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Abstract 

Lectins are present in almost all living organisms and are involved in several biological processes, 
including immune responses. In the present study, a calcium dependent galactose-binding lectin 
exhibiting an apparent MW of 43 kDa has been characterized and purified from the mucus of the 
polychaete Sabella spallanzanii by using both affinity chromatography and high-pressure liquid 
chromatographic methods. Its agglutinating activity towards rabbit erythrocytes was significantly 
modified by the addition of calcium or EDTA. The activity was optimal at temperature values 
comprised between 4 and 18 °C, maintain a 50% of activity between 20 and 37 °C, was significant 
deleted after exposure at 50 °C, and was depleted at 90 °C. The S. spallanzanii Galactose-Binding 
Lectin (SsGBL) was able to agglutinate bacteria and to preferentially recognize Gram-negative 
bacteria. The strongest agglutinating activity was observed towards Vibrio alginolyticus and Escherichia 
coli, by contrast mucus agglutinated in a lesser extent both Aeromonas hydrophyla and the Gram-
positive Micrococcus lysodeikticus thus suggesting its involvement in host pathogen interactions. 
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Introduction 

 
Lectins are multifamily proteins present in 

almost all living organisms and due to their 
carbohydrate binding ability are involved in several 
biological processes (Kaltner and Stieltorfer, 1998; 
Kilpatrick, 2002), including development, cell 
adhesion, glycoproteins interactions (Kaltner and 
Stierstorfer, 1998; Kilpatrick, 2002), and immune 
responses (Liao et al., 1994; Arason, 1996). Lectins 
and sugars constitute an evolutionary conserved 
recognition system, involved in innate immunity, 
able to mediate several effector functions. These 
___________________________________________________________________________ 
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activities include agglutination, immobilization and 
opsonization towards microbial pathogens and 
complement activation, by either recognition of 
glycans exposed on potential pathogens either 
immunoregulation binding to carbohydrates on 
immunocompetent cells surfaces (Turner, 1996; 
Kilpatrick, 2002; Loris, 2002; Fujita et al., 2004; 
Sharon and Lis, 2004; Vasta et al., 2004). 

Lectins have been classified into various 
structural families such as C-type lectin, galectin 
and R-type lectin. The lectins are distinguished on 
the basis of conserved amino acid sequence motifs 
in their carbohydrate recognition domain (CRD), 
structural folds and calcium requirements (Aranson, 
1996; Turner, 1996; Fujita et al., 2004; Sharon and 
Lis, 2004; Vasta et al., 2004). 

Galactose-binding lectins have been 
documented both in vertebrates and in 
invertebrates, and their involvement in humoral 
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immunological processes is well described (Arason 
et al., 1996; Vasta et al., 2004). Moreover, many of 
them are able to bind β-galactoside carbohydrates 
other than monosaccharide galactose (Hirabayashi 
et al., 2002; Vasta et al., 2004). Much evidence 
exists about the presence of galactose-binding 
lectins in marine invertebrates. In phylum Annelida, 
a 29 kDa galactose-binding lectin was characterized 
in the earthworm Lumbricus terrestris (class 
Oligochaeta) (Hirabayashi et al., 1998). The primary 
structure of the earthworm lectin belongs to R-type 
lectin family that is involving ricin B-chain. On the 
other hand, annelid lectins that recognize galactose 
and others sugars were isolated from various 
marine worms including polychaeta and 
oligochaeta. Each lectin has different characteristics 
on carbohydrate-binding specificities, metal 
requirement and primary structure. Isolation, 
physicochemical properties, and, in some cases, 
biological activity and primary structure of such 
lectins have been described. Amphitritin, a Ca

2+
-

independent N-acetyl D-galactosamine-binding 
lectin with molecular mass of 30 kDa was the first 
hemagglutinin isolated from a sea worm Amphitrite 
ornata (Garte and Rissel, 1976). A 30 kDa β-
galactose-specific lectin was isolated and 
characterized from the sea worm Chaetopterus 
variopedatus (Mikheyskaya et al., 1995). Curiously, 
this lectin revealed cytopathic effect induced by 
human immunodeficiency virus (Wang et al., 2006). 
D-galactose-binding lectins (33-35 kDa) were 
isolated from body walls of echiuroid (Urechis 
unicinctus; oligochaeta) and marine worms 
(Neanthes japonica and Marphysa sanguinea) 
(Ozeki et al., 1997). Another 32 kDa D-galactose-
binding lectin isolated from the marine worm 
Perinereis nuntia was shown to have QxW 
sequence in the polypeptides (Kawsar et al., 2009). 
This sequence motif was seen in R-type lectin 
family. 

Marine duster worm, Sabella spallanzanii 
(phylum Annelida, family Sabellidae) is a 
representative tube worm in the Mediterranean bay. 
Its glandular epithelium secreting mucus often 
appears conspicuous and forming the so called 
“ventral shield”. Mucus production, as in many 
invertebrates, constitutes a key factor determining 
the ability of many polychaete species to survive in 
their environment (Beckwith, 1999; Smith, 2002; 
Davies and Ogawa, 2011). As reported by Storch 
(1988) mucus intervenes in fertilization and egg 
protection, consolidates the tunnel wall of burrowing 
polychaetes and may also play a role in the 
absorption of metabolites (Mouneyrac et al., 2003; 
Mastrodonato et al., 2005, Dales, 1961; Stabili et 
al., 2009). Their defensive functions, such as 
cytotoxicity and lysozyme-like activity, (Canicattì et 
al., 1992; Stabili et al., 2009; Giangrande et al., 
2014) inhibit in vitro the growth of Vibrio 
anguillarum, Vibrio harveyi, Pseudomonas 
aeruginosa and Candida albicans (Stabili et al., 
2011). 

In the present study, we further investigated the 
defensive role of S. spallanzanii mucus and we 
reported the identification, purification and 
characterization of a novel galactose-binding lectin 
with agglutinating activity against rabbit red blood 

cells and several bacteria. This lectin was isolated 
by both affinity chromatography and high-pressure 
liquid chromatographic methods. Results are 
discussed in the light of elucidating the involvement 
of mucus in prevention of pathogenic microorganism 
proliferation. 

 
Material and Methods 

 
Chemicals, molecular biology reagents 

Unless otherwise specified, chemicals and 
reagents were from Sigma-Aldrich (USA).  

 
Animals, mucus collection and preparation 

Sampling was undertaken in the harbor of 
Brindisi (Southern Adriatic Sea, Italy) using SCUBA 
equipment (depth range = 5-15 m). About 200 adult 
specimens of Sabella spallanzanii were collected 
and transferred to the laboratory. In order to 
stimulate the secretion of the mucus, all the 
individuals have been removed from the tube where 
they lived and kept for 30 min in a Petri dish. Within 
the secreted mucus, we checked for trapped 
material by microscopical observations, whilst we 
excluded any contamination of other excretion 
products by pH measurements. Secreted mucus 
was collected and centrifuged at 12000 xg for 30 
min at 4 °C and stored at -80 °C until used. It was 
ten folds diluted in tris-buffered saline (TBS) and 
filtered through 0.2 µm pore size before performing 
affinity chromatography.  

 
Hemagglutination assay 

Rabbit and sheep red blood cells (RaRBC and 
SRBC, supplied by Istituto Zooprofilattico della 
Sicilia) were washed three times in phosphate 
buffered saline (PBS), centrifuged at 500 xg for 10 
min at 4 °C and suspended at 1% in PBS containing 
0.1% (w/v) gelatin. A volume (25 μl) of S. 
spallanzanii mucus or 25 μl of the dialyzed purified 
S. spallanzanii Galactose-Binding Lectin (SsGBL) 
were serially (2-fold) diluted in PBS-gelatin in 96-
well round-bottom microtiter plates (Denmark), and 
an equal volume of erythrocytes suspension was 
added. The hemagglutinating titer (HT) was 
measured after 1 hour incubation at 37 °C and 
expressed as the reciprocal of the highest dilution 
showing clear agglutination (Ballarin et al., 2008). 

 
Physical and chemical characterization 

To examine divalent cation requirement for 
mucus hemagglutination activity (HA), CaCl2 and 
MgCl2 were added to the assay medium to obtain 3 
mM each one final concentration. EDTA (10 mM) or 
EGTA (10 mM) were used to examine the effect of 
Ca

2+
 versus Mg

2+
 depletion. To examine the 

thermolability, mucus samples were incubated at 4, 
10, 18, 37, 50, 70, and 90 °C for 20 min and cooled 
down for 10 min on ice before testing the HA. 

 
Carbohydrate specificity 

Hemagglutinating activity was assayed against 
RaRBC in the presence of serially diluted 
saccharides as potential inhibitors (Ballarin et al., 
2008). A volume (25 μl) of S. spallanzanii mucus or 
25 μl of the purified S. spallanzanii Galactose-
Binding Lectin (SsGBL) and 25 μl of a serially 
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diluted sugar. Finally, an equal volume of 
erythrocytes suspension was added and after 1 
hour incubation at 37 °C the HT was evaluated. 
Inhibition experiments were carried out using 
decreasing concentrations (starting from 130 mM in 
PBS pH 7.4, 3 mM CaCl2, 1% gelatin) of 
monosaccharides (L-fucose, L-rhamnose, D-
galactose, D-glucose, D-mannose, N-
Acetylglucosamine) and disaccharides (Lactose, 
and Lactulose). 

The same procedure was performed in the 
inhibition experiments having bacteria as target. 

 
Bacterial suspensions and agglutination 

In order to evaluate the hemagglutinating 
activity the following bacterial strains were 
employed: Vibrio alginolyticus, Escherichia coli, 
Aeromonas hydrophyla, Staphylococcus aureus and 
Micrococcus lysodeikticus. Bacteria were grown to 
log phase in tryptic soy broth (TSB) containing 3% 
NaCl at 25 °C, with continuous shaking (120 rpm) in 
a Gallenkamp incubator. Log phase was estimated 
by absorbance at 600 nm. The correspondence 
between cell number and spectrophotometric 
absorbance have been determined by serial dilution 
plate count method. Bacteria were killed with heat 
incubating them at 121 °C, for 20 min, at 1 atm. 

For the agglutination assay, they were washed 
three times in sterile PBS, suspended in PBS 
containing 0.1% (w/v) gelatin to obtain 1x10

7 

bacteria/ml and dispensed in 96 wells plate. Plates 
were incubated at 18 °C over night. 

 
Lectin purification 

Lectin was isolated by a two-steps 
chromatography procedure. The first consisted of a 
galactose-agarose affinity chromatography column 
with elution with 0.1 M galactose in TBS, 3 mM 
CaCl2, as previously reported (Salerno et al., 2009). 
The elution step was monitored by absorbance at 
280 nm and protein concentration in collected 
fractions was evaluated through Bradford method 
(1976). After dialysis in TBS, 3 mM CaCl2, these 
were tested for hemagglutinating activity towards 
rabbit erythrocytes, and those that exhibited the 
highest activity were pooled and analysed by SDS-
PAGE (Laemmli, 1970). 

In the second step, the collected fractions from 
the chromatographic procedure exerting 
hemagglutinating activity were applied to a High-
Pressure Liquid Chromatography Size Exclusion 
Column BioSuite 250–10 µm SEC 7.5 x 300 mm 
Waters, 350 psi pressure, 280/254 nm (mAU) and 
analysed by HPLC method. Phosphorylase b 
(97kDa), bovine serum albumin (BSA, 67kDa), 
enolase (46.7kDa), myoglobin A (18.7kDa) and 
RNaseA (13.7kDa) were used as calibration 
standards. 

Affinity column purified fractions were then 
applied to High Pressure Liquid Chromatography 
Size Exclusion Column BioSuite 250–10 µm SEC 
7.5 x 300 mm Waters, 350 psi pressure, 280/254 
nm (mAU). Phosphorylase b (97kDa), bovine serum 
albumin (BSA, 67kDa), enolase (46.7kDa), 
myoglobin A (18.7kDa) and RNase A (13.7kDa) 
were used as calibration standards (Fig. 3B). 

 

Table 1 Range of hemagglutinating activity (titer
1
) 

of S. spallanzani mucus and the purified lectin (25 
µg/ml) towards various erythrocytes and bacteria 
 

Erythrocytes Mucus Isolated fraction 

Rabbit Red 
Blood Cells 

512-1024 32-128 

Sheep Red 
Blood Cells 

0-2 - 

Escherichia 
coli 

128- 256 16-32 

Vibrio 
alginolyticus 

128-512 16-32 

Aeromonas 
hydrophila 

64-128 8-16 

Staphilococcus 
aureus 

NA NA 

Micrococcus 
lysodeikticus 

32-64 8-16 

 

 
 
 
 
Protein content estimation 

Protein content was estimated according to the 
Bradford method using BSA as a standard. 
Undiluted mucus showed a protein content of about 
0.6 mg/ml while the best eluted chromatographic 
fraction had a protein concentration of about 0.2 
mg/ml. 
 
Polyacrylamide gel electrophoresis 

SDS-PAGE (16%) was carried under reducing 
(5% mercaptoethanol) and non-reducing conditions. 
To evaluate the molecular size, gels were calibrated 
with low molecular weight (6.5-66 kDa) standard 
proteins. Proteins were stained with Coomassie 
brillant Blue R250.  

 
Results 
 
Mucus hemagglutinating activity 

Mucus agglutinating activity was tested towards 
both erythrocytes and bacteria. It showed almost no 
activity when sheep erythrocytes were used as 
target cells (HA titer = 2). Otherwise, this matrix had 
a strong agglutinating activity when rabbit red blood 
cells were used in the test showing an average 
agglutination titer of 512 (Table 1). This activity was 
calcium dependent because it was strongly affected 
by calcium depletion when 10 mM EDTA or 10 Mm 
EGTA and 3 mM magnesium were added to the 
hemagglutination assay medium. 

RaRBC hemagglutinating activity thermolability 
was tested performing the assay after 20 min pre-
incubation of mucus at different temperatures. The 
optimum of the activity was recorded when 
temperature ranged between 4 and 18 °C and 
decreased after 20 min pre-incubation temperature 
ranging from 37 to 90 °C (Fig. 1). Almost no loss of 
biological activity was detected after two months 
storage of samples at -80 °C. 
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Fig. 1 S. spallanzanii mucus preincubated 20 min at different temperature was tested towards RaRBC. It to have 
an optimum agglutination temperature ranging between 10 °C and 18 °C and a reduced but not completely 
deleted activity even after 20 min pre-incubation step from 37 °C up to 90 °C 
 
 
 
 
 

Mucus was able to preferentially recognize 
Gram-negative bacteria; indeed, the strongest 
agglutinating activity was observed towards V. 
alginolyticus and E. coli, by contrast mucus 
agglutinated in a lesser extent A. hydrophyla and 
the Gram-positive M. lysodeikticus and did not 
agglutinate the Gram-positive S. aureus (Table 1). 

Carbohydrates inhibition test was performed by 
adding several carbohydrates in decreasing 
concentrations (final concentration ranging from 130 
to 4 mM) to the assay medium. Galactose and at 
lesser extent fucose revealed to have inhibition 
activity even at the lowest concentration (8 mM 
Galactose, 16 mM Fucose) used in the 
hemagglutination assay (Table 2).  
 
SsGBL purification and characterization 

The SsGBL has been purified starting from a 20 
ml diluted collected mucus applied on galactose-
agarose column. The profile of the affinity 
purification is shown in Figure 2. In a typical 
isolation, the eluted fractions, having a protein 
concentration ranging from 0.08 to 0.18 mg/ml, 
represented approximately 10-30% of the total 
mucus protein content loaded onto the column (0.61 
mg/ml). The recovery in terms of hemagglutinating 
activity was about 25% and the 3% after HPLC 
elution (Table 3). 

The galactose eluted fractions, having the 
highest protein concentration, showed similar 
average hemagglutinating activity towards RaRBC 
that ranged from 32 to 64 (Table 2). The action of 
the active fractions was calcium dependent because 
it appeared magnified when the medium contained 
3 mM calcium and was heavily affected by the 
addition of 10 mM EDTA or 10 mM EGTA, 3 mM 
magnesium, as already observed for mucus 
extracts. 

Electrophoresis analysis on SDS-PAGE 
revealed that the purified lectin consisted of a single 
component with an apparent molecular weight of 45 
kDa, under reducing and non-reducing conditions 
(Figure 3A inset) suggesting a monomeric 
organization of the effector responsible of the 
hemagglutinating activity. The eluted fraction from 
affinity chromatography was applied to a HPLC size 
exclusion column and the obtained profile is shown 
in Fig. 3A. From the HPLC size exclusion step the 
purified lectin seems to have an approximate 
molecular weight of 43 kDa (Fig. 3B). 

The hemagglutinating activity of the purified 
fractions was maintained after 2 months at 20 °C, 
mildly affected when preincubated for 30 min at 50, 
60 or 70 °C but reduced at 90 °C. Neither purified 
hemoagglutinin nor mucus showed agglutinating 
activity towards SRBC (Table 2). 
 
 
Table 2 Inhibition of hemagglutination activity 
activity of the S. spallanzanii mucus or isolated 
lectin with RE by various sugars 
 

Inhibitor 
Minimum concentration (mM) of 

sugar required for 100% inhibition 
of HA reaction 

 Serum Isolated lectin 

D-galactose 25.0 mM 8.1 mM 

L-fucose 100.0 mM 16.5 mM 

D-Mannose 130 mM NI 

Rahmnose 130 mM NI 

 
Arabinose, cellobiose, D-glucose, Lactose, 
Lactulose, Maltose, Mannan, N-Ac-galactosamine 
N-Ac-glucosamine, D-raffinose; = no inhibition for  
200 mM of sugar concentration 
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Fig. 2 Galactose-agarose affinity chromatography profile and eluted fractions from mucus. A: Diluted mucus was 
applied on a galactose-agarose column and elution step (1-20) performed with 100 mM galactose. The eluted 
fractions (11-14) show a protein concentration ranging from 0.08 to 0.18 mg/ml. B: Hemagglutinating activity (HA) 
against rabbit erythrocytes induced by: mucus (1), purified lectin fraction n. 26 (2), purified lectin fraction n. 27 (3), 
erythrocytes control (4) 
 
 
 
 
 
SsGBL bacterial agglutination 

The purified SsGBL agglutinated both Gram-
positive and Gram-negative bacteria (Table 1, Fig. 
4) and was inhibited by galactose (Table 2). 

Therefore, the SsGBL binding specificity varied 
significantly depending on the bacterial target used. 
In fact, it strongly agglutinated E. coli and V. 
alginolyticus, in a lesser extent A. hydrophyla and 
M. lysodeikticus (Table 1) whilst no agglutination 
was found by using S. aureus. 
 
Discussion 

 
Comparative immunology is important to 

understand a fundamental aspect of immunology 
particular for the phylogenetic perspective (Ballarin 
and Cammarata 2016) and the study of Annelids 
immunology have been deeply contributed 
(Engelmann et al., 2018). Lectins are important 
immunomediators in vertebrates and invertebrates 
(Kuhlman et al., 1989; Cooper et al., 1994; 
Matsushita et al., 1996; Tino and Wright, 1996; 

Odom and Vasta, 2006; Vasta, 2009). Many 
carbohydrate binding proteins have been already 
described in Annelida, both in marine and terrestrial 
species. Kawsar et al., (2010) purified a 32 kDa 
galactose-binding lectin from P. nuntia 
homogenates that showed hemagglutinating activity 
against human and rabbit erythrocytes. This lectin 
from P. nuntia revealed a clear antibacterial activity 
inhibiting the Gram-positive growth in vitro. 
Hirabayashi et al., (1998) isolated a 29 kDa lectin 
from L. terrestris body extracts. These 
carbohydrates-binding molecules are highly specific 
for sugar moieties. On account of their capability to 
bind carbohydrates involved in attachment of 
potential pathogens to host, lectins can protect the 
animal preventing its invasion from pathogens. 
Lectins are also involved in cell agglutination, 
recognizing structures on pathogens surface, they 
can opsonize them and enhance host phagocytic 
activity or activate the complement pathway 
(Matsushita et al., 1996; Cammarata et al., 2014). 
Due to these properties, lectins evidenced in the 

 
 
 
Table 3 Purification steps of SsGBL 
 

Purification stage Protein (mg) HA titer THA Specific activity THA/PC Purification (fold) Yield % 

Mucus 12.5 256 5120 410 1 100 

Galactose-agarose 0.33 64 1280 3879 9.46 25 

HPLC 0.015 8 160 10600 26 3 

 
HA: hemagglutinating activity; THA: total hemagglutinating activity. 
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Fig. 3 (A) Affinity column purified fraction from galactose-agarose applied to a high-pressure liquid 
chromatography (HPLC) size exclusion column BioSuite 250-10 µm SEC 7,5 x 300 mm Waters, 350 psi pressure, 
280 black line /254 red line nm (mAU). (A inset) SDS - PAGE (16%) of the purified lectins under reducing 
conditions; Standard proteins HPLC profile; Native size estimation of SsGBL by HPLC. The arrow points to the 
elution position of SsGBL. (B) Calibration standards (rhombus): phosphorylate b (97 kDa); bovine serum albumin 
(BSA, 67 kDa), enolase (46.7 kDa), myoglobin A (18.7 kDa) and RNaseA (13.7 kDa) 
 
 
 
 
 
body surface mucus can be considered potential 
antimicrobial agents. Among Annellida S. 
spallanzanii is one of the best known and abundant 
Mediterranean sabellid. In this animal, a large 
amount of mucus is secreted when specimens are 
subjected to different stress conditions leading to 
suppose its involvement as protective compartment 
against microorganisms and/or epibiosis (Stabili et 
al., 2011, 2014; Giangrande et al., 2014) as already 
observed in other invertebrates (Denny et al., 1989; 
Weis et al., 1998; Smith et al., 2010; Ogawa et al., 
2011, Stabili et al., 2014). A defensive function in S. 
spallanzanii mucus was firstly suggested by 
Canicatti et al., (1992) who evidenced a haemolytic 
activity in this matrix. Recently, Stabili et al. isolated 
a lysozyme-like activity and an in vitro antimicrobial 
activity in S. spallanzanii mucus towards some 
Gram-negative bacteria (Stabili et al., 2009) clearly 
indicating the role of this compartment in defending 
the worms from bacterial attack serving as medium 
into which the antibacterial substances are 
exuded. Here a divalent-cation dependent lectin 
was newly discovered from mucus of sabellid, and 
we purified the SsGBL, a 43 kDa monomeric 
galactose-specific lectin from S. spallanzanii by 
using both affinity chromatography and high-
pressure liquid chromatographic methods. Its 
agglutinating activity towards rabbit erythrocytes 
was significantly modified by the addition of calcium 

or EDTA. The activity shows good thermal stability, 
at temperature values comprised between 4°C and 
37°C including the range of natural environment in 
which these annelid lives. Of particular interest, 
this lectin is a significant fraction (10-30%) of the 
soluble proteins of the S. Spallanzani mucus 
supporting an important functional role of this 
molecule. 

Galactose-binding lectins (GBLs) have been 
discovered and isolated also from others Annelids. 
Hirabayashi et al. (1998) first isolated from the 
earthworm, Lumbricus terrestris, a galactose-
binding lectin of 29 kDa inhibited by a wide range of 
galactose-containing saccharides. The lectin is 
composed of two homologous domains of 14.5 kDa 
showing 27% identity among other GBLs and 
contained multiple short conserved motifs, "Gly-X-X-
X-Gln-X-Trp". 

Another GBL with a molecular weight of 32 kDa 
was purified from the pacific annelid Perinereis 
nuntia ver. vallata by affinity chromatography 
showing a typical R lectin QxW sequence (Kwasar 
et al., 2010). 

In addition to the agglutinating activity against 
rabbit erythrocytes, the SsGBL bind both Gram-
negative and Gram-positive bacteria; this ability to 
recognize and agglutinate exogenous target 
appears calcium dependent, according to the C-type 
lectins mode of action. 
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Fig. 4 The purified SsGBL displays the ability to agglutinate E. coli (A), V. alginolyticus (C) and M. lysodeikticus 
(E). E. coli (B), V. alginolyticus (D) and M. lysodeikticus (F) as negative control. BA: Bacterial agglutination 

 
 
 
 
In particular, the strongest agglutinating activity 

was observed towards the Gram-negative V. 
alginolyticus and E. coli present in coastal areas 
and in the harbors in which S. spallanzani lives, by 
contrast mucus agglutinated in a lesser extent A. 
hydrophyla and the Gram-positive M. lysodeikticus, 
but not against Staphylococcus aureus. These data 
correspond to the findings already recorded for the 
total mucus, suggesting that the SsGBL could 
represent an important effector responsible for the 
mucus defense role. 

The ability to recognize, bind and agglutinate 
bacteria has been well described among vertebrates 

in fish lectins (Bianchet et al., 2002; Odom and 
Vasta, 2006; Vasta et al., 2011), mammals (Cash et 
al., 2006; Vaishnava et al., 2011) and many 
invertebrates (Malagoli et al., 2006) suggesting an 
antibacterial activity (Matsui et al., 1994; Tateno et 
al., 2002). Among these, galactose-binding lectins 
have been described both in invertebrates and fish 
skin mucus, with bacterial agglutination properties. 
The skin mucus galectin from Japanese eel 
exhibited agglutination of Streptococcus difficile and 
E. coli (Suzuki et al., 2003). further confirming their 
protective role (Shiomi et al., 1989; Mistry et al., 
2001; Suzuki et al., 2003; Ogawa et al., 2011). In 
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general galectins are parts of the fish defense 
system and mainly exist in organs and tissues that 
delineate the body from its surroundings, such as 
epidermal club cells of the skin, esophagus and gills 
(Nakamura et al., 2012). 

In this paper, we propose that the SsGBL is 
involved in the mucus body defense role, probably it 
is able to prevent bacterial invasion through the 
ability to agglutinate some bacteria strains. 

Our data suggest that the SsGBL could 
represent an important effector acting in 
contemporary presence with hemolytic factors and 
lysozyme as a first defense mechanism against 
potentially pathogens. Such synergic strategy is 
common and well known in invertebrates that lack 
acquired immunity and therefore reliant on 
mechanisms of innate immunity. This role is 
important taking into account that S. spallanzanii 
lives in eutrophic environments such as harbors 
where bacteria, including pathogens for humans, 
marine organisms, are abundant (Barg and Phillips, 
1998). Although the worms may be aggressed by 
bacteria, they are able to survive bacterial attack.  

Unfortunately, by using the classical Edman 
degradation technique, N-terminal sequencing seem 
to be blocked. Microsequence analyses carried out 
by MALDI spectra, despite showing strong peaks 
didn’t give matches and the nLC-ESI MSMS only 
gave hits for keratin, and for the weaker sample a 
bit of BSA as well. The missing of significant match 
is plausible because the S. spallanzanii sequences 
are not well represented in the NCBI database and 
probably is not close enough in the NCBI database 
to give at least a match based on homology (data 
not showed). 

Even though our knowledge about composition, 
production and roles of mucus in various marine 
invertebrates remains incomplete, our results 
contribute to the understanding of the mucus 
protective properties in the investigated polychaete 
(Stabili et al., 2009; 2011). 
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