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Abstract: Secret sharing scheme is an efficient method to hide secret key or secret image by partitioning it
into parts such that some predetermined subsets of partitions can recover the secret but remaining
subsets cannot. In 1979, the pioneer construction on this area was given by Shamir and Blakley
independently. After these initial studies, Asmuth-Bloom and Mignotte have proposed a different
(k, n) threshold modular secret sharing scheme by using the Chinese remainder theorem. In this
study, we explore the generalization of Mignotte’s scheme to Euclidean domains for which we obtain
some promising results. Next, we propose new algorithms to construct threshold secret image sharing
schemes by using Mignotte’s scheme over polynomial rings. Finally, we compare our proposed scheme
to the existing ones and we show that this new method is more efficient and it has higher security.
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1. Introduction

The rapid improvement of technology and the increase of the usage of the internet day by day intro-
duces some new challenges. One of the most important challenge is the security of data (message/image).
There are several techniques in literature for keeping the data secure. One of them is applying a secret
sharing scheme (a.k.a. key safeguarding scheme). Secret sharing schemes play an important role in cryp-
tography especially where the secret key is supposed to be distributed in parts to shareholders so that
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some of predetermined shares can recover the key. In order to construct such schemes many methods
have been developed over the last 30 years [14]. The first secret sharing scheme is introduced by Blakley
and Shamir independently [2, 12]. They propose a (k, n) threshold secret sharing scheme, i.e. any k out
of n participants can reconstruct the secret key but any k− 1 or fewer participants cannot reconstruct it.

In [1, 9], Asmuth-Bloom and Mignotte propose a different (k, n) threshold modular secret sharing
scheme by using Chinese remainder theorem. These two methods depend on a particular choice of the
ordering and the selection of positive integers that are used as module. Mignotte’s method is over
integers, on the other hand Asmuth-Bloom’s modular approach is applicable to not only integers but also
to Euclidean domains in general. In [5], Mignotte’s construction is further generalized to not necessarily
relatively coprime integers which are called generalized Mignotte sequences and an application to e-voting
is presented.

Also, another generalization of Mignotte’s construction over polynomial rings is given in [16].

In [10], Naor and Shamir propose an interesting method for encrypting visual data which is called
visual cryptography. In this method, there is no cryptographic computation to recover secret image,
that is, decoding process of the method is based solely on human visual system. After this pioneer
construction, to overcome memory space problem, Thien and Lin propose threshold secret image sharing
scheme by using Shamir’s scheme [17]. In this scheme, they consider each k pixels of a secret image
S as coefficients of polynomials and compute the values of these polynomials to generate the n shadow
images. Since the scheme’s reconstruction is based on Lagrange interpolation, any k out of n shadow
images can reconstruct the secret image S but any k − 1 or fewer shadow images cannot reconstruct the
secret image. By taking advantage of Huffman encoding, Wang and Su come up with a new secret image
sharing scheme that uses smaller shadow images [19]. In [8], Meher and Patra design a new scheme which
is not a threshold by taking advantage of Chinese remainder theorem. Unlike the previous work, the
shadow images of this scheme may have distinct sizes. In [13], Shyu and Chen give another threshold
scheme which is based on Mignotte’s secret sharing scheme.

In this study, we give a generalization of Mignotte’s scheme over Euclidean domains. We also
construct threshold secret image sharing schemes based on generalization of Mignotte’s scheme over
polynomial rings. We organize this paper as follows: In Section 2, we give basics of secret sharing
schemes and recall the construction of Mignotte’s scheme. The generalization of Mignotte’s scheme over
Euclidean domains is given in Section 3. In Section 4, we propose new algorithms to construct threshold
secret image sharing schemes and an experimental result is presented in Section 5. In section 6, the
security analysis of algorithms is also analyzed. In Section 7, our proposed secret image sharing scheme
is compared with the state of the art methods. Finally, conclusions and comparisons to the existing
methods are summarized in Section 8.

2. Preliminaries

A secret sharing scheme is a method of sharing a secret S among n participants P = {P1, P2, . . . , Pn}
by using a distribution rule F = {f |f : V → P } such that some predetermined subsets of 2P can recon-
struct the secret S, where V is the set of shares (shadows). The subsets that can construct the secret S
are called access structures and the set of such subsets is denoted by Γ, and any subset of participants
that is not in Γ cannot reconstruct the secret S. If every k out of n participants can determine the secret
S and any out of k − 1 or fewer participants cannot determine the secret S, then this scheme is called a
(k, n) threshold scheme and the access structure of this scheme is Γ = {A| |A| ≥ k,A ⊆ 2P } [12]. Also,
if k − 1 or fewer participants cannot obtain any helpful information about the secret S, i.e. do not have
any advantage in order to reconstruct the key, then this is called a perfect secret sharing scheme [14].

There are various kinds of generalizations of Chinese remainder theorem (CRT) in literature, we give
some of them which are necessary for our constructions in the following sections. The following is called
Chinese remainder theorem for commutative rings [4].

Theorem 2.1. Let I1, I2, . . . , In be ideals of a commutative ring R with identity such that Ii + Ij = R
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for all i 6= j. Then, there exists a ring isomorphism

ϕ : R/I1I2 · · · In → R/I1 ×R/I2 × · · · ×R/In

x 7→ x mod I1, x mod I2, . . . , x mod In.

Conversely, given the module values of x, then x is uniquely determined up to congruence modulo the
ideal

I = I1I2 · · · In = I1 ∩ I2 ∩ · · · ∩ In.

The version of this theorem can be given in a similar way for integers and polynomial rings (also
Euclidean domains) [3, 6]. Next, we give a more general version of CRT developed by Ore such that
q1, q2, . . . , qn do not have to be pairwise relatively prime [11].

Theorem 2.2. [11] Let q1, q2, . . . , qn ≥ 2 be a collection of positive integers. For any set of elements ai
the system of simultaneous congruences

x ≡ a1 mod q1
x ≡ a2 mod q2

...
x ≡ an mod qn

has a solution if and only if ai ≡ aj mod (qi, qj) for all i 6= j, 1 ≤ i, j ≤ n , where (qi, qj) is
the greatest common divisor of qi and qj. Moreover, the system has a unique solution in modulo
q = lcm(q1, q2, . . . , qn), where q is the least common multiple of q1, q2, . . . , qn and it can be computed
as follows

x ≡ a1
q

q1
b1 + a2

q

q2
b2 + · · ·+ an

q

qn
bn

where bi are integers such that b1 q
q1

+ b2
q
q2

+ · · ·+ bn
q
qn

= 1.

If q1, q2, . . . , qn are relatively prime, then we obtain the standard version of CRT. Furthermore, a
general version of CRT can be applied to polynomial rings [16].

The Chinese remainder theorem has many applications in literature [3]. One of them is on secret
sharing. There are two different pioneer constructions to recover the secret S with CRT given by Asmuth-
Bloom and Mignotte [1, 9]. Next, we recall the construction of Mignotte’s scheme.

Mignotte’s Construction

Mignotte introduced a (k, n) threshold secret sharing scheme using a special subset of coprime
numbers which are called Mignotte’s sequences [9]. The trick of this construction is the choice of the
secret S in a particular range. Now, let us recall the construction given by Mignotte based on CRT.

The system is composed by a dealer and n participants. The dealer constructs the system and gives
the shares to the participants as follows:

1. Dealer chooses positive integers q1 < q2 < · · · < qn such that (qi, qj) = 1 for all 1 ≤ i < j ≤ n and

n∏
i=n−k+2

qi <

k∏
i=1

qi.

2. The secret S is a randomly chosen integer in the following interval

n∏
i=n−k+2

qi < S <

k∏
i=1

qi.
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3. The shadows vi are computed as:

v1 ≡ S mod q1
...

vn ≡ S mod qn

and distributed to the participants Pi = (vi, qi) for all 1 ≤ i ≤ n.

4. Given k out of n distinct participants {Pi1 , Pi2 , . . . , Pik} , the secret S is recovered uniquely in
modulo q = qi1qi2 · · · qik using the standart CRT as follows:

S ≡ vi1ri1
q

qi1
+ · · ·+ vikrik

q

qik
mod q

where rij
q
qij
≡ 1 mod qij for all 1 ≤ j ≤ k.

Example 2.3. Let us consider a (2, 4) threshold scheme and choose pairwise coprime numbers q1 =
11, q2 = 15, q3 = 17, and q4 = 26. The secret can be chosen inside the interval 26 < S < 165. Let S = 124
and the corresponding shadows be v1 = 3, v2 = 4, v3 = 5, v4 = 20. Each participant in a system has
a pair of information (vi, qi). Suppose that P1 and P2 want to find the secret S by using their shadows
{(3, 11) , (4, 15)} . First, r1 = 3, r2 = 11 is found and the secret can be computed uniquely modulo 165 as
follows:

S ≡ (3 · 3 · 15 + 4 · 11 · 11) mod165 ≡ 124.

In this example, we see that any two out of four participants can recover the secret by putting their
partial information together.

3. Generalization of Mignotte’s scheme over Euclidean domains

In this section, we generalize the threshold secret sharing scheme given by Mignotte [9] to Euclidean
domains. Let us first recall the definition of Euclidean domains.

Definition 3.1. Let D be an integral domain and R = Z+ ∪{0} be the set of nonnegative integers. D is
called Euclidean domain if there is a norm function N : D\ {0} → R with the following two properties:

1. For any a, b ∈ D\ {0}, N (a) ≤ N (ab),

2. For all a, b ∈ D with b 6= 0 we can write a = qb + r for some q, r ∈ D such that r = 0 or
N (r) < N (b).

Now, we construct a (k, n)-threshold scheme over a Euclidean domain. Let D be a Euclidean domain.
Choose the elements q1, . . . , qn ∈ D such that (qi, qj) = 1 for i, j ∈ {1, . . . , n}, i 6= j and N (qi) < N (qj)
for all i < j, where N is a suitable degree function defined on Euclidean domain. Dealer chooses a secret
S ∈ D/〈q1 · · · qn〉 satisfying the following conditions:

1. N (α) = N (qn−k+2)N (qn−k+3) · · ·N (qn) < N (S) and

2. N (S) < N (β) = N (q1)N (q2) · · ·N (qk).
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The Dealer now determines the shares v1, . . . , vn to be distributed to the n participants in the
following way:

v1 ≡ S mod q1
v2 ≡ S mod q2

...
vn ≡ S mod qn.

Since D/〈qj1qj2 . . . qjk〉 ∼= D/〈qj1〉 ×D/〈qj2〉 × · · · ×D/〈qjk〉 where qj1 , qj2 , . . . , qjk ∈ {q1, q2, . . . , qn},
any k out of n participants can reconstruct the secret S by using CRT over Euclidean domains [6]. For
instance, first k participants can reconstruct the secret S in the following way:

1. For 1 ≤ j ≤ k, define µj =
k∏

i=1
i6=j

qi and ηj = µ−1
j (mod qj) where ηj < qj .

2. Then, the secret can be computed by

S ≡ v1µ1η1 + v2µ2η2 + · · ·+ vkµkηk (mod q1q2 · · · qk). (1)

Theorem 3.2. For the given construction above, any k − 1 or fewer participants cannot reconstruct the
secret S.

Proof. Assume that any k − 1 out of n participants come together to reconstruct the secret S. Let
these participants Pj1 , Pj2 , . . . , Pjk−1

reconstruct r as a secret with their own shares. It is easily seen
that N (r) < N (S) and S = r + δqj1qj2 . . . qjk−1

for some δ ∈ D. This means that any k − 1 or fewer
participants cannot reconstruct the secret S.

It is easily seen that the best probability of finding the secret S is

N(qj1qj2 · · · qjk−1
)

N(β)−N(α)
.

If the range of norm is large enough, it will be an infeasible problem to determine the secret S.

Example 3.3. Let us construct a (2, 3) threshold secret sharing scheme based on a specific Euclidean
domain, i.e. Gaussian integers Z[i]. We choose three coprime Gaussian numbers, 11+8i, −3−13i, 7+4i
and compute their norms 185, 178, 65 (N (a+ bi) = a2 + b2) respectively. Dealer chooses the norm of the
secret inside the following interval 185 < S < 11570. Suppose that dealer chooses the norm of the secret as
424 and a Gaussian integer 18−10i. After choosing the secret, dealer computes the shares of participants
as follows:

18− 10i ≡ −1− 7i (mod 11 + 8i)⇒ v1 = −1− 7i,

18− 10i ≡ 5− 7i (mod − 3− 13i)⇒ v2 = 5− 7i,

18− 10i ≡ 3 (mod 7 + 4i)⇒ v3 = 3.

Hence a (2, 3) threshold secret sharing scheme is designed such that any 2 out of 3 participants can
reconstruct the secret. We pick P1 and P3 and compute the secret in the following way:

Z[i]/(11 + 8i)× Z[i]/(7 + 4i)→ Z[i]/(45 + 100i)

(−1− 7i)(7 + 4i)[(7 + 4i)−1 (mod 11 + 8i)] + 3(11 + 8i)[(11 + 8i)−1 (mod 7 + 4i)]

After computing the inverse of Gaussian integers, (7 + 4i)−1 (mod 11 + 8i) ≡ −12 + 2i and (11 + 8i)−1

(mod 7 + 4i) ≡ 7− 2i, we substitute the values and the secret is computed as follows

S = (−1− 7i)(7 + 4i)(−12 + 2i) + (3)(11 + 8i)(7− 2i) (mod 45 + 100i) ≡ 18− 10i.

In the next section, we build our methods over two specific Euclidean domains. Gaussian ring of
integers and polynomial rings over fields.
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4. A new algorithm for secret image sharing

In this section, we present a new (k, n) threshold secret image sharing scheme such that any k out
of n shadow images can reconstruct the secret image S but any k − 1 or fewer shadow images cannot
reconstruct S. The idea behind this construction is a generalization of Mignotte’s scheme [16] over
polynomial rings. A recent study on Secret Sharing Scheme over polynomial rings is presented in [16].
The difference between our scheme and the method introduced in [16] is that the irreducible polynomials
in [16] are chosen of the same degrees (Remark 3.1, [16]). Here in our method we do not impose such a
restriction hence this gives us flexibility on construction which leads to a faster applicability and better
security.

Since the gray value of a pixel is between 0 and 255 this fact forces us to consider algorithms for
distinct prime numbers p = 251 and p = 257, which are the closest prime numbers smaller and larger
than p = 255, or the finite field extension GF (28). For the first algorithm, we must reduce all the gray
values between 251− 255 to 250. In the second algorithm, we can encounter invalid gray value, i.e. 256.
To overcome this problem, we must increase the size of shadow images (see Algorithm 2, Step 3 and
Step 5). In the third algorithm, since the gray values range from 0 to 255, each gray value has a 2-adic
representation a0 + a12 + · · · + a727 for some ai ∈ Z2, hence there is a map Z256 → Z2 [x]/〈f (x)〉, a →
(a0, . . . , a7) where f (x) is an irreducible polynomial of degree 8 over Z2. Since GF

(
28
) ∼= Z2 [x]/〈f (x)〉

and GF
(
28
)×

= 〈α〉, we have a one-to-one and onto map

φ : Z256 → GF
(
28
)

a→
{

0, if a = 0
αia , if a 6= 0

where αia = a0 + a1α+ · · ·+ a7α
7. Because of the above map φ, unlike the other two algorithms, there

is no truncation and invalid gray value in the last algorithm.

Suppose that we intend to construct a (k, n) threshold secret image sharing for an m×r secret image
S. We first choose n polynomials q1, q2, . . . , qn such that (qi, qj) = 1 for all i, j ∈ {1, . . . , n}, i 6= j and
α = deg (qn−k+2×qn−k+3× · · · × qn) < β = deg (q1×q2× · · · × qk). We suppose that the secret image is
divided into 1× s row vectors such that s divides r. The crucial part of the algorithm is choosing s− 1
degree polynomials si (x) = gi,0 + gi,1x + · · · + gi,s−1x

s−1, called secret polynomials corresponding the
ith partition of S, such that α < deg (s (x)) < β, where gi,0, gi,1, . . . , gi,s−1 are the s ordered pixels of ith
partition. For the ith partition of S, the ith partition of n shadow images S1, S2, . . . , Sn are obtained in
the following way:

vi,1 ≡ si(x) mod q1
vi,2 ≡ si(x) mod q2

...
vi,n ≡ si(x) mod qn

(2)

where the polynomials vi,j are called shadow polynomials. The steps of algorithms for this secret image
sharing schemes are illustrated as follows.

4.1. Algorithm 1 for p = 251

The Share Construction

1. If there exists gray values larger than 250, they are set to 250. Thus the gray values are now
between the range 0−250. Here there will be some loose of pixel colors that are not distinguishable
by naked eye.
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2. Choose n polynomials q1, q2, . . . , qn such that (qi, qj) = 1 for all i, j ∈ {1, . . . , n}, i 6= j and
α = deg(qn−k+2 × qn−k+3 × · · · × qn) < β = deg(q1 × q2 × · · · × qk).

3. The secret polynomials si(x) corresponding to ith partition of the secret image are obtained by
letting the s coefficients be the gray values of s pixels of ith partition such that α < deg(si(x)) =
s− 1 < β.

4. Using the secret polynomial si(x) for ith partition, generate n shadow polynomials vi,j for all
1 ≤ j ≤ n by using Equation 2 and set li = deg(qi) for 1 ≤ i ≤ n.

5. For all partitions of the secret image, apply Steps 3 and 4.

Remark: The degrees of n polynomials q1, q2, . . . , qn can be chosen arbitrarily as long as the condi-
tion deg(qn−k+2×qn−k+3×· · ·×qn) < deg(q1×q2×· · ·×qk) is satisfied. If at least one of the polynomials
q1, q2, . . . , qn have different degree than the others, then the size of one of S1, S2, . . . , Sn may be different
from each other. In order to correctly reconstruct the image, we must give the information of number of
pixels in partitions for each shadow images to the participants. This means that the shares of participants
are (Si, qi, li) for all 1 ≤ i ≤ n, where li is the number of pixels in each partition.

The Reconstruction Phase

1. For all 1 ≤ i ≤ n, generate k shadow polynomials using first li pixels of k shadow images.

2. Using k shadow polynomials v1,i1 , v1,i2 , . . . , v1,ik and Equation 1, one can obtain the secret polyno-
mial s1(x), i.e. we first get s pixels of the secret image.

3. For all other pixels of k shadow images, apply Step 1 and 2.

4.2. Algorithm 2 for p = 257

The Share Construction

1. Choose n polynomials q1, q2, . . . , qn such that (qi, qj) = 1 for all i, j ∈ {1, . . . , n}, i 6= j and
α = deg (qn−k+2×qn−k+3× · · · × qn) < β = deg (q1×q2× · · · × qk) .

2. Find the secret polynomial si (x) for the ith partition of the secret image such that α < deg (si (x)) =
s− 1 < β.

3. By using Equation 2, find the shadow polynomials vi,j for all 1 ≤ j ≤ n and apply the following
steps.

(a) If the coefficients of vi,j ’s are not equal to 255 or 256, the ith partition of Sj is generated by
using the coefficients of vi,j .

(b) If a coefficient vi,jk of vi,j is equal to 255, then consider 255 as a couple 255 and 0 and write
255xk−1 + 0xk as the polynomial vi,j .

(c) If a coefficient vi,jk of vi,j is equal to 256, then consider 256 as a couple 255 and 1 and write
255xk−1 + 1xk as the polynomial vi,j .

4. For all other pixels of the secret image, apply Steps 2 and 3.

5. Extend the shadow images to a rectangular array by padding with redundant pixels such that if
the gray value of the last pixel of non-extended shadow image is m then all the redundant pixels
are of gray value m+ 1.

The Reconstruction Phase

153



I. Ozbek et al. / J. Algebra Comb. Discrete Appl. 6(3) (2019) 147–161

1. For given k shadow images, find the last pixel value which is different than the consecutive one and
reduce them by deleting the redundancy.

2. Take the first li pixels of any k shadow images and apply the following steps:

(a) If any gray value of the first partition of Sj is not 255, the shadow polynomial vi,j is obtained
by using first li pixels of Sj .

(b) If the gray value a1,l of the first partition of Sj is equal to 255, then the pixels a1,l and a1,l+1

are converted to (a1,l + a1,l+1)xl−1 in the polynomial v1,j .

3. Using the k shadow polynomials v1,i1 , v1,i2 , . . . , v1,ik and Equation 1, we obtain secret polynomial
s1 (x), i.e. we get first s pixels of the secret image.

4. To all pixels of k shadow images, apply Step 1 and 2.

4.3. Algorithm 3 for GF (28)

The Share Construction

1. Find the field elements corresponding to the gray values in the secret image with using the map φ.

2. Choose n polynomials q1, q2, . . . , qn in GF (28) [x] such that (qi, qj) = 1 for all i, j ∈ {1, . . . , n}, i 6= j
and α = deg (qn−k+2×qn−k+3× · · · × qn) < β = deg (q1×q2× · · · × qk).

3. The secret polynomials si (x) corresponding to ith partition of the secret image are obtained by
letting the s coefficients be as the φ-image of the gray values of s pixels of ith partition such that
α < deg (si (x)) = s− 1 < β.

4. Using the secret polynomial si (x) for ith partition, generate n shadow polynomials vi,j for all
1 ≤ j ≤ n by using Equation 2 and set li = deg (qi) for 1 ≤ i ≤ n.

5. For 1 ≤ j ≤ n, calculating φ−1-image of the coefficients of the shadow polynomials vi,j , construct
ith partition of shadow images.

6. For all partitions of the secret image, apply Steps 3, 4 and 5.

Remark: For this construction, all operations are performed over the finite field extension GF (28).

Reconstruction Phase

1. For all 1 ≤ i ≤ n, generate k shadow polynomials using first li pixels of k shadow images.

2. Calculate φ-image of the coefficients of the shadow polynomials v1,i1 , v1,i2 , . . . , v1,ik . For these k
polynomials over GF (28), applying an Equation 1, determine the secret polynomial s1 (x) over
GF (28).

3. Calculating φ−1-image of the coefficients of the secret polynomials s1 (x), construct first s pixels of
secret images.

4. For all other pixels of k shadow images, apply Step 1, 2 and 3.
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5. An experimental result

To illustrate Algorithm 1, we design a (2, 4) threshold secret image sharing scheme. The secret image
S is chosen as a 256× 256 pixels Pepper image shown in Figure 1 (a). To construct the shadow images,
we choose relatively prime four polynomials q1 = x4 + 85x2 + 4x+ 23, q2 = x4 + 54x3 + 99x2 + 27x+ 105,
q3 = 23x4 + 81x3 + 201x2 + 153x + 83, q4 = x4 + x3 + 81x2 + 103 where the condition α = 4 < β = 8
is satisfied. We take s = 8 so that the size of the shadow images are 1/2 of the size of the secret image
since division of each si(x) corresponding to 8 pixels, by qj(x) gives us a remainder polynomial of degree
3, corresponding to 4 pixels. The shadow images S1, S2, S3, S4 with respect to the secret image S are
illustrated in Figure 1 (b).

Figure 1: (a) 256× 256 Secret Image S; (b) 128× 256 Shadow Images S1, S2, S3, S4

To recover the secret image, a combination of any 2 participants having shadow images is sufficient.
This reconstruction is illustrated in Figure 2.

Note that, for (k, n) threshold secret image sharing, if we take the degrees of each polynomial qi
as m and degree of secret polynomial km − 1, the size of each shadow image is one-kth of the size of
secret image as the construction of Thien and Lin [17]. Further, recently an image sharing method that
avoids permutation is introduced in [18]. Our method also differs and presents a more applicable nature
compared to [18]. In [18], the shares distributed to the holders are each of sizes 256×256. In our method,
the sizes are 128× 256 which gives a storage advantage.

We present another illustrative example to show how we can control the size of shares using the same
(2, 4) threshold secret image sharing scheme. We can take the irreducible polynomials of degree 5 or 6. By
choosing four irreducible polynomials q1 = x5 +12x4 +53x3 +177x2 +46x+91, q2 = x5 +132x4 +131x3 +
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Figure 2: Some Examples of Reconstruction

117x2 +114x+11, q3 = x5 +151x4 +175x3 +21x2 +173x+39, q4 = x5 +151x4 +48x3 +13x2 +164x+145,
we obtain the shadow images of size 160× 256 (Figure 3). Also, the size of the shadow images would be
196× 256 if the irreducible polynomials were chosen of degree 6.

6. Security analysis

In this section, we show that any k−1 or fewer shadow images cannot reconstruct m×r secret image
S. Without loss of generality, suppose that last k−1 participants come together to reconstruct the secret
image S and that assuming they know how to read the pixels of shadow images. Assume that they want
to reconstruct the first partition of the secret image, without loss of generality, they first generate the
shadow polynomials v1,n−k+2, v1,n−k+3, . . . , v1,n by using the first partitions of the shadow images and
the secret polynomial r1 (x) corresponding to these shadow polynomials is computed by using CRT such
that deg (r1 (x)) < α where α = deg (qn−k+2qn−k+3 . . . qn). Assume that r1 (x) has the maximum degree,
i.e., deg (r1 (x)) = α− 1 and secret polynomial of the first partition of secret image s1 (x) has minimum
degree, i.e., deg (s1 (x)) = α + 1. It is easily seen that s1 (x) = r1 (x) + γ1 (x) (qn−k+2qn−k+3 · · · qn)
(mod p) for some γ1 (x) ∈ GF (p), where p is either 251, 256 or 257. This means that the probability
of finding the right polynomial is 1/p2 at the best. Since, the secret image S has m × r/s partitions,
the probability of reconstruction the right image is

(
1/p2

)m×r/s at the best. For the given example, the
probability of obtaining the right image is

(
1

2514

)256×32 ≈
(
1
2

)261212. Furthermore, we assume that the
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Figure 3: (a) 256× 256 Secret Image S; (b) 160× 256 Shadow Images S1, S2, S3, S4

person who wants to reconstruct the secret image knows the size of partition of shadow images and secret
image. If an unauthorized person does not hold into this information, then the problem becomes more
infeasible to solve.

It is clear that, as a special case of our construction, if we choose the degrees of polynomials qi as m
and the secret polynomial km− 1, then our construction and [17] have the same security level.

We present some results of another example where the secret image S is chosen as a 512 × 512
pixels Pepper image. The histograms of the original picture and the shares are provided in Figure 4.
It is observed that the shares have a very uniform histograms. We would like to point out that getting
uniformly distributed encrypted images is a problem by itself and some other techniques besides are
used in order to be successful ([7, 15]). Here, we do not employ additional tools in order to get this
achievement.

Also we have computed the entropy of the original image and the shares S1, S2, S3 and S4 as 7.5937,
7.9700, 7.9700, 7.9701, 7.9702 respectively. The last four evaluations that correspond to the shares
are close to 8 which point to a good entropy level. Further, the Structural Similarity Index Measure
(SSIM)[20] is applied between the shares that solve the problem (we recall that two of them solve the
original image) and the original image and these results are given in Table 1. The results in Table 1 show
that SSIM is close to zero which also gives a promising result.
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Figure 4: Histogram of 512× 512 Original Image (OI); Histograms of 256× 512 Shadow Images
S1, S2, S3, S4 respectively

Share Images SSIM

S1 and S2 −2.6959× 10−04

S1 and S3 −3.2801× 10−04

S1 and S4 −7.0751× 10−05

S2 and S3 2.7211× 10−04

S2 and S4 5.2297× 10−04

S3 and S4 5.2318× 10−04

Table 1: SSIM of shares and the original image.

We present the performance comparison between these three algorithms over the above example
graphically (Figure 2). The graph shows the elapsed time of the secret sharing process over the various
finite fields. (A 2.5 GHz processor and 8.00 GB RAM standard computer over MATLAB R2015b is
used.) As seen, the performance over GF (256) is slower than the other fields. This is due to the algebraic
manipulations over the extension field. On the other hand, there is no meaningful difference between the

158



I. Ozbek et al. / J. Algebra Comb. Discrete Appl. 6(3) (2019) 147–161

Figure 5: Elapsed time of secret sharing process over the various fields

Table 2: Comparison of Secret Image Sharing Methods

SIS Entropy Size Needing
S1 S2 S3 S4

SC 7.8942 7.8942 7.8942 7.8942 256× 512 PRN Padding
TL 7.9080 7.9655 7.9624 7.9696 256× 512 Permutation
OTS 7.9700 7.9700 7.9701 7.970 256× 512 No Need

other two prime fields and algorithms are faster compared to the extension field GF (256).

7. A comparison with other schemes

We show the efficiency of our scheme (OTS) by comparing it with the threshold secret image sharing
(SIS) schemes introduced in [13] (SC) and [17] (TL). The entropies and sizes of shadow images are given
in Table 2. The entropies of shadow images constructed by our scheme are closer to 8 which indicates the
reliable security of the system, despite our scheme does not need any permutation or random numbers
padding. Without applying a permutation, the original image is still perceptible by naked eye after (2,4)
secret image sharing using the scheme of [17]. We also derive the same security level with [17] without
using a permutation which is also required to be shared as a secret. The sizes of the shadow images are
all half of the size of the original image for given applications. However, as distinct from others, the sizes
of the shadow images can differ in our scheme. Further, by waiving the scheme to be threshold, we can
improve the flexibility of the system and discriminate the participants for authorization as shown in the
next illustrative example. By choosing four irreducible polynomials q1 = x6+10x5+75x4+23x3+64x+3,
q2 = 5x2 + 3, q3 = 215x2 + 157 and q4 = x6 + 101x5 + 250x4 + 123x3 + 99x+ 231, we obtain the shadow
images of sizes 196 × 256, 64 × 256, 64 × 256 and 196 × 256 respectively (Figure 6). Also, a shadow
image would be of size 160× 256 for an irreducible polynomial of degree 5 or 96× 256 for an irreducible
polynomial of degree 3. The shadow images S2 and S3 cannot reconstruct the secret image S, for instance.

On the other hand, the scheme given in [13] is not as flexible as our scheme. For instance, 512× 512
pixels gray color image forces us to choose d as a power of 2 and hence qis which are smaller than 255 as
given in the example forces us to choose d = 8, in order to design a (2,4) threshold scheme. Therefore,
the sizes of shadow images will be the same as the original image. Besides, the choice of qis are not
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(a)

(b)

Figure 6: Secret Image S (a) and Shadow Images S1 of size 196× 256, S2 of size 64× 256, S3 of size
64× 256 and S4 of size 196× 256 respectively (b)

so independent for a secret image sharing since the pixel values of an image are determined in a fixed
spectrum. Further, the histograms of shadow images may give an information about qis.

8. Conclusion

In this study, we generalize Mignotte’s scheme over Euclidean domains and present a new threshold
secret image sharing. We show that Mignotte’s generalized construction over Gaussian integers has higher
security level than Mignotte’s construction over integers. We also give threshold secret image sharing
algorithms for primes p = 251, p = 257 and over Galois field GF (256). One of the advantages of these
algorithms is that there is no need to apply a permutation which needs to be known by all participants
permutation as in [17] or add a random value as in [13]. Unlike [17], in our scheme, one can choose
arbitrarily the number of pixels s which is the length of each partition that the secret image divided into,
providing that s divides r for an m × r secret image to construct (k, n) scheme and so the choice of k
which is the minimum number of participants who can reconstruct the secret is flexible. Unlike [13] and
[17], the sizes of the shadow images can differ and so this increases the applicability and the security. We
also show that finding the secret image for unauthorized person is an infeasible problem. Furthermore, in
[16] there is a restriction on the degree of the irreducible polynomials which narrows the selection choice
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of such polynomials to be applied. Here, we do not impose such a restriction which makes the scheme
more practical and secure. We finally realize our proposed method over an example which illustrates the
new algorithm.
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