marine) and feeding and 
behavior, reflecting the massive radiation this 
phylum underwent during the Cambrian period. 

The phylogeny of molluscs is still a matter of 
debate, as many different but equally plausible 
hypotheses have been proposed over the years, 
either based on morphological features, molecular 
data, or both. The reasons behind the apparently 
unsolvable topology of the molluscan tree of life are 
multiple and mainly need to be sought in narrow 
taxonomical sampling, focus on specific target 
clades and lack of appropriate outgroups (Sigwart 
and Lindberg, 2015). While molecular studies have 
long been expected to disentangle the complex 
evolutionary relationships among molluscs, this task 
still appears far to be accomplished and poses a 
great challenge for the interpretation of the results of 
comparative studies. 
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Despite these uncertainties, most of the over 

100,000 estimated extant species are currently 
classified within two main classes, Gastropoda and 
Bivalvia. The former is thought to comprise more 
than 80 % living molluscs, including species 
adapted both to terrestrial and aquatic life, while the 
latter strictly includes aquatic organisms, altogether 
accounting for ~14 % of the described species 
(Nicol, 1969). The remaining six classes 
(Scaphopoda, Cephalopoda, Aplacophora, 
Monoplacophora and Polyplacophora), despite their 
unique peculiarities and key position for evolutionary 
studies, overall only account for less than 2 % of all 
extant mollusc species. 

The two major molluscan classes are likely to 
have diverged from each other during the Cambrian 
explosion and are therefore separated by over 450 
million years of independent evolution. Although a 
broad range of species, from chitons, to tusk shells, 
land snails, squids, mussels and oysters are all 
classified under the same taxonomical umbrella as 
molluscs, such a large time of divergence permitted 
the development of highly specialized, novel genetic 
and morphological adaptations. 

All molluscs rely on a similar cellular and 
molecular framework of immune cells and 
molecules for surviving in challenging environments, 
often rich of potentially pathogenic microorganisms. 
In particular, free-living bacteria and viruses in 
seawater can reach considerable concentrations, in 
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the range of 10-6 and 10-7 ml-1, respectively (Bezdek 
and Carlucci, 1972; Drake et al., 1998), posing a 
great challenge for filter-feeding animals, including 
bivalves. The powerful innate immune system of 
molluscs, which comprises a broad array of soluble 
and membrane-bound Pattern Recognition 
Receptors (PRRs) for the recognition of pathogens, 
a finely regulated cytosolic signaling machinery and 
a battery of effector molecules aimed at eliminating 
invading microbes and recruiting specialized 
immune cells at the site of infection, is partially 
shared by other large invertebrate phyla which, 
unlike vertebrates, are not equipped with an 
adaptive immune system. 

Far from being simple and less developed than 
in vertebrates, the invertebrate immune system has 
followed slightly divergent evolutionary routes in 
different taxa over the past few million years. This 
complex evolutionary process, driven by 
environmental selective pressure, has led the 
development of remarkable and diverse immune 
capabilities, which are still poorly understood (Loker 
et al., 2004). 

Similarly, the ancient split between gastropods 
and bivalves, as well as their adaptation to different 
habitats and lifestyles, determined the evolution of 
unique features in their immune system. While 
extensive works have been carried out to document 
the genetic and molecular background of both 
gastropod (Loker 2010, Coustau et al., 2015) and 
bivalve (Gerdol and Venier, 2015; Song et al., 2015; 
Zhang et al., 2015) innate immune system, little 
attention has been paid so far at providing a 
comparative account of the differences between the 
two major molluscan classes. 

Indeed, important observations provided more 
than a decade ago concerning differences in the 
agglutinating and opsonizing activity of bivalve and 
gastropod plasma have not been followed by 
extensive molecular comparative research. 
Yakovleva and colleagues (2001) described these 
two alternative defense strategies as “low-
promiscuous” and “high-promiscuous” for 
gastropods and bivalves, respectively. It was 
hypothesized that, while the former comprised a set 
of plasma lectins with a broad spectrum of 
carbohydrate recognition, the latter mainly relied on 
plasma lectins with narrow binding specificity. It was 
also observed that the rate of phagocytosis in 
gastropods was highly dependent on the 
concentration of plasma lectins, as opposed to 
bivalves, where opsonization was likely triggered by 
membrane-bound lectins. As it will be pointed out 
below, these definitions still appear to be valid, and 
closely mirror the situation which is starting to 
emerge from the analysis of the large-scale 
molecular data collected over the past 15 years. 

This review will focus on this particular 
comparative aspect, exploring the massive amount 
of literature recently produced on this topic and 
presenting molecular data in a genomic context, 
whenever possible. Unless differently stated, data 
concerning the size and the sequence diversity of 
immune-related gene families will be inferred from 
the available molluscan genomes as of March, 
2017. Namely, the reference genomes taken into 

account in this study are: Crassostrea gigas v.9 and 
Pinctada fucata v.2.0 for bivalve molluscs; Lottia 
gigantea v.Helro1, Aplysia californica v.3.0 and 
Biomphalaria glabrata v.ASM45736v1 (unpublished) 
for gastropod molluscs. 
 
Molluscan lectins: a molecular repertoire 
characterized by lineage-specific expansions and 
extreme diversification 

Ever since the first molecular studies carried 
out in the early ‘80s it became evident that the 
immune response of molluscs largely relied on the 
production of a large number of soluble proteins 
with marked carbohydrate binding properties, acting 
as PRRs (Miller et al., 1982; Renwrantz, 1983; Pipe, 
1990; Fisher and DiNuzzo, 1991). 

While most efforts have been put into their 
isolation of these molecules from hemocytes, the 
central players in molluscan cellular immunity, 
considerable results have been also attained from 
the mucus of land snails, which covers their entire 
bodily surface, acting as a barrier from a potentially 
pathogen-rich environment. Like gastropod skin, 
bivalve gills and mantle represent main tissues of 
interface with the external environment, they are 
covered by mucus and constantly exposed to 
microbes present in the water column and conveyed 
to the intervalvar space by filter-feeding. While the 
majority of lectin-like proteins of bivalves have been 
described and isolated from hemolymph, the 
important role of bivalve pallial tissues in immune 
recognition is starting to emerge, as evidenced by 
the gills- or mantle-specificity of several PRRs 
(Gourdine and Smith-Ravin, 2007; Jing et al., 2011). 

It is now clear from genome and transcriptome 
data mining that molluscan lectin-like molecules are 
extremely variable, both in terms of their 
carbohydrate recognition domain (CRD), sugar-
binding properties, and sequence diversity among 
members of the same lectin family (Gerdol and 
Venier, 2015; Gorbushin and Borisova, 2015; Zhang 
et al., 2015). The high molecular diversity and the 
remarkable plasticity of CRDs allow, even in 
absence of the genetic re-arrangements typical of 
the vertebrate adaptive immune system, a very 
broad spectrum of recognition for invertebrate 
lectins (Vasta et al., 2007). 

Over the past few decades, scientific literature 
has evidenced some remarkable differences in the 
repertoires of these molecules in bivalve and 
gastropod molluscs. While some of these apparent 
discrepancies could be simply explained by the 
higher amount of efforts put into immunological 
research of economically important bivalves, whole-
genome analyses fully confirm that all the main 
lectin-like families show a different size and degree 
of diversification between these two molluscan 
classes, as reported in the comparative summary in 
Figure 1. This divergent evolution might be linked to 
environmental factors (terrestrial vs freshwater vs 
marine) and adaptation to the associated 
microbiomes and pathobiomes, as well as to the 
development of alternative low- and high-
promiscuity defense strategies, as previously 
proposed by other authors (Yakovleva et al., 2011). 

The most evident case is certainly that of C1q 
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Fig. 1 Domain organization and size of the main lectin gene families in two representative species for Bivalvia 
(the Pacific oyster Crassostrea gigas) and Gastropoda (the owl limpet Lottia gigantea). 
 
 
 
 
 
domain containing (C1qDC) proteins, which are 
present in hundreds different variants in bivalves, 
compared to the few (usually less than 20) gene 
copies found in gastropods. The C1q domain takes 
its name from the homonymous protein complex of 
the vertebrate complement system, whose three 
main components are characterized by the 
presence of the globular head domain C1q. The 
astounding plasticity and binding properties of this 
domain led to an extraordinary evolutionary success 
in metazoans (Carland and Gerwick, 2010), as 

highlighted by the nearly 6,500 C1qDC protein 
sequences deposited so far in public databases. 

In protostomes, C1qDC proteins have been 
linked on multiple occasions to a lectin-like activity, 
such as in the snail Cepaea hortensis (Gerlach et 
al., 2004). However, since this first report in 2004, 
very scarce references have been made in literature 
to gastropod C1qDC proteins as PRRs, with the 
only exception of some abalone proteins linked to 
lipopolysaccharide (LPS) and peptidoglycan (PGN) 
response (Bathige et al., 2016). Comparatively, 
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C1qDC proteins have been the target of a much 
higher number studies in bivalves (Zhang et al., 
2008; Gestal et al., 2010; Kong et al., 2010; Xu et 
al., 2012), where they have been often linked to 
hemocyte-specificity, upregulation in response to 
multiple PAMPs, bacterial agglutination and growth 
inhibition. This disparity concerning the reports in 
the two major mollusk classes is certainly correlated 
to very low number of C1qDC proteins found in 
gastropod genomes, as opposed to the a massive 
gene family expansion that occurred in bivalves 
(Fig. 1). This event, which is estimated to have 
brought to the development of almost 1,000 different 
paralogs in Mytilus spp., only involved 
Pteriomorphia and Imparidentia, but not freshwater 
unionoids and the basal branch of protobranch 
bivalves (Gerdol et al., 2015). 

Despite the low number of C1qDC proteins, 
gastropods produce several other lectin-like 
molecules, as evidenced by a large scale 
transcriptomic survey of the hemocyte transcriptome 
of the periwinkle Littorina littorea (Gorbushin and 
Borisova, 2015), even though, on average, their 
number at the whole genome level appears to be 
lower than in bivalves (Fig. 1). 

C-type lectins are the second largest lectin 
family in the Pacific oyster. These molecules are 
characterized by a CLECT domain which can be 
often associated with other conserved modules, 
creating a broad range of domain combinations. C-
type lectins can cover multiple biological functions, 
but one of the best documented is innate immune 
recognition, such as in the case mannose-binding 
lectin, a key component of the lectin pathway of the 
vertebrate complement system (Zelensky and 
Gready, 2005). The role of C-type lectins in the 
molluscan immune system has also been clearly 
established and thoroughly investigated (Wang et 
al., 2011). In gastropods, the abalone HdhCTL is 
involved in the agglutination of Gram-negative 
bacteria (Zhang et al 2014) and incilarins have been 
shown to be major components of the mucus of the 
land snail Meghimatium fruhstorferi (Yuasa et al., 
1998). In bivalves, the immune role of C-type lectins 
has been best defined in scallops. Different 
proteins, characterized by the presence of one to 
four CLECT CRDs, function both as PRRs with a 
broad spectrum of recognition (LPS, PGN, mannose 
and galactose) and as opsonins capable of 
enhancing the phagocytic activity of hemocytes (Mu 
et al., 2012; Huang et al., 2013). Interestingly a C-
type lectin of the Eastern oyster Crassostrea 
virginica has been implicated in mucosal immunity, 
due to its expression in the epithelial mucocytes of 
pallial organs (Jing et al., 2011) and, similarly, 
codakines have been implicated in the recognition 
of pathogenic or symbiotic bacteria in the gills of 
Codakia orbicularis (Gourdine and Smith-Ravin, 
2007). 

Fibrinogen-related proteins (FREPs) constitute 
the third molluscan lectin family in terms of number 
of sequences per genome. Like C-type lectins, 
FREPs also find their counterpart in key molecules 
of the lectin pathway of the vertebrate complement 
system, ficolins. The primary role of FREPs in 
invertebrates has been demonstrated to be linked to 

immune defense (Hanington and Zhang, 2011), as it 
had been already suggested by their isolation in the 
mucus gland of land slugs in the late ‘90s (Kurachi 
et al., 1998). The most remarkable differences 
between bivalve and gastropod FREPs involve the 
somatic mutations that occur in the latter, an aspect 
which will be discussed in detail in the next section. 

Many other lectins have been implicated in the 
immune recognition system of molluscs and, despite 
pertaining to smaller gene families compared to 
C1qDC, C-type lectins and FREPs, they almost 
invariably appear to be more diversified in bivalves 
than in gastropods. Among these, the 
multifunctional F-type lectins are certainly worth of a 
mention as they have been linked to PAMP 
recognition in bivalves (Chen et al., 2011). Despite 
its small size, the galectin gene family has been 
studied in detail (Fig. 1). Compelling evidence has 
been indeed produced linking the up-regulation of 
galectins to infection by Perkinsus spp. (Tasumi and 
Vasta, 2007; Kim et al., 2008) and various types of 
bacteria (Zhang et al., 2011; Maldonado-Aguayo et 
al., 2014). 

In stark contrast with the carbohydrate-binding 
proteins reported so far, H-type lectins have been 
only studied in gastropods, whereas no information 
has been provided so far in bivalves. These 
constituents of the perivittelin fluid protect the 
fertilized eggs of snails from bacterial infections 
(Gerlach et al., 2005; Sanchez et al., 2006). 
Although SUEL rhamnose/galactose-binding lectins 
cover a very similar role in sea urchin, they have 
been only marginally studied in molluscs so far, with 
the lone report of a Gram-negative bacteria 
agglutinating protein in the mantle of the pearl 
oyster Pteria penguin (Naganuma et al., 2006). 

The field of lectinomics is in constant expansion 
and the popularity of high throughput sequencing 
technologies is bringing a new impulse to the 
discovery of novel molecules with carbohydrate-
binding potential in non-model species (Gorbushin 
and Borisova, 2015). For example, apextrin-like 
proteins, which have been recently described as 
novel PGN sensors in amphioxus (Huang et al., 
2014), have also been unveiled as PRRs in mussels 
(Estévez-Calvar et al., 2011). In this case, the 
occasional association of the apextrin domain with a 
MACPF domain would combine PAMP-binding and 
pore-forming activities within the same protein 
product (Gerdol and Venier, 2015). 

Interestingly, such a functional combination, 
reminiscent of the link between the lectin pathway 
and the terminal pathway of the complement 
system, has been reported in two other cases in 
molluscs. The first one involves a defense system 
from the eggs of the snail Pomacea canaliculata, 
which uses a complex between a MACPF pore-
forming and a Limulus lectin L-6-like subunit for 
microbe recognition and killing (Dreon et al., 2013). 
However, unlike mussel MACPF/apextrin proteins, 
in this case the pore-forming and PAMP-binding 
activities are provided by two distinct proteins 
encoded by two different genes. 

The second case is that of mytilectins, a 
multigenic family identified in Mytilus 
galloprovincialis, which is characterized by a ricin-B- 
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Fig. 2 Panel A: Schematic domain organization of FREPs in Mollusca. Panel B: Three-dimensional modeling of 
the fibrinogen-like domain of Biomphalaria glabrata FREP3. FBG: Fibrinogen; IG: immunoglobulin. 
 
 
 
like fold. Although the structure of the sugar-binding 
domain of these molecules vaguely resembles that 
of an agglutinin described in gastropods (Arreguín-
Espinosa et al., 2001), mytilectins: (i) are 
taxonomically restricted to mytiloids and a few other 
bivalve groups and (ii) sometimes display a C-
terminal aerolysin-like pore-forming domain (Hasan 
et al., 2016). The very same structural pore-forming 
motif is also present in biomphalysins from land 
snails, although in this case there is no association 
with a lectin-like domain (Galinier et al., 2013). 

Clearly, additional studies will be needed to 
establish whether these hybrid proteins provide a 
functional equivalent to the terminal pathway of the 
complement system, which only appears to be 
present as a primitive version in protostomes 
(Nonaka and Kimura, 2006). At the same time, it is 
still largely unclear how the large arsenal of 
secreted molluscan PRRs can transmit signals of 
infection within the cell and coordinate the cellular 
immune response. 

 
Somatic diversification: towards a definition of 
immune memory in invertebrates? 

As briefly mentioned in the previous section, 
proteins containing a C-terminal fibrinogen-like 
domain (FREPs) are among the most important and 
best studied families of PRRs in molluscs. The 
structural similarity between the C-terminal domain 
of mammalian fibrinogen and the horseshoe crab 
tachylectin first revealed that this three-dimensional 
fold (Fig. 2) is shared by molecules involved in 
innate immunity and blood clotting, which therefore 
likely originated from a common ancestor. 

So far FREPs have been mostly studied in 
gastropods, and specifically in the snail B. glabrata, 
where they play a fundamental role in conferring 
resistance to infections by the digenean trematode 
Schistosoma mansoni (Gordy et al., 2015). This 
fascinating and complex host/pathogen relationship 
is characterized by patterns of resistance and 
susceptibility to infection which are governed by the 
somatic mutation of snail FREP sequences (Zhang 

et al 2004). Since somatic mutations had long been 
long thought to be confined to vertebrate immune 
systems, this phenomenon has attracted a 
considerable attention, making FREPs the best 
candidate molecules for immune memory in 
invertebrates (Milutinović and Kurtz, 2016). 

Indeed, it has been demonstrated that somatic 
mutation in FREPs could permit not just to establish, 
but also to maintain resistance to infection in snail 
populations (Hanington et al., 2012). This is 
supported not just by the different susceptibility to 
infection of snails expressing different FREP 
isoforms, but also by the acquisition of resistance 
towards secondary homologous infections through a 
mechanism of immune priming reminiscent of 
vertebrate adaptive immunity (Portela et al., 2013). 
This idea was further reinforced by the observation 
of complexes between FREPs and highly variable 
mucin molecules produced by trematodes, in an 
interaction which could be seen as quite similar to 
that occurring between antigens and antibodies 
(Moné et al., 2010). 

So far, somatic diversification has only been 
demonstrated for a small subclass of FREPs called 
IgSF-FREPs which, in addition to the C-terminal 
Fibrinogen-like domain, also contain one or two N-
terminal Immunoglobulin-like domains (Fig. 2) 
where the process of somatic mutation appears to 
take place (Zhang et al., 2004). Curiously, bivalves 
lack IgSF-FREPs and, while similar proteins are 
present in Aplysia, they are absent in Lottia, 
revealing that they are likely to represent 
evolutionary innovations of heterobranch 
gastropods (Gorbushin et al., 2010). 

Although bivalve FREPs display a simpler 
domain organization (Fig. 2) and lack significant 
homology to the sequences of B. glabrata, they are 
also extremely diversified. While events of allelic 
recombination or somatic mutation have been 
invoked to explain this remarkable sequence 
diversity (Zhang et al., 2012), the high number of 
FREP genes found in the oyster genome and in 
various transcriptomes of other species suggest that 
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the major driving force behind the hyervariability of 
bivalve FREPs is gene duplication, not somatic 
diversification (Gerdol and Venier, 2015; Zhang et 
al., 2015). 

Other authors have also revealed the presence 
of CREPs and GREPs, i.e., molecules whose 
structure is similar to that of IgSF-FREPs, but 
whose N-terminal lectin-like region is either a C-type 
lectin or by a galectin domain (Dheilly et al., 2015). 
While somatic diversification has not been observed 
yet for CREPs and GREPs, these molecules are 
absent in bivalves and therefore they probably also 
represent gastropod innovations.  

In bivalves, somatic mutation has been 
suggested, but not demonstrated yet in myticin C 
(Vera et al., 2011), an antimicrobial peptide 
characterized by extreme levels of polymorphism 
and probably evolving under positive selection. 
However, in absence of definitive evidence, it is 
reasonable to assume that the factors underlying 
this sequence hypervariability might be linked to the 
extreme rate of heterozygosity of the mussel 
genome (Murgarella et al., 2016). 

Overall, while convincing evidence has been 
collected concerning the existence of immune 
somatic diversification in B. glabrata and possibly 
also in other gastropods where IgSF-FREPs are 
present, the possibility that such mechanism of 
molecular diversification takes place also in bivalve 
mollusks still remains to be explored. However, as 
reported in the previous section, it is certainly 
noteworthy that lectin-like gene families underwent 
much more relevant expansion and diversification in 
bivalves, where somatic mutations have not been 
reported, compared to gastropods, where the lower 
sequence diversity at the whole genome level 
seems to be compensated by somatic 
diversification. 

Immune memory in invertebrates is certainly a 
hot topic, which has been revolutionized by 
important discoveries in the past 20 years, which 
have introduced concepts such as immune priming 
and immune memory also in non-vertebrate 
metazoans. At the same time this aspect of 
invertebrate immunology is still poorly understood 
and applied research in this field is certainly 
complicated by the highly divergent strategies 
adopted by different phyla. As an example, the 
fascinating strategy adopted by arthropods to 
generate up to 10,000 different isoforms of the 
Down Syndrome Cell Adhesion Molecule (DSCAM) 
(Brites and Du Pasquier, 2015), is not used at all by 
other animals. As opposed to the presence of a 
hypervariable array of duplicated exons and 
complex alternative splicing patterns of insects, the 
genomic organization of DSCAM in molluscs is only 
consistent with the production of a single invariable 
protein product (Gorbushin and Iakovleva 2013). 

 
The broad repertoire of molluscan Toll-like receptors 
converge in a highly conserved intracellular 
signaling pathway 

Toll-like receptors (TLRs) have been 
recognized as central players in the innate immune 
response of vertebrates, where they have been 
implicated in the recognition of a broad range of 

bacterial, fungal and viral molecular patterns. In 
Drosophila melanogaster, Toll has a dual role in the 
determination of embryonic dorsal-ventral polarity 
and in the transduction of immune signaling in 
response to Gram-positive bacteria upon the 
binding with the proinflammatory cytokine Spätzle, 
which is in turn activated by an extracellular 
proteolytic cascade mediated by Peptidoglycan 
Recognition Proteins (PGRPs) and Gram-Negative 
Binding Proteins (GNBPs). In many invertebrate 
organisms, TLRs have been linked with pathogen 
detection and the subsequent production of immune 

effectors through the activation of Nf-B signaling, 
even though no Spätzle-like cytokine has been 
identified yet in non-arthropod protostomes. 
Genomic studies have further revealed that some 
invertebrates possess a very large repertoire of 
TLRs, as perfectly exemplified by the several 
hundred members identified in the sea urchin 
Strongylocentrotus purpuratus (Hibino et al., 2006). 
However, echinoderms are not an isolated case, as 
a similar number of these membrane-bound 
receptors have been found in other deuterostomes 
and protostomes, including the Pacific oyster 
(Zhang et al., 2015). 

Compared to bivalves, gastropod genomes 
appear to possess a significantly lower number of 
TLR genes, ranging from 10 to 20 in the genomes 
which have been sequenced so far. Despite this 
numerical difference, both bivalves and gastropods 
are characterized by the presence of two different 
sets of structurally divergent receptors which co-
exist (Gerdol et al., 2017), i.e., single cysteine 
cluster (scc) and multiple cysteine cluster (mcc) 
TLRs. While the former type resembles vertebrate 
receptors due to the presence of a single set of N-
terminal and C-terminal-type Leucine Rich Repeats 
(LRRs), the latter are more similar to Drosophila 
Toll, with two consecutive sets of N- and C-terminal 
LRRs. 

So far no comprehensive functional study has 
been carried out to assess whether the high 
sequence diversity of molluscan TLRs mirrors a 
functional specialization in immune recognition, in 
embryonic development, or in both processes. 
However, an increasing number of reports suggest 
that at least some TLRs likely play a crucial role in 
mediating immune response upon infection. For 
example, mccTLRs have been linked to antibacterial 
and antiviral response in abalone (Elvitigala et al., 
2013) and a TLR of the snail B. glabrata was found 
to be strictly associated with specimens resistant to 
infections by the trematode S. mansoni (Pila et al., 
2016). Convincing evidence concerning the immune 
function of TLRs and their role in regulating the 
production of AMPs in bivalves have been also 
produced by the observation of their up-regulation in 
response to experimental bacterial infections 
(Toubiana et al., 2013; Ren et al., 2014). 

Surprisingly, in spite of the highly diversified 
repertoire of molluscan TLRs, a single molecule, 
named MyD88, has been so far determined as they 
lone cytosolic partner and positive regulator of 
downstream intracellular immune signaling. 
Although different MyD88 isoforms have been 
characterized in bivalve and gastropod molluscs 
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(Toubiana et al., 2013; Ning et al., 2015), it seems 
quite unlikely that such a small number of 
intracellular proteins are able to mediate signals 
originated from hundreds different receptors, as 
such a massive diversification would allow the 
recognition of a potentially very broad range of 
ligands, requiring the subsequent production of 
specialized immune effectors. 

A recent genomic survey tried to fill this 
knowledge gap, pointing out that a very large 
amount of evolutionarily conserved cytosolic TIR-
domain containing (ecTIR-DC) proteins are present 
in bivalves, and enabling the possible 
characterization of novel TLR intracellular partners 
in the near future (Gerdol et al., 2017). Although the 
total number of ecTIR-DC proteins found in 
gastropods genomes is somewhat lower than that 
found in bivalves, some highly conserved gene 
families are present in both the two main Mollusca 
classes. These also include SARM, a probable 
negative regulator of Toll signaling. The other 
conserved TIR-DC families identified in both 
gastropods and bivalves were: ecTIR-DC 2, 3, 5, 6, 
8, 9, 11, 14 and 15. While the precise role of these 
conserved proteins remains unknown, their 
remarkable conservation across metazoans 
suggests an important function in the regulation of 
intracellular immune signaling, which might warrant 
future research in the near future. 

Notwithstanding the elusive nature of the 
cytosolic interactors of TLRs, the downstream 
machinery responsible of cytosolic immune signal 
transduction appears to be well conserved in 
molluscs, mirroring almost perfectly that of 
vertebrates and showing a less relevant overlap 
with the simpler pathway of Drosophila (Fig. 3). 

In vertebrates, the first complex activated by 
MyD88 and by other related adaptors is composed 
by the serine/threonine kinases IRAK1, IRAK2 and 
IRAK4, which associate with TNF receptor 
associated factor (TRAF) 6. This evolutionarily 
conserved protein, despite having been identified in 
multiple bivalve species, has never been 
characterized so far in gastropods (He et al., 2013; 
Toubiana et al., 2014). Nevertheless, genome data 
clearly reveal that TRAF6 is present as a single 
copy gene in L. gigantea, A. californica and B. 
glabrata. IRAK kinases on the other hand represent 
one of the few cases of significant divergence 
between vertebrates and mollusks: in particular, 
while proteins similar to IRAK4 have been described 
in abalone (Ge et al., 2011) and mussels (Toubiana 
et al., 2014), no sequence displaying convincing 
homology with IRAK1 and IRAK2 is encoded by 
molluscan genomes, leaving the molecular partners 
of IRAK4 and TRAF6 (if any) presently unknown. 

The next step of signaling involves the 
transforming growth factor-β activated kinase 1 
(TAK1) which, together with the two associated 
proteins TAB1 and TAB2, is well conserved also 
across all metazoans. The activated TAK1 complex 

subsequently phosphorylates and activates the IB 

kinase (IKK) complex, which is composed by IKK 

and IKK, whose homologs have been identified in 
M. galloprovincialis and P. fucata (Xiong et al., 
2008; Toubiana et al 2014). Alternatively, TAK1 can 

also activate the MAPK pathway (not shown in Fig. 
3), which ultimately leads to the activation of the AP-
1 transcription factor complex in the nucleus, 
triggering the expression of various immunity and 
stress-related genes (Gerdol and Venier, 2015). 

The inhibitor of NF-B (IB) is the key molecule 
in the entire intracellular immune signaling cascade, 

as is it binds and sequesters NF-B in the cytosol. 
This inhibition can be reversed by phosphorylation 
by the IKK complex described above, which permits 
the dissociation between the transcription factor and 

its inhibitor. IB is also perhaps the molecular 
component of the pathway which has so far been 
the object of the most studies, both in bivalves 
(Zhang et al., 2009; Mu et al; 2010; Valenzuela-
Muñoz and Gallardo-Escárate, 2014) and in 
gastropods (Kasthuri et al., 2013; Zhang et al., 
2014). 

Finally NF-B, whose homologs have been 
reported in different molluscan species (Jiang and 
Wu, 2007; Huang et al., 2012; Li et al., 2015), can 
migrate to the nucleus, where it turns on the 
expression of pro-inflammatory genes and immune 
effectors, such as AMPs (Fig. 3). 

Overall, while most of the key components of 
the canonical intracellular signaling pathway 
activated downstream of TLRs seem to be well 
conserved between bivalve and gastropod molluscs, 
it remains to be investigated whether the high 
number and diversity of TLRs can trigger parallel 
intracellular signaling routes which are not shared 
with vertebrates. As briefly mentioned above, the 
remarkable sequence diversification of TLRs and 
the high number of intracellular TIR-DC proteins in 
these organisms could, at least in line of principle, 
allow a tailored immune response with the 
production of highly specific immune effectors. 

As this response is likely to be driven by the 
interaction between TLRs and TIR-DC adaptors 
alternative to MyD88, the diversity of such 
molecules between bivalve and gastropod molluscs 
is certainly a topic worth of attention. 
 
Antiviral response: STING as a major cytosolic viral 
sensor 

While the molecular mechanisms adopted by 
molluscs and other invertebrates to manage 
infections by bacteria and eukaryotic parasites are 
starting to be unveiled, the genetic basis of their 
antiviral immunity remains nearly completely 
unknown. The reasons of this poor knowledge are 
multiple and mostly linked to the somewhat elusive 
nature of molluscan viral pathogens, their difficult 
isolation, identification and characterization. Only in 
the very recent years a series of technological 
improvements have finally permitted to gain an in 
depth view of mollusc-associated virome through 
the application of next generation sequencing 
technologies, but this field can still be considered to 
be at its very early stages. Taking into account the 
important economic losses inked to virus-induced 
mass mortalities in mollusc species of commercial 
interest (Barbosa Solomieu et al., 2015), this field of 
study will most likely encounter a great expansion in 
the years to come. 

Other authors have already provided an  
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Fig. 3 Overview of the canonical intracellular immune signaling pathway activated downstream of TLRs upon 
PAMP binding. Only the main components are shown. Proteins whose existence has not been demonstrated yet 
in molluscs are marked by question marks. 
 
 
 
 
excellent review of the complex molecular antiviral 
machinery present in oysters, whose components 
have been identified by homology with their 
vertebrate counterparts (Green et al., 2015). This 
system comprises a broad range of membrane-
bound and intracellular receptors and has a 
significant overlap with the intracellular signaling 
routes activated downstream of TLRs. The 
multifaceted antiviral response of molluscs possibly 
also involves autophagy, which could be mediated 
by the recognition of viral nucleic acids by TLRs 
located in endosomes, and the activity of the RNA-
induced silencing (RISC) complex and RIG-like 
receptors (RLRs). While all these components have 

been only marginally studied in mollusks, they 
appear to be present, for the most part, in the 
genomes of both bivalves and gastropods. 

Far for providing a complete account of the 
entire complement of gene-encoded molecules 
involved in antiviral response, this section of the 
review will mainly focus on one of the key 
components of the cytosolic system of viral sensing, 
the Stimulator of Interferon Genes (STING), which is 
missing in all the sequenced gastropod genomes. 

STING is a key regulator of intracellular sensing 
of viral nucleic acids which is usually bound to the 
endoplasmic reticulum membrane through N-
terminal transmembrane domains. Upon viral 
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sensing, STING dimerizes and migrates to the 
perinuclear region, where it interacts with TBK1 (a 
key molecule also in TLR signaling), thereby 
activating the IRF3 transcription factor and 
triggering the expression of interferon genes (Fig. 4) 
(Ishikawa et al., 2009). STING can either bind 
directly single- or double-strand nucleic acids or 
collect signals derived from a multitude of 
intracellular receptors with somewhat redundant 
functions (Ma and Damania, 2016), thereby acting 
as a major hub coordinating immune responses to 
viral infection. 

The different players of this cytosolic sensing 
pathway are sometimes difficult to be identified due 
to large sequence divergence between protostomes 
and vertebrates, and lineage-specific loss of the 
known vertebrate regulators upstream of STING 
(Gerdol and Venier, 2015). Also, while IRF-like 
sequences have been previously identified in 
mollusks (Wang et al., 2013), no IRF-3 and 
interferon-like sequences have ever been described 
in invertebrate organism, suggesting that the 
terminal branch of this pathway might be largely 
divergent between vertebrates and invertebrates. 

Despite these differences, STING homologs 
can be readily identified in many protostomes, 
including bivalve molluscs, although these proteins 
present remarkable structural differences compared 
to their vertebrate counterparts: (i) they lack N-
terminal transmembrane domains for the anchoring 
to the ER membrane; (ii) they are associated to an 
N-terminal TIR-like domain, whose typical function 
is immune signal transduction (Fig. 4). 

Also, the TIR/STING domain pair is repeated 
two times, suggesting that, unlike vertebrates, no 
dimerization is necessary for STING activation, as 
the homotypic interaction could possibly involve the 
two STING domains present within the same protein 
precursor. A large scale genomic comparative study 
has recently evidenced that similar TIR/STING 
proteins are also present in brachiopods and 
polychaetes, even though only a single TIR/STING 
domain pair is found in these organisms (Gerdol et 
al., 2017). On the other hand, as mentioned above, 
no STING gene is present in the available genomes 
of gastropods and cephalopods. However, 
transcriptome data mining revealed that 
homologous sequences, with the 
brachiopod/polychaete domain configuration, are 
present in Caenogastropoda, implying that the loss 
of STING might have occurred only in 
Heterobranchia and Patellogastropoda (Fig. 4). 

Another important difference between bivalves 
and gastropods within the STING pathway is linked 
to cGAS, an important DNA sensor containing a 
Mab-21 domain, which can catalyze the production 
of the second messenger cGAMP, activating STING 
(Ablasser et al., 2013). Although no cGAS sequence 
has been ever formally described in mollusks, 
several Mab-21 domain containing proteins can be 
identified in their genomes. However, while only a 
single-copy cGAS-like gene is present in 
gastropods, the oyster genome encodes several 
dozen paralogous sequences, potentially offering a 
very broad array of STING activators with slightly 
different binding specificities. 

Overall, this data seems to point towards a 
broad capability of recognition of foreign nucleic 
acids by bivalves through STING/cGAS, opposed to 
gastropods, where STING is absent (with the 
exception of Coenogastropoda) and its upstream 
cGAS-like partners display low sequence diversity. 

Obviously, as no functional evidence has been 
provided so far about the involvement of molluscan 
STING and cGAS homologs in antiviral defense, the 
possible effects of the loss of this pathway in 
gastropods are a matter of speculation. By 
homology with vertebrates, where STING knockout 
determines an increased susceptibility to lethal viral 
infections (Ishikawa et al., 2009), one might argue 
that gastropods are likely to be more susceptible to 
viral infections than bivalves, unless any 
compensatory, presently unknown strategy has 
been developed to cope with this loss. 
 
Occurrence and diversity of antimicrobial peptides 

One of the most striking differences between 
gastropods and bivalves is the scarce amount of 
reports in the molecular immunology literature about 
antimicrobial peptides (AMPs) in the former, 
opposed to the large number of publications 
produced over the past two decades for the latter (Li 
et al., 2011). This disparity is so remarkable that 
one might wonder whether this is linked a more 
developed arsenal of microbe-killing peptides or, 
simply, to the greater efforts put so far in 
antimicrobial research in bivalves. As a matter of 
fact, the available genomic and transcriptomic data 
is in agreement with literature reports, pointing out 
that gastropod molluscs lack several AMP gene 
families which are present not only in bivalves, but 
often also in other protostomes (Table 1). 

Mussels (Mytilus spp.) represent a remarkable 
example of the expansion and diversification of host 
defense peptides. Classical biochemical 
approaches carried out in the early ‘90s permitted to 
isolate several secreted cysteine-rich AMPs from 
circulating hemocytes, where these molecules are 
usually stored as inactive precursors (Charlet et al., 
1996; Mitta et al., 1999). Thanks to the recent 
developments of NGS, we have learned that these 
peptides are produced by multi-genic families, 
named defensins, mytilins and myticins. Despite 
remarkable differences in amino acid composition 
and organization of the peptide precursor, these 
mussel AMPs pertain to the same cysteine-
stabilized alpha-helix beta-sheet (CS-αβ) 
superfamily, which reunites diverse peptides 
characterized by a common structural motif, i.e., 
the presence of an alpha helix, followed by two 
antiparallel beta-sheets, whose position in the 
three-dimensional space is stabilized by three (or 
four) disulfide bridges. While the role of these 
cysteine-rich AMPs is certainly linked to pathogen 
killing, with a preferential activity against Gram-
positive bacteria, it has also been suggested that 
they may act as immune modulators, with a 
cytokine-like function (Balseiro et al., 2011). 
Following the studies in mussels, defensin-like 
peptides, either characterized by the presence of six 
cysteine residues, like in arthropods or eight 
cysteine residues, were shown to be also present in 
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Fig. 4 Panel A: taxonomical distribution of TIR/STING and cGAS within Mollusca. Presence and absence are 
marked by green and red colors, respectively. Brachiopoda were included as an outgroup phyla for 
Lophotrochozoa. Whenever present, the domain organization of STING is shown. Panel B: schematic overview of 
viral sensing mediated by STING. STING can directly bind viral nucleic acids, forming a complex with TAK1 and 
IRF3, which is activated and translocated to the nucleus, where it triggers the expression of interferon genes. 
Alternatively, STING can be activated by the interaction with cGAMP molecules produced by cGAS upon the 
recognition of foreign DNA in the cytosol. Molecules whose homologs have not been reported yet in molluscs are 
marked in red. 
 
 
 
oysters, clams and freshwater mussels, with either 
hemocyte or mantle tissue specificity (Gueguen et 
al., 2006; Peng et al., 2012; Wang et al., 2015). 

It is noteworthy that CS-αβ peptides similar to 
bivalve and arthropod defensins have been reported 
as missing in some large invertebrate taxa, which 
also include gastropods (Rodríguez de la Vega and 
Possani, 2005). This is confirmed by the absence of 

gene products sharing significant sequence 
similarity to any of the previously described 
invertebrate defensins in L. gigantea, B. glabrata 
and A. californica. However, this consideration 
cannot be extended to all gastropods, since a 
defensin peptide with six cysteines has been 
identified in the abalone Haliotis discus, pertaining 
to the ancestral gastropod clade Vetigastropoda (De 
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Zoysa et al., 2010). This report adds further 
complexity to the evolutionary history of invertebrate 
defensins, whose common ancestry has been 
previously brought into question (Tarr, 2016). 

Big defensins display an similar taxonomic 
distribution, characterized by an apparent absence 
in gastropods and multiple reports in diverse bivalve 
species (Zhao et al., 2010; Rosa et al., 2011). 
Despite their name, these AMPs are not related to 
the other invertebrate defensin-like peptides 
described so far, as they share the same fold of 

vertebrate -defensins. Despite the lack of big 
defensins in the available gastropod genomes, a big 
defensin-coding sequence appears to be present in 
the transcriptome of the abalone Haliotis 
tuberculata, mirroring the presence of classical 
defensins in abalones and extending the known 
taxonomical distribution of these AMPs, which had 
so far been found only in bivalve mollusks, 
horseshoe crabs and amphioxus (Gerdol et al., 
2012). 

As evidenced from sequence data mining, 
macins are the only class of CS-αβ peptides 
apparently present in all bivalves and gastropods 
species. This AMP family comprises multifunctional 
peptides which are thought to be involved both in 
bacterial killing and wound healing and which 
display some variations in their cysteine array, 
which may present 4, 5 or 6 disulfide bridges 
(Gerdol et al., 2012). Consistently with reports in 
other protostomes (Tasiemski et al., 2004), macins 
appear to be broadly expressed in various tissues 
and, in particular, they critically contribute to the 
antibacterial activity of the mucus of the giant snail 
Achatina fucata (Zhong et al., 2013). 

The repertoire of molluscan cysteine-rich 
peptides is growing at a fast rate as new AMP 
families are identified either by conventional or by -
omic methods. Once again, mussels have been a 
major target for AMP discovery, as mytimycins 
(Sonthi et al., 2011), myticusins (Liao et al., 2013) 
and the enigmatic CRP-I family, whose function still 
remains to be fully elucidated (Gerdol et al., 2015), 
have been described in the past few years. 

Comparatively, only a little attention has been 
put in the discovery of linear AMPs devoid of 
cysteines, and this finds a possible explanation in 
the difficulty of the discovery of these fast-evolving 
gene products by sequence similarity-based 
searches. The most relevant case of linear AMPs 
described in molluscs so far are probably 
molluscidins, low-complexity and highly cationic 
short peptides composed by several dibasic 
repeats, found in both oyster and abalones (Seo et 
al., 2013, 2016). Another small family of linear 
peptides, named CgPrp, rich in Pro and Arg 
residues, has been identified in oyster hemocytes. 
Although CgPrp peptides do not show any 
detectable antimicrobial activity, they are 
significantly and synergistically able to enhance the 
effectiveness of defensins (Gueguen et al., 2009). 
As far as gastropods are concerned, potent proline-
rich AMPs with no similarity to any other known 
peptide have been isolated from the hemolymph of 
the marine snail Rapana venosa (Dolashka et al., 
2011). While the research on linear cationic AMPs is 

still mostly based on classical biochemical isolation 
methods, the use of in silico approaches is currently 
proving to be a valid complementary tool in the 
discovery of novel AMPs in molluscs, as testified by 
the recent discovery of myticalins in M. 
galloprovincialis, a novel class of taxonomically 
restricted, hypervariable AMPs which display a 
broad spectrum of activity towards Gram+ and 
Gram- Bacteria (Gerdol et al., 2016). 
 
Conclusions 

 
With over 100,000 extant species and their 

colonization of nearly all terrestrial, freshwater and 
marine environments, mollusks represent a unique 
case for the study of many aspects of evolutionary 
biology, including defense against potentially 
pathogenic microbes. Over 450 million years of 
independent evolution, gastropod and bivalves have 
clearly developed peculiar molecular mechanism to 
tackle these challenges and the nature of these 
unique adaptations are starting to emerge, also 
thanks to the contribution of the increasing number 
of fully sequenced genomes available. 

We are quickly moving from the isolation and 
characterization of single molecules through 
classical biochemical methods to the possibility of 
mining entire genomes and transcriptomes, 
identifying dozens if not even hundreds of candidate 
immune receptors, signaling transducers, 
transcription factors and antimicrobial effectors. 
Obviously, these two approaches are 
complementary to each other, and the combination 
between data mining and functional approaches is 
quickly providing new hints about the placement of 
several missing pieces in the highly complex puzzle 
of the invertebrate immune system. 

As far as molluscs are concerned, despite 
several recent discoveries of the utmost importance, 
such as the identification of a complete TLR 
signaling pathway and the discovery of molecular 
strategies providing immune memory, we are still 
missing large portions of the whole picture. Our 
knowledge of the functioning of viral sensing 
systems for example is still extremely limited and 
almost exclusively limited to the components which 
are homologous to those of vertebrates. At the 
same time, the nature of invertebrate cytokines is 
still elusive, despite the high conservation of the 
signaling routes leading to their production. 

Most importantly, no global approach has yet 
been effectively implemented for defining how the 
different molecules involved in PAMP detection, in 
the activation of immune signaling and in the 
elimination of pathogens coordinate their activity. 
For example, while functional studies have 
permitted to elucidate the primary sequence and the 
binding specificity of several dozen molluscan 
lectins, it is presently unclear how such molecules 
transmit immune signals within the cell and, while 
some of these appear to work in a “seek and 
destroy” mode, thanks to the combination between 
PRR and pore-forming modules, others are likely to 
trigger a highly specific and finely regulated cellular 
response, which probably involves membrane 
receptors, intracellular partners and cytokine-like 
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Table 1 Summary of the main antimicrobial peptide families reported so far in bivalve and gastropod molluscs. A 
brief description of the taxonomic distribution, expression pattern and spectrum of activity is also reported, 
whenever available 
 

AMP type/family Bivalvia Gastropoda 

Defensins Present in multiple species; 6/8 cysteine 
residues; hemocyte- or mantle-specific; activity 
against Gram+ bacteria 

Absent in most species; present in 
abalones; 6 cysteines; expressed in 
whole body; unknown spectrum of 
activity 

Mytilins Taxonomically restricted to mussels, 8 
cysteines; hemocyte-specific; broad spectrum 
of activity 

Absent 

Myticins Taxonomically restricted to mussels, 8 
cysteines; hemocyte-specific; activity against 
Gram+ bacteria; antiviral activity; might have 
immuno-modulating properties 

Absent 

Mytimycins Taxonomically restricted to mussels; antifungal 
activity; hemocyte-specific; unknown spectrum 
of activity 

Absent 

Macins Present in multiple species; 8/10/12 cysteine 
residues; expressed in whole body; unknown 
spectrum of activity 

Present in multiple species; 8/10 
cysteine residues; expressed in whole 
body; present in the mucus; broad 
spectrum of activity 

Big defensins Present in multiple species; 6 cysteines; 
expressed in whole body; broad spectrum of 
activity 

Absent in most species; present in 
abalones; 6 cysteines; no expression 
data available 

Other Cys-rich 
peptides 

Myticusins, CRP-I; only reported in mussels so 
far; variable disulfide array; diverse pattern of 
expression and spectrum of activity 

Not reported 

Molluscidins Only reported in oyster; linear peptide rich in 
dibasic repeats; gills-specific; broad spectrum 
of activity 

Only reported in abalone; linear peptide 
rich in dibasic repeats; gills-specific; 
borad spectrum of activity 

Pro-rich peptides CgPrp, only reported in oyster; no antimicrobial 
activity but synergistically enhances the 
antimicrobial activity of defensins; hemocyte-
specific. Myticalins, taxonomically restricted to 
mussels; gills-specific; broad spectrum of 
activity 

Only reported in R. venosa; hemocyte-
specific; unrelated to bivalve Pro-rich 
peptides; activity against Gram+ 
bacteria 

 
 
 
molecules which still remain to be unveiled. 

Overall, molluscs, with their divergent 
molecular strategies for PAMP sensing and 
pathogen killing, certainly represent fascinating 
models for the study of invertebrate molecular 
immunology in the years to come. 
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