Journal of Algebra Combinatorics Discrete Structures and Applications

$\gamma\text{-Lie}$ structures in $\gamma\text{-prime}$ gamma rings with derivations

Research Article

Okan Arslan^{1*}, Hatice Kandamar^{1**}

1. Adnan Menderes University, Faculty of Arts and Sciences, Department of Mathematics, Aydın, Turkey

Abstract: Let M be a γ -prime weak Nobusawa Γ -ring and $d \neq 0$ be a k-derivation of M such that $k(\gamma) = 0$ and U be a γ -Lie ideal of M. In this paper, we introduce definitions of γ -subring, γ -ideal, γ -prime Γ -ring and γ -Lie ideal of M and prove that if $U \nsubseteq C_{\gamma}$, $char M \neq 2$ and $d^3 \neq 0$, then the γ -subring generated by d(U) contains a nonzero ideal of M. We also prove that if $[u, d(u)]_{\gamma} \in C_{\gamma}$ for all $u \in U$, then U is contained in the γ -center of M when $char M \neq 2$ or 3. And if $[u, d(u)]_{\gamma} \in C_{\gamma}$ for all $u \in U$ and U is also a γ -subring, then U is γ -commutative when char M = 2.

2010 MSC: 16N60, 16W25, 16Y99

Keywords: Gamma ring, γ -Prime gamma ring, γ -Lie ideal, k-Derivation, γ -Commutativity

1. Preliminaries

Let M and Γ be additive Abelian groups. M is said to be a Γ -ring in the sense of Barnes[2] if there exists a mapping $M \times \Gamma \times M \to M$ satisfying these two conditions for all $a, b, c \in M, \alpha, \beta \in \Gamma$:

- (1) $(a + b) \alpha c = a\alpha c + b\alpha c$ $a(\alpha + \beta)c = a\alpha c + a\beta c$ $a\alpha (b + c) = a\alpha b + a\alpha c$
- (2) $(a\alpha b)\beta c = a\alpha (b\beta c)$

In addition, if there exists a mapping $\Gamma \times M \times \Gamma \to \Gamma$ such that the following axioms hold for all $a, b, c \in M, \alpha, \beta \in \Gamma$:

(3) $(a\alpha b)\beta c = a(\alpha b\beta)c$

^{*} E-mail: oarslan@outlook.com.tr

^{**} E-mail: hkandamar@adu.edu.tr

(4) $a\alpha b = 0$ for all $a, b \in M$ implies $\alpha = 0$, where $\alpha \in \Gamma$

then M is called a Γ -ring in the sense of Nobusawa[10]. If a Γ -ring M in the sense of Barnes satisfies only the condition (3), then it is called weak Nobusawa Γ -ring[9].

Let M be a Γ -ring in the sense of Barnes. Then M is said to be a prime gamma ring if $a\Gamma M\Gamma b = 0$ with $a, b \in M$ implies either a = 0 or b = 0[2]. It is also defined in [2] that M is a completely prime gamma ring if $a\Gamma b = 0$ with $a, b \in M$ implies either a = 0 or b = 0.

For a subset U of M and $\gamma \in \Gamma$, the set $C_{\gamma}(U) = \{a \in M \mid a\gamma u = u\gamma a, \forall u \in U\}$ and the set $C_{\gamma} = \{a \in M \mid a\gamma m = m\gamma a, \forall m \in M\}$ are called γ -center of the subset U and γ -center of M respectively.

In 2000, Kandamar^[7] firstly introduced the notion of a k-derivation for a gamma ring in the sense of Barnes and proved some of its properties and commutativity conditions for Nobusawa gamma rings.

Commutativity conditions with derivations for a gamma ring has been investigated by a number of authors. In [8], Khan, Chaudhry and Javaid proved that if M is a prime gamma ring (in the sense of Barnes) of characteristic not 2, I is a nonzero ideal of M and f is a generalized derivation on M, then M is a commutative gamma ring. In [12], Suliman and Majeed showed a nonzero Lie ideal of a 2-torsion-free prime Γ -ring M with a nonzero derivation d is central if d(U) is contained in the center of M.

In this paper, we define γ -Lie ideal for a weak Nobusawa gamma ring and show that if $U \nsubseteq C_{\gamma}$, $char M \neq 2$ and $d^3 \neq 0$, then the γ -subring generated by d(U) contains a nonzero ideal of M. We also prove that if $[u, d(u)]_{\gamma} \in C_{\gamma}$ for all $u \in U$, then $U \subseteq C_{\gamma}$ when $char M \neq 2$ or 3. And if $[u, d(u)]_{\gamma} \in C_{\gamma}$ for all $u \in U$ and U is also a γ -subring, then U is γ -commutative when char M = 2.

2. γ -Lie ideals and derivations

Now we give some new definitions and make some preliminary remarks we need later.

Let M be a weak Nobusawa Γ -ring and $0 \neq \gamma \in \Gamma$. A subgroup I of M is said to be a γ -subring if $x\gamma y \in I$ for all $x, y \in I$. A subgroup A of M is said to be a γ -left ideal(resp. γ -right ideal) if $m\gamma a \in A$ (resp. $a\gamma m \in A$) for all $m \in M$, $a \in A$. If A is both γ -left and γ -right ideal then A is called a γ -ideal of M.

M is called γ -commutative gamma ring if $x\gamma y = y\gamma x$ for all $x, y \in M$.

We say that the additive subgroup U of M is said to be a γ -Lie ideal of M if $[U, M]_{\gamma} \subseteq U$. We also say that if there exists a $\gamma \in \Gamma$ such that $a\gamma M\gamma b = 0$ with $a, b \in M$ implies either a = 0 or b = 0 then M is called a γ -prime gamma ring.

An element a of M is called γ -nilpotent if there exists a positive integer n such that $a_{\gamma}^n := (a\gamma)^n a = 0$.

In what follows, let M be a γ -prime weak Nobusawa Γ -ring of characteristic not 2, $d \neq 0$ be a k-derivation of M such that $k(\gamma) = 0$ and U be a γ -Lie ideal of M unless otherwise specified.

Lemma 2.1. If $a \in M$ γ -commutes with $[a, x]_{\gamma}$ for all $x \in M$, then a is in the γ -center of M.

Proof. Let $x, y \in M$. Therefore, we get $[a, x]_{\gamma} \gamma [a, y]_{\gamma} = 0$ by hypothesis. Replacing y by $m\gamma x$ with $m \in M$, we obtain $[a, x]_{\gamma} \gamma M \gamma [a, x]_{\gamma} = 0$. Hence, a is in the γ -center of M since M is γ -prime. \Box

Lemma 2.2. Suppose that $U \neq (0)$ is both a γ -subring and a γ -Lie ideal of M. Then either $U \subseteq C_{\gamma}$ or U contains a nonzero ideal of M.

Proof. First, suppose that the γ -subring U is not γ -commutative. Then, there exists $x, y \in U$ such that $[x, y]_{\gamma} \neq 0$. Since U is a γ -Lie ideal, $[x, y]_{\gamma} \gamma M \subseteq U$. Hence, $[[x, y]_{\gamma} \gamma a, b]_{\gamma} \in U$ for all $a, b \in M$. Expanding this, we get $b\gamma [x, y]_{\gamma} \gamma a \in U$ leading to $M\gamma [x, y]_{\gamma} \gamma M \subseteq U$. Moreover, $M\gamma [x, y]_{\gamma} \gamma M \neq 0$. We have shown that the result is correct if the γ -subring U is not commutative.

Now suppose that U is γ -commutative. Then $\left[a, [a, x]_{\gamma}\right]_{\gamma} = 0$ for $a \in U$ and $x \in M$. Therefore, we have $U \subseteq C_{\gamma}$ by Lemma 2.1.

Lemma 2.3. Let U be a γ -Lie ideal of M and $U \not\subseteq C_{\gamma}$. Then there exists a nonzero ideal K of M such that $[K, M]_{\gamma} \subset U$ but $[K, M]_{\gamma} \notin C_{\gamma}$.

Proof. Since $U \notin C_{\gamma}$, it follows from Lemma 2.1 that $[U, U]_{\gamma} \neq 0$. Let $K = M\gamma [U, U]_{\gamma} \gamma M$. Then it is clear that K is a nonzero ideal of M.

Let $T(U) = \left\{ x \in M : [x, M]_{\gamma} \subseteq U \right\}$. Then, it can be shown that $U \subseteq T(U)$ and T(U) is both a γ -subring and a γ -Lie ideal of M. Let $u, v \in U$ such that $[u, v]_{\gamma} \neq 0$. Replacing v by $v\gamma m$ with $m \in M$, we obtain $[u, v]_{\gamma} \gamma M \subseteq T(U)$. Hence, $\left[[u, v]_{\gamma} \gamma m, n \right]_{\gamma} \in T(U)$ for all $m, n \in M$. Expanding this, we get $K \subseteq T(U)$. Therefore, we have shown that $[K, M]_{\gamma} \subseteq U$.

Suppose that $[K, M]_{\gamma} \subseteq C_{\gamma}$. Then, $[x, [x, m]_{\gamma}]_{\gamma} = 0$ for all $x \in K$, $m \in M$. Let $y \in M$. Since $K \subseteq C_{\gamma}$ by Lemma 2.1, we have $[y, n\gamma k\gamma m]_{\gamma} = 0$ for all $m, n \in M, k \in K$ which leads to $y \in C_{\gamma}$. But this contradicts with $U \nsubseteq C_{\gamma}$.

Lemma 2.4. Let $u \in M$. If $a \in C_{\gamma}$ and $a\gamma u \in C_{\gamma}$, then a = 0 or $u \in C_{\gamma}$.

Proof. Suppose that $a \neq 0$. Since $[a\gamma u, m]_{\gamma} = 0$ for all $m \in M$, we get $a\gamma [u, m]_{\gamma} = 0$. Replacing m by $m\gamma n$ with $n \in M$, we obtain $[u, n]_{\gamma} = 0$ for all $n \in M$. This gives that $u \in C_{\gamma}$.

Lemma 2.5. If U is a γ -Lie ideal of M and $U \not\subseteq C_{\gamma}$, then $C_{\gamma}(U) = C_{\gamma}$.

Proof. It is clear that $C_{\gamma}(U)$ is both a γ -subring and γ -Lie ideal of M. We claim that $C_{\gamma}(U)$ cannot contain a nonzero ideal of M. Suppose K is a nonzero ideal of M which is contained in $C_{\gamma}(U)$. Then, it is clear that $[u, k\gamma m]_{\gamma} = 0$ for all $u \in U, k \in K$ and $m \in M$. Expanding this, we get $k\gamma [u, m]_{\gamma} = 0$. Replacing k by $k\gamma m$ with $m \in M$, we obtain $u \in C_{\gamma}$ which leads to a contradiction. Hence, $C_{\gamma}(U) \subseteq C_{\gamma}$ by Lemma 2.2.

Lemma 2.6. If U is a γ -Lie ideal of M, then $C_{\gamma}\left([U,U]_{\gamma}\right) = C_{\gamma}(U)$.

Proof. First, suppose that $[U, U]_{\gamma} \notin C_{\gamma}$. Since $[U, U]_{\gamma}$ is a γ -Lie ideal of M, we have $C_{\gamma}\left([U, U]_{\gamma}\right) = C_{\gamma}$ by Lemma 2.5. Now, suppose that $[U, U]_{\gamma} \subseteq C_{\gamma}$. Let $a = \left[u, [u, x]_{\gamma}\right]_{\gamma}$ for $u \in U$ and $x \in M$. Since $a \in C_{\gamma}$ and $a\gamma u \in C_{\gamma}$, we write a = 0 or $u \in C_{\gamma}$ by Lemma 2.4. If a = 0, we have $u \in C_{\gamma}$ by Lemma 2.1. Hence, we get $U \subseteq C_{\gamma}$. Thus, $C_{\gamma}\left([U, U]_{\gamma}\right) = C_{\gamma}(U)$.

Lemma 2.7. Let U be a γ -Lie ideal of M and $U \not\subseteq C_{\gamma}$. If $a\gamma U\gamma b = 0$ for $a, b \in M$, then a = 0 or b = 0.

Proof. There exists a nonzero ideal K of M such that $[K, M]_{\gamma} \subset U$ but $[K, M]_{\gamma} \notin C_{\gamma}$ by Lemma 2.3. Thus, $a\gamma [k\gamma a\gamma u, m]_{\gamma} \gamma b = 0$ for $u \in U$, $k \in K$ and $m \in M$ by hypothesis. Expanding this, we get $a\gamma K\gamma a\gamma M\gamma U\gamma b = 0$. Since M is γ -prime, we obtain $a\gamma K\gamma a = 0$ or $U\gamma b = 0$. Let $a\gamma K\gamma a = 0$. If $a \neq 0$, then we have K = 0 which is a contradiction. Now, let $U\gamma b = 0$. Therefore, $[u, m]_{\gamma} \gamma b = 0$ for all $u \in U$ and $m \in M$. Hence, we get $U\gamma M\gamma b = 0$ which means b = 0.

Lemma 2.8. If d is a k-derivation of M such that $k(\gamma) = 0$ and $d^2 = 0$, then d = 0.

Proof. Since $d^2(x\gamma y) = 0$ for all $x, y \in M$, we have $d(x)\gamma d(y) = 0$. Replacing y by $m\gamma x$ with $m \in M$, we get $d(x)\gamma M\gamma d(x) = 0$ for all $x \in M$. Thus, d = 0 since M is γ -prime.

Lemma 2.9. If $d \neq 0$ is a k-derivation of M such that $k(\gamma) = 0$, then $C_{\gamma}(d(M)) = C_{\gamma}$.

Proof. Let $a \in C_{\gamma}(d(M))$ and suppose $a \notin C_{\gamma}$. Thus, $[a, d(x\gamma y)]_{\gamma} = 0$ for all $x, y \in M$. Expanding this, we get $d(x)\gamma[a, y]_{\gamma} + [a, x]_{\gamma}\gamma d(y) = 0$. If $y \in M$ γ -commutes with a, then $[a, y]_{\gamma} = 0$. So the last equation reduces to $[a, x]_{\gamma}\gamma d(y) = 0$ for all $x \in M$. Then, d(y) = 0 since $a \notin C_{\gamma}$. Indeed, if $d(y) \neq 0$, we get $a \in C_{\gamma}$. But this is a contradiction. Therefore, d(y) = 0 for all $y \in C_{\gamma}(a)$. Thus, d = 0 by Lemma 2.8 which contradicts with the assumption.

Lemma 2.10. Let $d \neq 0$ be a k-derivation of M such that $k(\gamma) = 0$ and U be a γ -Lie ideal of M.

- (i) If d(U) = 0, then $U \subseteq C_{\gamma}$.
- (ii) If $d(U) \subseteq C_{\gamma}$ then $U \subseteq C_{\gamma}$.

Proof. (i) Let $u \in U$ and $x \in M$. Since $d(u) = d([u, x]_{\gamma}) = 0$ by hypothesis, we get $[u, d(x)]_{\gamma} = 0$ for all $x \in M$. Therefore, u centralizes d(M). Then, we get $U \subseteq C_{\gamma}$ by Lemma 2.9.

(ii) Suppose that $U \nsubseteq C_{\gamma}$. Then, $V = [U, U]_{\gamma} \nsubseteq C_{\gamma}$ by proof of Lemma 2.6. Since $d([u, v]_{\gamma}) = 0$ for all $u, v \in U$, we get d(V) = 0. It follows that $V \subseteq C_{\gamma}$ by (i). But this is a contradiction. \Box

Lemma 2.11. Let d be a k-derivation of M such that $k(\gamma) = 0$ and U be a γ -Lie ideal of M such that $U \nsubseteq C_{\gamma}$. If $t\gamma d(U) = 0$ (or $d(U) \gamma t = 0$) for $t \in M$, then t = 0.

Proof. Let $u \in U$ and $x \in M$. Using the fact $[u, x]_{\gamma} \gamma u = [u, x\gamma u]_{\gamma} \in U$, we have $t\gamma d([u, x]_{\gamma} \gamma u) = 0$. Expanding this, we get $t\gamma [u, x]_{\gamma} \gamma d(u) = 0$ for all $x \in M$ and $u \in U$. Replacing x by $d(v) \gamma y$ with $v \in U$, $y \in M$, we obtain $t\gamma u\gamma d(v) = 0$ for all $v, u \in U$ since $t\gamma d(U) = 0$ and M is γ -prime. Hence, t = 0 by Lemma 2.7.

Theorem 2.12. Let $d \neq 0$ be a k-derivation of M such that $k(\gamma) = 0$. If U is a γ -Lie ideal of M such that $d^2(U) = 0$, then $U \subseteq C_{\gamma}$.

Proof. Suppose that $U \not\subseteq C_{\gamma}$. By proof of Lemma 2.6, we have $V = [U,U]_{\gamma} \not\subseteq C_{\gamma}$. There exists a nonzero ideal K of M such that $[K,M]_{\gamma} \subset U$ but $[K,M]_{\gamma} \not\subseteq C_{\gamma}$ by Lemma 2.3. Let $y \in M, t \in [K,M]_{\gamma}$ and $u \in V$. If w := d(u), then d(w) = 0. By hypothesis, $d^2([t\gamma w, y]_{\gamma}) = 0$. Expanding this, we have $d(t) \gamma d([w,y]_{\gamma}) = 0$ for all $t \in [K,M]_{\gamma}, y \in M, w \in d(V)$. Since $[K,M]_{\gamma}$ is a γ -Lie ideal of M and $[K,M]_{\gamma} \not\subseteq C_{\gamma}$, we have $d([d(V),M]_{\gamma}) = 0$ by Lemma 2.11. Expanding last equation, we conclude that $[d(u), d(x)]_{\gamma} = 0$ for all $x \in M, u \in V$ which means $d(V) \subseteq C_{\gamma}(d(M))$. Therefore, we have $V \subseteq C_{\gamma}$ by Lemma 2.9 and by Lemma 2.10. But this is a contradiction.

Theorem 2.13. Let $d \neq 0$ be a k-derivation of M such that $k(\gamma) = 0$. If U is a γ -Lie ideal of M such that $U \nsubseteq C_{\gamma}$, then $C_{\gamma}(d(U)) = C_{\gamma}$.

Proof. Let $a \in C_{\gamma}(d(U))$ and suppose that $a \notin C_{\gamma}$. We have $V = [U, U]_{\gamma} \notin C_{\gamma}$ by proof of Lemma 2.6. Since $d(V) \subseteq U$ and $a \in C_{\gamma}(d(U))$ we get $a\gamma d^{2}(u) = d^{2}(u)\gamma a$ and $a\gamma d(u) = d(u)\gamma a$. Now, applying given derivation d to last equation gives $d(a) \in C_{\gamma}(d(V))$. Since $a \in C_{\gamma}(d(U))$, $u \in V$ and V is a γ -Lie ideal, we have $[d(a), u]_{\gamma} = d([a, u]_{\gamma}) \in d(V)$. It follows that $[d(a), V]_{\gamma} = 0$ which means $d(a) \in C_{\gamma}(V)$. Therefore, $d(a) \in C_{\gamma}(V) = C_{\gamma}$ by Lemma 2.5.

Using same process for the element $a\gamma a$ gives $d(a\gamma a) = 2a\gamma d(a) \in C_{\gamma}$ since $a\gamma a \in C_{\gamma}(d(U))$. Thus, d(a) = 0 by Lemma 2.4. Therefore, if $d(b) \neq 0$ for any $b \in C_{\gamma}(d(U))$ we have $b \in C_{\gamma}$. So we get

 $a + b \in C_{\gamma}$ since $d(a + b) = d(b) \neq 0$. Then we have $a \in C_{\gamma}$. But this is a contradiction. Consequently, when we suppose $C_{\gamma}(d(U)) \nsubseteq C_{\gamma}$, we are forced to d(a) = 0 for all $a \in C_{\gamma}(d(U))$.

Let $W = \{x \in M \mid d(x) = 0\}$. Then we have $C_{\gamma}(d(U)) \subseteq W$. Moreover, $d([a, u]_{\gamma}) = 0$ for any $a \in C_{\gamma}(d(U))$ and $u \in U$.

There exists a nonzero ideal K of M such that $[K, M]_{\gamma} \subset U$ but $[K, M]_{\gamma} \not\subseteq C_{\gamma}$ by Lemma 2.3. If $t \in [K, M]_{\gamma} \subset U \cap K$, then $t\gamma a \in K$. Thus, $\left[a, d\left([t\gamma a, u]_{\gamma}\right)\right]_{\gamma} = 0$. Expanding this, we get $d(t)\gamma\left[a, [a, u]_{\gamma}\right]_{\gamma} = 0$ for all $t \in [K, M]_{\gamma}$, $u \in U$. Hence, $\left[a, [a, U]_{\gamma}\right]_{\gamma} = 0$ by Lemma 2.11. Since $U \not\subseteq C_{\gamma}$, we have $a \in C_{\gamma}(U)$. Therefore, $a \in C_{\gamma}$ by Lemma 2.5. But this is a contradiction.

Lemma 2.14. If $d^3 \neq 0$ and $U \not\subseteq C_{\gamma}$, then $\overline{d(M)}$ the γ -subring generated by d(M) contains a nonzero γ -ideal of M.

Proof. Since $d^2(d(M)) \neq 0$, we have $y \in d(M) \subseteq \overline{d(M)}$ such that $d^2(y) \neq 0$. Thus, we get $M\gamma d(y) \subseteq \overline{d(M)}$ since $d(x\gamma y)$ and $d(x)\gamma y$ in $\overline{d(M)}$ for all $x \in M$. Similarly, $d(y)\gamma M \subseteq \overline{d(M)}$. If we act d to the element $a\gamma d(y)\gamma b$ for $a, b \in M$, we get $a\gamma d^2(y)\gamma b \in \overline{d(M)}$ by above, that is to say $M\gamma d^2(y)\gamma M \subseteq \overline{d(M)}$. We also have $M\gamma d^2(y) \subseteq \overline{d(M)}$ and $d^2(y)\gamma M \subseteq \overline{d(M)}$ by above. Therefore, the γ -ideal of M generated by $d^2(y) \neq 0$ contained in $\overline{d(M)}$.

Lemma 2.15. Let $d^3 \neq 0$, $U \notin C_{\gamma}$ and $V = [U,U]_{\gamma}$. If $\overline{d(V)}$ contains a nonzero left ideal λ of M and a nonzero right ideal ρ of M, then $\overline{d(U)}$ contains a nonzero ideal of M.

Proof. Since $d(V) \subseteq U$, we have $\overline{d(d(V))} \subseteq \overline{d(U)}$. Let $a \in \lambda \subseteq \overline{d(V)}$ and $x \in M$. Thus, $d(x\gamma a) \in \overline{d(U)}$. Expanding this, we get $x\gamma d(a) \in \overline{d(U)}$ for all $x \in M$ and $a \in \lambda$. Therefore, we have $M\gamma d(\lambda) \subseteq \overline{d(U)}$. Similarly, $d(\rho)\gamma M \subseteq \overline{d(U)}$. Let $a \in \lambda$ and $u \in V$. If we act d to the element $[a, u]_{\gamma}$, we get $d(a)\gamma u \in \overline{d(U)}$ by above, that is to say $d(\lambda)\gamma V \subseteq \overline{d(U)}$. Similarly, $V\gamma d(\rho) \subseteq \overline{d(U)}$.

Let $I = \lambda \gamma V \gamma \rho$. Then by Lemma 2.7, I is a nonzero ideal of M. Moreover, $\overline{d(I)} \subseteq \overline{d(U)}$. By Lemma 2.14, $\overline{d(I)}$ contains a nonzero γ -ideal K of I since $d^3 \neq 0$ and I is γ -prime. Let $S := \lambda \gamma K \gamma \rho$. Then S is an ideal of M which is contained in $\overline{d(U)}$.

Lemma 2.16. Let $0 \neq I < M$ and $U \nsubseteq C_{\gamma}$. If $\overline{d(U)}$ does not contain a nonzero right ideal(or left ideal) of M and $[c, I]_{\gamma} \subseteq \overline{d(U)}$ then $c \in C_{\gamma}$.

Proof. Let $t \in d(U)$ and $i \in I$. Then $[c, t\gamma i]_{\gamma} \in \overline{d(U)}$ by hypothesis. Expanding this, we get $[c, d(U)]_{\gamma} \gamma I \subseteq \overline{d(U)}$. But, since $\overline{d(U)}$ does not contain a nonzero right ideal of M, we get $[c, d(U)]_{\gamma} \gamma I = 0$. Thus, $[c, d(U)]_{\gamma} = 0$ since $0 \neq I < M$ and M is a γ -prime gamma ring. Then by Theorem 2.13, we get $c \in C_{\gamma}(d(U)) = C_{\gamma}$.

Lemma 2.17. Let $U \nsubseteq C_{\gamma}$, $V = [U, U]_{\gamma}$ and $W = [V, V]_{\gamma}$. If $d^{2}(U) \gamma d^{2}(U) = 0$ then $d^{3}(W) = 0$.

Proof. By proof of Lemma 2.6, V and W are not contained in C_{γ} since $U \not\subseteq C_{\gamma}$. Also, we have $d(W) \subseteq V$ and $d^2(W) \subseteq d(V) \subseteq U$. If $u \in U$, $v \in V$ and $w \in W$, then we have $d^2(u) \gamma d^2([d(v), d^2(w) \gamma t]_{\gamma}) = 0$ for any $t \in U$. Expanding this, we get

$$d^{2}(u)\gamma d(v)\gamma \left(d^{4}(w)\gamma t+2d^{3}(w)\gamma d(t)\right)=0$$
(1)

by hypothesis. In (1), if we choose $t \in d(V) \subseteq U$, it follows $d^2(u) \gamma d(v) \gamma d^4(w) \gamma t = 0$ for such t. Thus, we have $d^2(u) \gamma d(v) \gamma d^4(w) = 0$ by Lemma 2.11. Then we get from (1) that $d^2(u) \gamma d(v) \gamma d^3(w) \gamma d(t) = 0$

0 for all $t \in U$. By Lemma 2.11, we conclude that $d^{2}(u) \gamma d(v) \gamma d^{3}(w) = 0$ for all $u \in U$, $v \in V$ and $w \in W$. Similarly, we have $d^{3}(w) \gamma d(v) \gamma d^{2}(u) = 0$ by reversing sides.

By hypothesis, $d^{2}(d(t))\gamma d^{2}([v,d(w)]_{\gamma}) = 0$ for $w,t \in W$ and $v \in V$. Expanding this, we get $d^{3}(t)\gamma v\gamma d^{3}(w) = 0$ that is to say $d^{3}(t)\gamma V\gamma d^{3}(w) = 0$ for all $w,t \in W$. It follows that $d^{3}(W) = 0$ by Lemma 2.7.

Lemma 2.18. If $U \notin C_{\gamma}$ and $d^3(U) = 0$ then $d^3 = 0$.

Proof. Let $u \in U$ and $m \in M$. Then we have $d^3([u,m]_{\gamma}) = 0$. Expanding this, we get

$$3 \left[d^{2}(u), d(m) \right]_{\gamma} + 3 \left[d(u), d^{2}(m) \right]_{\gamma} + \left[u, d^{3}(m) \right]_{\gamma} = 0.$$
⁽²⁾

Let $V = [U, U]_{\gamma}$ and $W = [V, V]_{\gamma}$. In (2), replacing u by $d^2(w)$ with $w \in W$, we get $[d^2(w), d^3(m)]_{\gamma} = 0$ by hypothesis. Again replacing u by d(w) and m by d(m) in (2), we obtain $[d(w), d^4(m)]_{\gamma} = 0$.

By proof of Lemma 2.6, $W \not\subseteq C_{\gamma}$. Thus, by Theorem 2.13, $C_{\gamma}(d(W)) = C_{\gamma}$. Since $[d(w), d^4(m)]_{\gamma} = 0$ for all $w \in W$ and $m \in M$, it follows $d^4(M) \subseteq C_{\gamma}$.

By hypothesis, $d^4([u,m]_{\gamma}) = 0$ for $u \in U$ and $m \in M$. Expanding this, we get

$$6 \left[d^{2}(u), d^{2}(m) \right]_{\gamma} + 4 \left[d(u), d^{3}(m) \right]_{\gamma} = 0$$
(3)

since $d^{4}(m) \in C_{\gamma}$. Similarly, expanding the equation $d^{3}\left(\left[u, d(m)\right]_{\gamma}\right) = 0$, we get

$$3\left[d^{2}\left(u\right), d^{2}\left(m\right)\right]_{\gamma} + 3\left[d\left(u\right), d^{3}\left(m\right)\right]_{\gamma} = 0.$$
(4)

Combining the equation (4) and the equation (3) we get $[d(u), d^3(m)]_{\gamma} = 0$ for all $u \in U$ and $m \in M$. Therefore, by Theorem 2.13, $d^3(M) \subseteq C_{\gamma}(d(U)) = C_{\gamma}$. Hence, we get $d^3(m) \gamma d^2(u) \in C_{\gamma}$ that is to say $d^3(M) \gamma d^2(U) \subseteq C_{\gamma}$.

Suppose that $d^3(M) \neq 0$. By Lemma 2.4, we have $d^2(U) \subseteq C_{\gamma}$. Since $d^4(m\gamma d(u)) \in C_{\gamma}$ it follows $d^4(M)\gamma d(U) \subseteq C_{\gamma}$. Since d(U) cannot be contained in C_{γ} by Lemma 2.10, we get $d^4(M) = 0$ by Lemma 2.4. So $d^4(m\gamma d(u)) = 4d^3(m)\gamma d^2(u) = 0$. Hence, $d^3(M)\gamma d^2(U) = 0$. On the other hand, we have $d^2(U) \neq 0$ by Theorem 2.12. Since $d^2(U) \subseteq C_{\gamma}$ and M is γ -prime gamma ring, $d^3(M) = 0$, that is to say $d^3 = 0$.

Lemma 2.19. If $[U, U]_{\gamma} \subseteq C_{\gamma}$ then $U \subseteq C_{\gamma}$.

Proof. Let $[U, U]_{\gamma} = 0$. Then, we get $\left[u, [u, x]_{\gamma}\right]_{\gamma} = 0$ for all $u \in U$ and $x \in M$ by hypothesis. Therefore, $u \in C_{\gamma}$ by Lemma 2.1.

Now, let $[U, U]_{\gamma} \neq 0$. Then, there exist $u, v \in U$ such that $[u, v]_{\gamma} \neq 0$. Let $d(x) = [x, v]_{\gamma}$ for $x \in M$. Then $d^2(x) = [d(x), v]_{\gamma} \in C_{\gamma}$ for all $x \in M$ by hypothesis. Let a = d(u) and $b = d^2(x)$. Therefore, $d^2(u\gamma x) = 2a\gamma d(x) + b\gamma u \in C_{\gamma}$. Then we have $[u, 2a\gamma d(x) + b\gamma u]_{\gamma} = 0$. Expanding this, we get $2a\gamma [u, d(x)]_{\gamma} = 0$ for all $x \in M$. Replacing x by $u\gamma v$ in the last equation, we obtain $a_{\gamma}^3 = 0$. Therefore, we have a nonzero γ -nilpotent element a in the γ -center of the γ -prime gamma ring M. But this is a contradiction.

Lemma 2.20. Let M be a gamma ring of characteristic not 2 and U be a γ -Lie ideal of M. If $[u, d(u)]_{\gamma} \in C_{\gamma}$ and $u^2 \in U$ for all $u \in U$, then $[u, d(u)]_{\gamma} = 0$.

Proof. We know that $[u + u^2, d(u + u^2)]_{\gamma} \in C_{\gamma}$ for all $u \in U$ by hypothesis. Expanding this, we get $4[u, d(u)]_{\gamma} \gamma u \in C_{\gamma}$. Hence, $[u, d(u)]_{\gamma} \gamma [u, m]_{\gamma} = 0$ for all $u \in U$ and $m \in M$. Replacing m by $m\gamma x$ with $x \in M$, we obtain $[u, d(u)]_{\gamma} \gamma m\gamma [u, x]_{\gamma} = 0$ that leads to $[u, d(u)]_{\gamma} = 0$ or $[u, x]_{\gamma} = 0$ for all $x \in M$ since M is γ -prime gamma ring.

Lemma 2.21. Let U be a γ -Lie ideal of M and $[u, d(u)]_{\gamma} \in C_{\gamma}$ for all $u \in U$. Then $\left[[d(m), u]_{\gamma}, u \right]_{\gamma} \in C_{\gamma}$ for all $u \in U$ and $m \in M$. Moreover, if $[u, d(u)]_{\gamma} = 0$ for all $u \in U$, then $\left[[d(m), u]_{\gamma}, u \right]_{\gamma} = 0$ for all $u \in U$ and $m \in M$.

Proof. Let $u \in U$ and $m \in M$. By hypothesis, $\left[u + [u, m]_{\gamma}, d(u + [u, m]_{\gamma})\right]_{\gamma} \in C_{\gamma}$. Expanding this, we get

$$\left[\left[u,m\right]_{\gamma},d(u)\right]_{\gamma}+\left[u,\left[d(u),m\right]_{\gamma}\right]_{\gamma}+\left[u,\left[u,d(m)\right]_{\gamma}\right]_{\gamma}\in C_{\gamma}.$$

But for any $u \in U$ and $m \in M$ one can show that

$$\left[\left[u,m\right]_{\gamma},d(u)\right]_{\gamma}+\left[u,\left[d(u),m\right]_{\gamma}\right]_{\gamma}=\left[m,\left[d(u),u\right]_{\gamma}\right]_{\gamma}=0.$$

Therefore, we get desired result. Similary, the other statement can easily be shown.

Lemma 2.22. Let $a \in M$. If $a\gamma d(x) = 0$ for all $x \in M$, then a = 0 or d = 0.

Proof. By hypothesis, $a\gamma d(x\gamma y) = 0$ for all $x, y \in M$. Expanding this, we get $a\gamma x\gamma d(y) = 0$ for all $x, y \in M$. Since M is γ -prime gamma ring we have the desired result.

3. Main results

Theorem 3.1. Let M be a γ -prime weak Nobusawa Γ -ring of characteristic not 2 and d <u>be a k</u>-derivation of M such that $k(\gamma) = 0$ and $d^3 \neq 0$. If U is a γ -Lie ideal of M such that $U \nsubseteq C_{\gamma}$ then $\overline{d(U)}$ contains a nonzero ideal of M.

Proof. Let $V = [U, U]_{\gamma}$ and $W = [V, V]_{\gamma}$. According to Lemma 2.15, it is enough to show that the γ -subring $\overline{d(V)}$ contains a nonzero left ideal of M and a nonzero right ideal of M. Suppose that $\overline{d(V)}$ does not contain a nonzero right ideal of M.

Let $w \in [W, W]_{\gamma}$ and a := d(w). Since $a\gamma [a, x]_{\gamma} \in W$, we have $d(a\gamma [a, x]_{\gamma}) \in d(W)$. Expanding this, we get

$$d(a)\gamma[a,x]_{\gamma} \in \overline{d(V)}, \,\forall a \in d\left([W,W]_{\gamma}\right), \, x \in M.$$
(5)

On the other hand, since $d\left(\left[a,u\right]_{\gamma}\right) \in d(V)$ and $\left[a,d(u)\right]_{\gamma} \in \overline{d(V)}$ for $u \in V$, we have

$$\left[d\left(a\right),V\right]_{\gamma} \subseteq \overline{d\left(V\right)}, \,\forall a \in d\left(\left[W,W\right]_{\gamma}\right).$$

$$\tag{6}$$

For $m \in M$ we also have

$$d(a) \gamma \left[d(a), m\right]_{\gamma} + d(a) \gamma \left[a, d(m)\right]_{\gamma} \in d(V)$$

since $d(a) \gamma d([a,m]_{\gamma}) \in \overline{d(V)}$. Hence, by (5)

$$d(a)\gamma[d(a),m]_{\gamma}\in\overline{d(V)},\,\forall a\in d\left(\left[W,W\right]_{\gamma}\right),\,m\in M.$$
(7)

In (7) replacing a by a + b with $a, b \in d([W, W]_{\gamma})$ we obtain

$$s := d(a) \gamma \left[d(b), m \right]_{\gamma} + d(b) \gamma \left[d(a), m \right]_{\gamma} \in \overline{d(V)}, \, \forall a, b \in d\left(\left[W, W \right]_{\gamma} \right).$$

If
$$t := \left[d\left(a\right)\gamma d\left(b\right), m\right]_{\gamma} = d\left(a\right)\gamma \left[d\left(b\right), m\right]_{\gamma} + \left[d\left(a\right), m\right]_{\gamma}\gamma d\left(b\right)$$
 then

$$s-t = d\left(b\right)\gamma\left[d\left(a\right),m\right]_{\gamma} - \left[d\left(a\right),m\right]_{\gamma}\gamma d\left(b\right) = \left[d\left(b\right),\left[d\left(a\right),m\right]_{\gamma}\right]_{\gamma}.$$

By (6), $s - t \in \overline{d(V)}$. Thus, we get $t \in \overline{d(V)}$, that is $[d(a) \gamma d(b), M]_{\gamma} \subseteq \overline{d(V)}$. Since $\overline{d(V)}$ does not contain a nonzero right ideal of M, $d(a) \gamma d(b) \in C_{\gamma}$ for all $a, b \in d([W, W]_{\gamma})$ by Lemma 2.16. Let $n := d(a) \gamma d(b)$. By (5), $d(b) \gamma [b, x]_{\gamma} \in \overline{d(V)}$. It follows $n\gamma [b, x]_{\gamma} = d(a) \gamma d(b) \gamma [b, x]_{\gamma} \in \overline{d(V)}$ since $d(a) \in \overline{d(V)}$. On the other hand, since $n\gamma [b, x]_{\gamma} = [b, n\gamma x]_{\gamma} \in \overline{d(V)}$, we have $[b, n\gamma M]_{\gamma} \subseteq \overline{d(V)}$. Let $I = n\gamma M$. If $I \neq 0$, then $b \in C_{\gamma}$ for all $b \in d([W, W]_{\gamma})$ by Lemma 2.16. Thus, by Lemma 2.10 we get $[W, W]_{\gamma} \subseteq C_{\gamma}$ that is to say $U \subseteq C_{\gamma}$ by Lemma 2.19. But this is a contradiction. Therefore, $I = n\gamma M = 0$. So we get $n = d(a) \gamma d(b) = 0$ for all $a, b \in d([W, W]_{\gamma})$ since M is γ -prime gamma ring. That is, $d^2([W, W]_{\gamma}) \gamma d^2([W, W]_{\gamma}) = 0$. Hence, we conclude that the contradiction $d^3 = 0$ by Lemma 2.17 and Lemma 2.18.

Theorem 3.2. Let M be a gamma ring of characteristic not 2 or 3 and U be a γ -Lie ideal of M. If $[u, d(u)]_{\gamma} \in C_{\gamma}$ for all $u \in U$, then $U \subset C_{\gamma}$.

Proof. By Lemma 2.21 we have

$$\left[\left[d(m),u\right]_{\gamma},u\right]_{\gamma}\gamma u=u\gamma\left[\left[d(m),u\right]_{\gamma},u\right]_{\gamma}.$$

Expanding this, we get

$$3u^2\gamma d(m)\gamma u + d(m)\gamma u^3 = 3u\gamma d(m)\gamma u^2 + u^3\gamma d(m).$$
(8)

Let d(m) = m'. Replacing m by u in (8), we obtain

$$u^{3}\gamma u' - u'\gamma u^{3} = 3(u\gamma u' - u'\gamma u)\gamma u^{2}$$
⁽⁹⁾

for all $u \in U$. Since $[u, u']_{\gamma} \gamma u = u \gamma [u, u']_{\gamma}$ we have

$$2\gamma(u\gamma u' - u'\gamma u)\gamma u = u^2\gamma u' - u'\gamma u^2.$$
(10)

Again replacing m by $u\gamma m'$ in (8), we obtain

$$3u\gamma u'\gamma m'\gamma u^2 + u^3\gamma u'\gamma m' - 3u^2\gamma u'\gamma m'\gamma u - u'\gamma m'\gamma u^3 = 0$$
⁽¹¹⁾

for all $u \in U$ and $m \in M$. Multiplying (8) with u' gives

$$3u'\gamma u\gamma m'\gamma u^2 + u'\gamma u^3\gamma m' - 3u'\gamma u^2\gamma m'\gamma u - u'\gamma m'\gamma u^3 = 0.$$

Substracting the last equation from (11) we get

$$3(u\gamma u' - u'\gamma u)\gamma m'\gamma u^2 + (u^3\gamma u' - u'\gamma u^3)\gamma m' - 3(u^2\gamma u' - u'\gamma u^2)\gamma m'\gamma u = 0.$$

Using the equations (9) and (10) we conclude

$$(u\gamma u' - u'\gamma u)\gamma(m'\gamma u^2 + u^2\gamma m' - 2u\gamma m'\gamma u) = 0$$

for all $u \in U$ and $m \in M$. If $u\gamma u' - u'\gamma u \neq 0$ for some u, then

$$n'\gamma u^2 + u^2\gamma m' - 2u\gamma m'\gamma u = 0 \tag{12}$$

for that u. Replacing m by $u\gamma m$, we obtain

$$(u'\gamma m + u\gamma m')u^2 + u^2\gamma(u'\gamma m + u\gamma m') - 2u\gamma(u'\gamma m + u\gamma m') = 0.$$

Expanding last equation, we have

$$u'\gamma m\gamma u^2 + u^2\gamma u'\gamma m - 2u\gamma u'\gamma m\gamma u = 0$$
⁽¹³⁾

for all $m \in M$. If we replace m by u in (12) and multiply by m on the right, then we get

$$u'\gamma u^2\gamma m + u^2\gamma u'\gamma m - 2u\gamma u'\gamma u\gamma m = 0.$$
(14)

Substracting (14) from (13) gives

$$u'\gamma(m\gamma u^2 - u^2\gamma m) - 2u\gamma u'\gamma(m\gamma u - u\gamma m) = 0.$$
(15)

Replacing m by $u\gamma m$ in (15), we obtain

$$u'\gamma u\gamma (m\gamma u^2 - u^2\gamma m) - 2u\gamma u'\gamma u\gamma (m\gamma u - u\gamma m) = 0.$$
 (16)

Mulyiplying (15) by u we get

$$u\gamma u'\gamma(m\gamma u^2 - u^2\gamma m) - 2u^2\gamma u'\gamma(m\gamma u - u\gamma m) = 0.$$
(17)

Substracting (16) from (17) gives

$$(u\gamma u' - u'\gamma u)\gamma(m\gamma u^2 - u^2\gamma m - 2u\gamma(m\gamma u - u\gamma m)) = 0$$

for all $m \in M$. Since M is γ -prime gamma ring we have

$$m\gamma u^2 - u^2\gamma m - 2u\gamma(m\gamma u - u\gamma m) = 0$$

Now think the inner $I_{\gamma u}$ -derivation $I_{u\gamma}$ on M. From the last equation we write $I_{u\gamma}^2 = 0$ that leads to $I_{u\gamma} = 0$ by Lemma 2.8. Hence, $u \in C_{\gamma}$.

So far we proved that if $[u, u']_{\gamma} \neq 0$ for $u \in U$, then $u \in C_{\gamma}$. Now assume that $[u, u']_{\gamma} = 0$ for all $u \in U$. By Lemma 2.21, $[[d(m), u]_{\gamma}, u]_{\gamma} = 0$ for all $m \in M$ and $u \in U$. Replacing u by u + w with $w \in U$, we obtain

$$\left[\left[d(m), u\right]_{\gamma}, w\right]_{\gamma} + \left[\left[d(m), w\right]_{\gamma}, u\right]_{\gamma} = 0.$$
(18)

Choose $v, w \in U$ such that $w\gamma v \in U$. Replacing w by $w\gamma v$ in (18), we obtain

$$[w,u]_{\gamma} \gamma [d(m),v]_{\gamma} + [d(m),w]_{\gamma} \gamma [v,u]_{\gamma} = 0.$$

For any $t \in M$ and $w \in U$ the element $v = [t, w]_{\gamma}$ ensures the condition $w\gamma v \in U$. So by above we have

$$[w,u]_{\gamma} \gamma \left[d(m), [t,w]_{\gamma} \right]_{\gamma} + [d(m),w]_{\gamma} \gamma \left[[t,w]_{\gamma}, u \right]_{\gamma} = 0$$
(19)

for all $t, m \in M$ and $u, w \in U$. Replacing u by w, we obtain

$$\left[d(m), w\right]_{\gamma} \gamma \left[\left[t, w\right]_{\gamma}, w\right]_{\gamma} = 0.$$
⁽²⁰⁾

Replacing t by $t\gamma d(a)$ with $a \in M$, we obtain

$$\left[d(m), w\right]_{\gamma} \gamma \left[t, w\right]_{\gamma} \gamma \left[d(a), w\right]_{\gamma} = 0 \tag{21}$$

for all $m, t, a \in M$ and $w \in U$. Replacing u by $[t, w]_{\gamma}$ in (19), we get $\left[[t, w]_{\gamma}, w\right]_{\gamma} \gamma \left[[t, w]_{\gamma}, d(m)\right]_{\gamma} = 0$. If we replace t by t + d(a) we get

$$\left[\left[t,w\right]_{\gamma},w\right]_{\gamma}\gamma\left[\left[d(a),w\right]_{\gamma},d(m)\right]_{\gamma}=0$$
(22)

for all $m, t, a \in M$ and $w \in U$. Replacing t by $d(t)\gamma s$ with $s \in M$ in (22), we obtain

 $[d(t), w]_{\gamma} \gamma [s, w]_{\gamma} \gamma d(m) \gamma [d(a), w]_{\gamma} = 0$

for all $m, t, a, s \in M$ and $w \in U$.

Replacing t by $t\gamma d(s)$ in (21), we conclude

$$[d(m), w]_{\gamma} \gamma M \gamma [d(s), w]_{\gamma} \gamma [d(a), w]_{\gamma} = 0$$

for all $m, a, s \in M$ and $w \in U$. Since M is γ -prime gamma ring we get $[d(m), w]_{\gamma} = 0$ or $[d(s), w]_{\gamma} \gamma [d(a), w]_{\gamma} = 0$ for all $m, a, s \in M$ and $w \in U$. If $[d(m), w]_{\gamma} = 0$ for all $m \in M$ and $w \in U$, then $w \in C_{\gamma}$ by Lemma 2.9, so we are done. Suppose there is a pair $m \in M$ and $w \in U$ such that $[d(m), w]_{\gamma} \neq 0$. Hence, $w \notin C_{\gamma}$ and

$$[d(s), w]_{\gamma} \gamma [d(a), w]_{\gamma} = 0 \tag{23}$$

for all $a, s \in M$. Replacing a by $b\gamma c$ with $b, c \in M$ in (23), we get

$$[d(s), w]_{\gamma} \gamma d(b) \gamma [c, w]_{\gamma} = 0.$$

If we replace b by $[t, w]_{\gamma}$ in this equation we have

$$[d(s), w]_{\gamma} \gamma [t, d(w)]_{\gamma} \gamma [w, c]_{\gamma} = 0$$

for all $c, t, s \in M$ and $w \in U$. Replacing c by $c\gamma m_1$ with $m_1 \in M$, we obtain

$$[d(s), w]_{\gamma} \gamma [t, d(w)]_{\gamma} = 0$$

Hence, replacing t by $t\gamma k$ with $k \in M$ in the last equation, we get $d(w) \in C_{\gamma}$.

Now suppose $u \in U \cap C_{\gamma}$. Then $d([u, a]_{\gamma}) = 0$ for all $a \in M$. Therefore, we have $d(u) \in C_{\gamma}$. Hence, $d(u) \in C_{\gamma}$ for all $u \in U$ and then we get $d([w, a]_{\gamma}) \in C_{\gamma}$ for all $a \in M$. Expanding this, we obtain $[w, d(a)]_{\gamma} \in C_{\gamma}$ and replacing a by $a\gamma w$, we have

$$[w, d(a)]_{\gamma} \gamma w + [w, a]_{\gamma} \gamma d(w) \in C_{\gamma}.$$
⁽²⁴⁾

Therefore, commuting this element by w we get

$$\left[w, \left[w, a\right]_{\gamma}\right]_{\gamma} \gamma d(w) = 0$$

for all $a \in M$. Since M is γ -prime gamma ring we have $\left[w, [w, a]_{\gamma}\right]_{\gamma} = 0$ or d(w) = 0 for all $a \in M$. If $\left[w, [w, a]_{\gamma}\right]_{\gamma} = 0$, then $w \in C_{\gamma}$ by Lemma 2.1. But this is a contradiction. Hence, d(w) = 0 and $[w, d(a)]_{\gamma} \gamma w \in C_{\gamma}$ for all $a \in M$ by (24). It follows that $[d(a), w]_{\gamma} \gamma [w, b]_{\gamma} = 0$ for $a, b \in M$. Replacing b by $b\gamma c$ with c, we obtain $[d(a), w]_{\gamma} = 0$ or $[w, b]_{\gamma} = 0$. So in both cases we have $w \in C_{\gamma}$ which is a contradiction. **Corollary 3.3.** Let M be a gamma ring of characteristic 3 and U be a γ -Lie ideal of M. If $[u, d(u)]_{\gamma} \in C_{\gamma}$ and $u^2 \in U$ for all $u \in U$, then $U \subset C_{\gamma}$.

Theorem 3.4. Let M be a gamma ring of characteristic 2 and U be a γ -Lie ideal and γ -subring of M. If $[u, d(u)]_{\gamma} \in C_{\gamma}$ for all $u \in U$, then U is γ -commutative.

Proof. By Lemma 2.21, $\left[\left[d(m), u \right]_{\gamma}, u \right]_{\gamma} \in C_{\gamma}$ for all $u \in U$ and $m \in M$. Hence,

$$d(m)\gamma u^2 + u^2\gamma d(m) \in C_\gamma \tag{25}$$

for all $u \in U$ and $m \in M$. Then

$$\left[d(m), d(m)\gamma u^2 + u^2\gamma d(m)\right]_{\gamma} = 0$$

and

$$\left[u^2, d(m)\gamma u^2 + u^2\gamma d(m)\right]_{\gamma} = 0.$$

Expanding these equations, we get

$$u^{2}\gamma(d(m))^{2} = (d(m))^{2}\gamma u^{2}$$
(26)

and

$$u^4 \gamma d(m) = d(m) \gamma u^4 \tag{27}$$

respectively.

Since $d(u^2) = u\gamma d(u) + d(u)\gamma u \in C_{\gamma}$ for $u \in U$, replacing m by $v + u^2\gamma v$ with $v \in U$, we obtain

$$\left(u^2\gamma d(v) + d(v)\gamma u^2\right)^2 = 0$$

for all $u, v \in U$. Using γ -primeness of M we have

$$u^2 \gamma d(v) = d(v) \gamma u^2 \tag{28}$$

for all $u, v \in U$ by (25).

Replacing u by u + w with $w \in U$ in (28), we get

$$(u\gamma w + w\gamma u)\gamma d(v) = d(v)\gamma (u\gamma w + w\gamma u).$$

Replacing w by $w\gamma u$, we get

$$(u\gamma w + w\gamma u)\gamma (u\gamma d(v) + d(v)\gamma u) = 0$$

for all $u, v, w \in U$. We conclude

$$\left(u_1^2\gamma w + w\gamma u_1^2\right)\gamma\left(u\gamma d(u) + d(u)\gamma u\right) = 0, \,\forall u, u_1, w \in U$$

replacing u by $u + u_1^2$ with $u_1 \in U$ and taking v = u.

Hence, if $[d(u), u]_{\gamma} \neq 0$ for some $u \in U$, then $u_1^2 \gamma w = w \gamma u_1^2$ for all $u_1, w \in U$. Then, we have $u^2 \gamma (w \gamma m + m \gamma w) = (w \gamma m + m \gamma w) \gamma u^2$ for all $m \in M$ and $u, w \in U$. Expanding this, and replacing m by $m \gamma u$, we obtain

$$\left(u^{2}\gamma m + m\gamma u^{2}\right)\gamma\left(w\gamma u + u\gamma w\right) = 0$$

for all $u, w \in U$ and $m \in M$. Replacing w by $[u, t]_{\gamma}$ with $t \in M$, we get

$$(u^2\gamma m + m\gamma u^2)\gamma (u^2\gamma t + t\gamma u^2) = 0$$

for all $u \in U$ and $m, t \in M$. Again replacing t by $t\gamma p$ with $p \in P$, we conclude $u^2 \in C_{\gamma}$ for all $u \in U$.

Assume that $[d(u), u]_{\gamma} = 0$ for all $u \in U$. Then, by Lemma 2.21 $[[d(m), u]_{\gamma}, u]_{\gamma} = 0$ for all $u \in U$ and $m \in M$. Expanding this, we get $u^2 \gamma d(m) = d(m)\gamma u^2$. Replacing m by $m\gamma a$ with $a \in M$, we obtain

$$d(m)\gamma \left(u^{2}\gamma a + a\gamma u^{2}\right) + \left(u^{2}\gamma m + m\gamma u^{2}\right)\gamma d(a) = 0.$$

Replacing a by v^2 , we get $d(m)\gamma \left(u^2\gamma v^2 + v^2\gamma u^2\right) = 0$ for all $u, v \in U, m \in M$ since $d(v^2) = v\gamma d(v) + d(v)\gamma v = 0$ for $v \in U$. Therefore, $u^2\gamma v^2 = v^2\gamma u^2$ for all $u, v \in U$ by Lemma 2.22. Hence, $u^2\gamma (v\gamma w + w\gamma v) = (v\gamma w + w\gamma v)\gamma u^2$ for all $u, v, w \in U$. Replacing v by $v\gamma w$ in the last equation, we have $(v\gamma w + w\gamma v)\gamma \left(u^2\gamma w + w\gamma u^2\right) = 0$. Again replacing v by $[w,m]_{\gamma}$ with $m \in M$, we obtain $\left(w^2\gamma m + m\gamma w^2\right)\gamma \left(u^2\gamma w + w\gamma u^2\right) = 0$. That is, $I_{w^2\gamma}(m)\gamma \left(u^2\gamma w + w\gamma u^2\right) = 0$ for the inner $I_{\gamma w^2}$ -derivation $I_{w^2\gamma}$ on M. So by Lemma 2.22, if $w^2 \notin C_{\gamma}$ for some $w \in U$, then $u^2\gamma w = w\gamma u^2$ for that w. Therefore, $\left[[u,v]_{\gamma},w\right]_{\gamma} = 0$ for all $u, v \in U$. Expanding last equation and replacing v by $v\gamma w$, we obtain $[v,w]_{\gamma}\gamma [w,u]_{\gamma} = 0$ for all $u, v \in U$. Replacing v by $[w,r]_{\gamma}$ with $m, t \in M$ and u by $[w,t]_{\gamma}$, we get $\left(w^2\gamma m + m\gamma w^2\right)\left(w^2\gamma t + t\gamma w^2\right) = 0$ for all $m, t \in M$. Again replacing t by $t\gamma p$ with $p \in M$, we conclude $\left(w^2\gamma m + m\gamma w^2\right)\gamma t\gamma \left(w^2\gamma p + p\gamma w^2\right) = 0$ for all $p, t \in M$. Since M is γ -prime gamma ring we get $w^2 \in C_{\gamma}$ from the last equation. But this is a contradiction.

So far we conclude $u^2 \in C_{\gamma}$ for all $u \in U$. Hence, $u\gamma v + v\gamma u \in C_{\gamma}$ and $(u\gamma v + v\gamma u)\gamma u \in C_{\gamma}$ for all $u, v \in U$. Therefore, we have $u \in C_{\gamma}$ or $u\gamma v + v\gamma u = 0$. Then, U is γ -commutative.

If we assume that U is only γ -Lie ideal of M or only γ -subring of M, then U may not be γ commutative. Moreover, according to the assumptions of the theorem, the result $U \subseteq C_{\gamma}$ cannot be
obtained.

Example 3.5. Let R be a noncommutative prime ring with identity. If M is the set of all matrices over R of the form $\begin{pmatrix} a & b & a \\ c & d & c \end{pmatrix}$, $\Gamma = \mathcal{M}_{3\times 2}(R)$ and $\gamma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \in \Gamma$, then M is a γ -prime gamma ring. It can be shown that the subset $U = \left\{ \begin{pmatrix} a & 0 & a \\ 0 & b & 0 \end{pmatrix} \mid a, b \in R \right\}$ of M is a γ -subring but it is not a γ -Lie ideal of M. Define the inner $I_{\gamma n}$ -derivation $I_{n\gamma}$ on M with $n = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in M$. Then it is easily verified that $[u, I_{n\gamma}(u)]_{\gamma} \in C_{\gamma}$ for all $u \in U$ but U is not γ -commutative.

Example 3.6. Let
$$M = \left\{ \begin{pmatrix} a & b & a \\ c & d & c \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}_2 \right\}, \Gamma = \mathcal{M}_{3 \times 2}(\mathbb{Z}_2) \text{ and } \gamma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \in \Gamma.$$
 Then M

is a γ -prime gamma ring. Let $U = \left\{ \begin{pmatrix} a & b & a \\ c & a & c \end{pmatrix} \mid a, b, c \in \mathbb{Z}_2 \right\}$. It is easily seen that U is a γ -Lie ideal but it is not a γ -subring of M. Define the inner $I_{\gamma n}$ -derivation $I_{n\gamma}$ on M with $n = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in M$. Then it is easily verified that $[u, I_{n\gamma}(u)]_{\gamma} \in C_{\gamma}$ for all $u \in U$ but U is not γ -commutative.

Example 3.7. Let
$$M = \left\{ \begin{pmatrix} a & b & a \\ c & d & c \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}_2 \right\}, \Gamma = \mathcal{M}_{3 \times 2}(\mathbb{Z}_2) \text{ and } \gamma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \in \Gamma.$$
 Then

M is a γ -prime gamma ring. Let $U = \left\{ \begin{pmatrix} a & b & a \\ b & a & b \end{pmatrix} \mid a, b \in \mathbb{Z}_2 \right\}$. It is easily seen that *U* is a γ -Lie

ideal and a γ -subring of M but it is not a γ -ideal. Define the inner $I_{\gamma n}$ -derivation $I_{n\gamma}$ on M with $n = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in M$. Then it is easily verified that $[u, I_{n\gamma}(u)]_{\gamma} \in C_{\gamma}$ for all $u \in U$. Hence, U is γ -commutative but cannot be contained in the γ -center of M.

Acknowledgment: The authors would like to thank the referees for their valuable suggestions and comments.

References

- R. Awtar, Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc., 41, 67-74, 1973.
- [2] W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., 18, 411-422, 1966.
- [3] J. Bergen, J.W. Kerr, I.N. Herstein, Lie ideals and derivations of prime rings, J. Algebra, 71, 259-267, 1981.
- [4] I. N. Herstein, A note on derivations, Canad. Math. Bull., 21(3), 369-370, 1978.
- [5] I. N. Herstein, A note on derivations II, Canad. Math. Bull., 22(4), 509-511, 1979.
- [6] I. N. Herstein, Topics in Ring Theory, The Univ. of Chicago Press, 1969.
- [7] H. Kandamar, The k-Derivation of a Gamma-Ring, Turk. J. Math., 23(3), 221-229, 2000.
- [8] A. R. Khan, M. A. Chaudhry, I. Javaid, Generalized Derivations on Prime Γ-Rings, World Appl. Sci. J., 23(12), 59-64, 2013.
- [9] S. Kyuno, Gamma Rings, Hadronic Press, 1991.
- [10] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1, 81-89, 1964.
- [11] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8, 1093-1100, 1957.
- [12] N. N. Suliman, A. H. Majeed, Lie Ideals in Prime Γ-Rings with Derivations, Discussiones Mathematicae, 33, 49-56, 2013.