On optimal linear codes of dimension 4^{*}

Research Article

Nanami Bono, Maya Fujii, Tatsuya Maruta

Abstract

In coding theory, the problem of finding the shortest linear codes for a fixed set of parameters is central. Given the dimension k, the minimum weight d, and the order q of the finite field \mathbb{F}_{q} over which the code is defined, the function $n_{q}(k, d)$ specifies the smallest length n for which an $[n, k, d]_{q}$ code exists. The problem of determining the values of this function is known as the problem of optimal linear codes. Using the geometric methods through projective geometry, we determine $n_{q}(4, d)$ for some values of d by constructing new codes and by proving the nonexistence of linear codes with certain parameters.

2010 MSC: 94B05, 94B27, 51E20
Keywords: Optimal linear codes, Griesmer bound, Geometric method

1. Introduction

We denote by \mathbb{F}_{q} the field of q elements. Let \mathbb{F}_{q}^{n} be the vector space of n-tuples over \mathbb{F}_{q}. An $[n, k, d]_{q}$ code \mathcal{C} is a k-dimensional subspace of \mathbb{F}_{q}^{n} with minimum weight $d=\min \{w t(c) \mid c \in \mathcal{C}, c \neq(0, \ldots, 0)\}$, where $w t(c)$ is the number of non-zero entries in the vector c. The weight distribution of \mathcal{C} is the list of integers A_{i} where A_{i} is the number of codewords of weight $i, 0 \leq i \leq n$. The weight distribution with $\left(A_{0}, A_{d}, \ldots\right)=(1, \alpha, \ldots)$ is also expressed as $0^{1} d^{\alpha} \ldots$. A fundamental problem in coding theory is to find $n_{q}(k, d)$, the minimum length n for which an $[n, k, d]_{q}$ code exists $[10,11]$. An $[n, k, d]_{q}$ code satisfies the inequality called the Griesmer bound $[8,10]$:

$$
n \geq g_{q}(k, d)=\sum_{i=0}^{k-1}\left\lceil d / q^{i}\right\rceil
$$

where $\lceil x\rceil$ denotes the smallest integer greater than or equal to x. The values of $n_{q}(k, d)$ are determined for all d only for some small values of q and k. For $k=3, n_{q}(3, d)$ is known for all d for $q \leq 9$ [1]. See

[^0][26] for the updated table of $n_{q}(k, d)$ for some small q and k. The following theorems give some known values of $n_{q}(4, d)$.

Theorem $1.1([21,25]) . n_{q}(4, d)=g_{q}(4, d)$ for $1 \leq d \leq q-2, q^{2}-2 q+1 \leq d \leq q^{2}-q, q^{3}-2 q^{2}+1 \leq d \leq$ $q^{3}-2 q^{2}+q, q^{3}-q^{2}-q+1 \leq d \leq q^{3}+q^{2}-q, 2 q^{3}-5 q^{2}+1 \leq d \leq 2 q^{3}-5 q^{2}+3 q$ and any $d \geq 2 q^{3}-3 q^{2}+1$ for all q.

Theorem $1.2([18,21,25]) . n_{q}(4, d)=g_{q}(4, d)+1$ for the following d and q :
(a) $q^{2}-q+1 \leq d \leq q^{2}-1$ with $q \geq 3$,
(b) $q^{3}-2 q^{2}-q+1 \leq d \leq q^{3}-2 q^{2}-\lfloor(q+1) / 2\rfloor$ with $q \geq 7$,
(c) $2 q^{3}-3 q^{2}-q+1 \leq d \leq 2 q^{3}-3 q^{2}$ with $q \geq 4$,
(d) $2 q^{3}-3 q^{2}-2 q+1 \leq d \leq 2 q^{3}-3 q^{2}-q$ with $q \geq 5$.

Our main results are the following theorems.
Theorem 1.3. $n_{q}(4, d)=g_{q}(4, d)$ for $2 q^{3}-4 q^{2}+1 \leq d \leq 2 q^{3}-4 q^{2}+2 q$ for all q.
Theorem 1.4. $n_{q}(4, d)=g_{q}(4, d)+1$ for the following d and q :
(a) $2 q^{3}-3 q^{2}-3 q+1 \leq d \leq 2 q^{3}-3 q^{2}-2 q$ with $q \geq 7$,
(b) $2 q^{3}-4 q^{2}-3 q+1 \leq d \leq 2 q^{3}-4 q^{2}$ with $q \geq 7$,
(c) $2 q^{3}-5 q^{2}-q+1 \leq d \leq 2 q^{3}-5 q^{2}$ with $q \geq 7$.

We also tackle the problem to determine $n_{8}(4, d)$ for all d as a continuation of $[14,16,24]$. The problem to determine $n_{8}(4, d)$ for all d has been still open for the 447 values of d, see [26]. We determine $n_{8}(4, d)$ for 32 values of d and give new lower or upper bounds of $n_{8}(4, d)$ for 12 values of d as follows.

Theorem 1.5. (a) $n_{8}(4, d)=g_{8}(4, d)+1$ for $d=381-384,574,633-638,690-701,745-749,809-812$.
(b) $n_{8}(4, d) \leq g_{8}(4, d)+1$ for $d=133,134,145,194$.
(c) $g_{8}(4, d)+1 \leq n_{8}(4, d) \leq g_{8}(4, d)+2$ for $d=173-176,178,179,247,248$.

Remark 1.6. (a) From Theorem 1.4 (a), the problem to determine $n_{q}(4, d)$ for $d=2 q^{3}-3 q^{2}-3 q+1$ is still open only for $q=5$, see [26].
(b) The nonexistence of a $\left[g_{q}(4, d), 4, d\right]_{q}$ code for $d=2 q^{3}-r q^{2}-q+1$ for $3 \leq r \leq q-q / p, q=p^{h}$ with p prime, is proved in [19]. We conjecture that a $\left[g_{q}(4, d), 4, d\right]_{q}$ code for $\bar{d}=2 q^{3}-r q^{2}-q+1$ with $r=q-q / p-1$ does not exist for non-prime $q \geq 8$, which is valid for $q=8,9$ by Theorem 1.5 and [17].
(c) We conjecture that $n_{q}(4, d)=g_{q}(4, d)+1$ for $q^{3}-2 q^{2}-q+1 \leq d \leq q^{3}-2 q^{2}$ for all $q \geq 3$. To prove this, we need to show the existence of $a\left[g_{q}(4, d)+1,4, d\right]_{q}$ code for $d=q^{3}-2 q^{2}$ by Theorem 1.2 (b). This is already known for $q=3,4,5$ and is also valid for $q=8$ by Theorem 1.5.

We recall geometric methods through projective geometry and preliminary results in Section 2. We prove Theorem 1.3 and some upper bounds on $n_{q}(4, d)$ in Theorems 1.4 and 1.5 in Section 3. The proofs of Theorems 1.4 and 1.5 are completed by the nonexistence of some Griesmer codes, which are given in Section 4.

2. Geometric methods

In this section, we give geometric methods to construct new codes or to prove the nonexistence of codes with certain parameters. We denote by $\operatorname{PG}(r, q)$ the projective geometry of dimension r over \mathbb{F}_{q}. A j-flat is a projective subspace of dimension j in $\mathrm{PG}(r, q)$. The 0-flats, 1-flats, 2-flats, ($r-2$)-flats and $(r-1)$-flats are called points, lines, planes, secundums and hyperplanes, respectively. We denote by θ_{j} the number of points in a j-flat, i.e., $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$.

Let \mathcal{C} be an $[n, k, d]_{q}$ code having no coordinate which is identically zero. The columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma=\operatorname{PG}(k-1, q)$ denoted by $\mathcal{M}_{\mathcal{C}}$. We see linear codes from this geometrical point of view. A point P in Σ is called an i-point if it has multiplicity $m_{\mathcal{C}}(P)=i$ in $\mathcal{M}_{\mathcal{C}}$. Denote by γ_{0} the maximum multiplicity of a point from Σ in $\mathcal{M}_{\mathcal{C}}$ and let C_{i} be the set of i-points in $\Sigma, 0 \leq i \leq \gamma_{0}$. We denote by $\Delta_{1}+\cdots+\Delta_{s}$ the multiset consisting of the s sets $\Delta_{1}, \ldots, \Delta_{s}$ in Σ. We write $s \Delta$ for $\Delta_{1}+\cdots+\Delta_{s}$ when $\Delta_{1}=\cdots=\Delta_{s}$. Then, $\mathcal{M}_{\mathcal{C}}=\sum_{i=1}^{\gamma_{0}} i C_{i}$. For any subset S of Σ, we denote by $\mathcal{M}_{\mathcal{C}}(S)$ the multiset $\left\{m_{\mathcal{C}}(P) P \mid P \in S\right\}$. The multiplicity of S with respect to \mathcal{C}, denoted by $m_{\mathcal{C}}(S)$, is defined as the cardinality of $\mathcal{M}_{\mathcal{C}}(S)$, i.e.,

$$
m_{\mathcal{C}}(S)=\sum_{P \in S} m_{\mathcal{C}}(P)=\sum_{i=1}^{\gamma_{0}} i \cdot\left|S \cap C_{i}\right|,
$$

where $|T|$ denotes the number of elements in a set T. Then we obtain the partition $\Sigma=\bigcup_{i=0}^{\gamma_{0}} C_{i}$ such that $n=m_{\mathcal{C}}(\Sigma)$ and

$$
n-d=\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\}
$$

where \mathcal{F}_{j} denotes the set of j-flats in Σ. Such a partition of Σ is called an $(n, n-d)$-arc of Σ. Conversely an $(n, n-d)$-arc of Σ gives an $[n, k, d]_{q}$ code in the natural manner. A line l with $t=m_{\mathcal{C}}(l)$ is called a t-line. A t-plane, a t-hyperplane and so on are defined similarly. For an m-flat Π in Σ we define

$$
\gamma_{j}(\Pi)=\max \left\{m_{\mathcal{C}}(\Delta) \mid \Delta \subset \Pi, \Delta \in \mathcal{F}_{j}\right\}, 0 \leq j \leq m
$$

Let $\lambda_{s}(\Pi)$ be the number of s-points in Π. We denote simply by γ_{j} and by λ_{s} instead of $\gamma_{j}(\Sigma)$ and $\lambda_{s}(\Sigma)$, respectively. It holds that $\gamma_{k-2}=n-d, \gamma_{k-1}=n$. When \mathcal{C} is Griesmer, the values $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-3}$ are also uniquely determined ([22]) as follows:

$$
\begin{equation*}
\gamma_{j}=\sum_{u=0}^{j}\left\lceil\frac{d}{q^{k-1-u}}\right\rceil \text { for } 0 \leq j \leq k-1 \tag{1}
\end{equation*}
$$

When $\gamma_{0}=2$, we obtain

$$
\begin{equation*}
\lambda_{2}=\lambda_{0}+n-\theta_{k-1} \tag{2}
\end{equation*}
$$

from $\lambda_{0}+\lambda_{1}+\lambda_{2}=\theta_{k-1}$ and $\lambda_{1}+2 \lambda_{2}=n$. Denote by a_{i} the number of i-hyperplanes in Σ. Note that

$$
\begin{equation*}
a_{i}=A_{n-i} /(q-1) \text { for } 0 \leq i \leq n-d \tag{3}
\end{equation*}
$$

The list of a_{i} 's is called the spectrum of \mathcal{C}. We usually use τ_{j} 's for the spectrum of a hyperplane of Σ to distinguish from the spectrum of \mathcal{C}. Simple counting arguments yield the following:

$$
\begin{align*}
& \sum_{i=0}^{\gamma_{k-2}} a_{i}=\theta_{k-1} \tag{4}\\
& \sum_{i=1}^{\gamma_{k-2}} i a_{i}=n \theta_{k-2} \tag{5}
\end{align*}
$$

$$
\begin{equation*}
\sum_{i=2}^{\gamma_{k-2}} i(i-1) a_{i}=n(n-1) \theta_{k-3}+q^{k-2} \sum_{s=2}^{\gamma_{0}} s(s-1) \lambda_{s} . \tag{6}
\end{equation*}
$$

When $\gamma_{0} \leq 2$, we get the following from (4)-(6):

$$
\begin{equation*}
\sum_{i=0}^{n-d-2}\binom{n-d-i}{2} a_{i}=\binom{n-d}{2} \theta_{k-1}-n(n-d-1) \theta_{k-2}+\binom{n}{2} \theta_{k-3}+q^{k-2} \lambda_{2} \tag{7}
\end{equation*}
$$

Lemma 2.1 ([17, 31]). Put $\epsilon=(n-d) q-n$ and $t_{0}=\lfloor(w+\epsilon) / q\rfloor$, where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x. Let Π be a w-hyperplane through a t-secundum δ. Then $t \leq(w+\epsilon) / q$ and the following hold.
(a) $a_{w}=0$ if an $\left[w, k-1, d_{0}\right]_{q}$ code with $d_{0} \geq w-t_{0}$ does not exist.
(b) $\gamma_{k-3}(\Pi)=t_{0}$ if an $\left[w, k-1, d_{1}\right]_{q}$ code with $d_{1} \geq w-t_{0}+1$ does not exist.
(c) Let c_{j} be the number of j-hyperplanes through δ other than Π. Then $\sum_{j} c_{j}=q$ and

$$
\begin{equation*}
\sum_{j}\left(\gamma_{k-2}-j\right) c_{j}=w+\epsilon-q t . \tag{8}
\end{equation*}
$$

(d) $A \gamma_{k-2}$-hyperplane with spectrum $\left(\tau_{0}, \ldots, \tau_{\gamma_{k-3}}\right)$ satisfies $\tau_{t}>0$ if $w+\epsilon-q t<q$.
(e) If any γ_{k-2}-hyperplane has no t_{0}-secundum, then $m_{\mathcal{C}}(\Pi) \leq t_{0}-1$.

An $[n, k, d]_{q}$ code is called m-divisible if all codewords have weights divisible by an integer $m>1$.
Lemma 2.2 ([31]). Let \mathcal{C} be an m-divisible $[n, k, d]_{q}$ code with $q=p^{h}$, p prime, whose spectrum is

$$
\left(a_{n-d-(w-1) m}, a_{n-d-(w-2) m}, \ldots, a_{n-d-m}, a_{n-d}\right)=\left(\alpha_{w-1}, \alpha_{w-2}, \ldots, \alpha_{1}, \alpha_{0}\right)
$$

where $m=p^{r}$ for some $1 \leq r<h(k-2)$ satisfying $\lambda_{0}>0$ and

$$
\begin{equation*}
\bigcap_{H \in \mathcal{F}_{k-2}, m_{\mathcal{C}}(H)<n-d} H=\emptyset \tag{9}
\end{equation*}
$$

Then there exists a t-divisible $\left[n^{*}, k, d^{*}\right]_{q}$ code \mathcal{C}^{*} with $t=q^{k-2} / m, n^{*}=\sum_{j=0}^{w-1} j \alpha_{j}=n t q-\frac{d}{m} \theta_{k-1}$, $d^{*}=((n-d) q-n) t$ whose spectrum is

$$
\left(a_{n^{*}-d^{*}-\gamma_{0} t}, a_{n^{*}-d^{*}-\left(\gamma_{0}-1\right) t}, \ldots, a_{n^{*}-d^{*}-t}, a_{n^{*}-d^{*}}\right)=\left(\lambda_{\gamma_{0}}, \lambda_{\gamma_{0}-1}, \ldots, \lambda_{1}, \lambda_{0}\right)
$$

\mathcal{C}^{*} is called a projective dual of \mathcal{C}, see also [4] and [11]. The condition (9) is needed to guarantee that \mathcal{C}^{*} has dimension k although it was missing in Lemma 5.1 of [31]. Note that a generator matrix for \mathcal{C}^{*} is given by considering $(n-d-j m)$-hyperplanes as j-points in the dual space Σ^{*} of Σ for $0 \leq j \leq w-1$ [31].

Example 2.3. Let \mathcal{C} be a $[16,5,9]_{3}$ code with generator matrix

$$
G=\left(\begin{array}{llllllllllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 1 & 2 & 2 & 2 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 1 & 0 & 2 & 2 & 0 & 0 & 1 & 0 & 2 & 2 & 2 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 2 & 0 & 2 & 2 & 1 & 0 & 1 & 1 & 0 & 2 & 1
\end{array}\right) .
$$

Then, the weight distribution of \mathcal{C} is $0^{1} 9^{116} 12^{114} 15^{12}$, and \mathcal{C} is 3-divisible. Hence, from (3), \mathcal{C} has spectrum $\left(a_{1}, a_{4}, a_{7}\right)=(6,57,58)$. In this case, $\mathcal{M}_{\mathcal{C}}$ is not a multiset but a set of 16 points of $\Sigma=\operatorname{PG}(4,3)$ corresponding to the columns of G, for $\gamma_{0}=1$. Considering the $(7-3 j)$-hyperplanes as j-points in the dual space Σ^{*} of Σ for $j=0,1,2$, one can get a 9-divisible $[69,5,45]_{3}$ code \mathcal{C}^{*}. Actually, $[69,5,45]_{3}$ codes are unique up to equivalence, see [5] for the detail.

Lemma 2.4 ([27]). Let \mathcal{C} be an $[n, k, d]_{q}$ code and let $\cup_{i=0}^{\gamma_{0}} C_{i}$ be the partition of $\Sigma=\operatorname{PG}(k-1, q)$ obtained from \mathcal{C}. If $\cup_{i \geq 1} C_{i}$ contains a t-flat Δ and if $d>q^{\bar{t}}$, then there exists an $\left[n-\theta_{t}, k, d^{\prime}\right]_{q}$ code \mathcal{C}^{\prime} with $d^{\prime} \geq d-q^{t}$.

The punctured code \mathcal{C}^{\prime} in Lemma 2.4 can be constructed from \mathcal{C} by removing the t-flat Δ from the multiset $\mathcal{M}_{\mathcal{C}}$. We denote the resulting multiset by $\mathcal{M}_{\mathcal{C}}-\Delta$. The method to construct new codes from a given $[n, k, d]_{q}$ code by deleting the coordinates corresponding to some geometric object in $\mathrm{PG}(k-1, q)$ is called geometric puncturing, see [25].

Lemma 2.5 ([3]). Let \mathcal{C}_{1} be an $\left[n_{1}, k, d_{1}\right]_{q}$ code containing a codeword of weight $d_{1}+m$ with $m>0$ and let \mathcal{C}_{2} be an $\left[n_{2}, k-1, d_{2}\right]_{q}$ code. Then, adding $\mathcal{M}_{\mathcal{C}_{2}}$ to an $\left(n_{1}-d_{1}-m\right)$-hyperplane for \mathcal{C}_{1} gives an $\left[n_{1}+n_{2}, k, d\right]_{q}$ code with $d=d_{1}+m$ if $m<d_{2}$ and $d=d_{1}+d_{2}$ if $m \geq d_{2}$.

An $[n, k, d]_{q}$ code with generator matrix G is called extendable if there exists a vector $h \in \mathbb{F}_{q}^{k}$ such that the extended matrix $\left[G h^{\mathrm{T}}\right]$ generates an $[n+1, k, d+1]_{q}$ code. The following theorems will be applied to prove the extendability of codes with certain parameters in Sections 4 and 5 .

Theorem 2.6 ([23],,[32]). Let \mathcal{C} be an $[n, k, d]_{q}$ code with $q \geq 5, d \equiv-2(\bmod q), k \geq 3$. Then \mathcal{C} is extendable if $A_{i}=0$ for all $i \not \equiv 0,-1,-2(\bmod q)$.

Theorem 2.7 ([30]). Let \mathcal{C} be an $[n, k, d]_{q}$ code with $g c d(d, q)=1$. Then \mathcal{C} is extendable if $\Sigma_{i \neq n, n-d}(\bmod q) a_{i}<q^{k-2}$.

Theorem 2.8 ([29]). Let \mathcal{C} be an $[n, k, d]_{q}$ code with $q=2^{h}, h \geq 3, d$ odd, $k \geq 3$. Then \mathcal{C} is extendable if $A_{i}=0$ for all $i \not \equiv 0, d(\bmod q / 2)$.

A set of s lines in $\mathrm{PG}(2, q)$ is called an s-arc of lines if no three of which are concurrent. An f multiset \mathcal{F} in $\mathrm{PG}(2, q)$ is an (f, m)-minihyper if every line meets \mathcal{F} in at least m points and if some line meets \mathcal{F} in exactly m points with multiplicity.
Lemma 2.9 ([20]). For $x=\frac{q}{2}+1$ with q even, every $(x(q+1), x)$-minihyper in $P G(2, q)$ is either the sum of x lines or the union of the lines forming a $(q+2)$-arc of lines.

3. Construction results

In this section, we prove Theorems 1.3, 1.4(b) and a part of Theorem 1.5.
Lemma 3.1. There exist $\left[n=2 q^{3}-2 q^{2}+1-t(q+1), 4,2 q^{3}-4 q^{2}+2 q-t q\right]_{q}$ codes for $0 \leq t \leq q-1$ for $q \geq 7$.

Proof. For $q \geq 7$, let \mathcal{H} be a hyperbolic quadric in $\operatorname{PG}(3, q)$, see [12] for hyperbolic quadric. Let l_{1} and l_{2} be two skew lines contained in \mathcal{H}. Take two skew lines l_{3} and l_{4} contained in \mathcal{H} meeting l_{1}, l_{2} and four points P_{1}, \ldots, P_{4} of \mathcal{H} so that $l_{1} \cap l_{3}=P_{1}, l_{1} \cap l_{4}=P_{2}, l_{2} \cap l_{3}=P_{3}, l_{2} \cap l_{4}=P_{4}$. Let $l_{5}=\left\langle P_{1}, P_{4}\right\rangle$, $l_{6}=\left\langle P_{2}, P_{3}\right\rangle$ and $\Delta_{i j}=\left\langle l_{i}, l_{j}\right\rangle$, where $\left\langle\chi_{1}, \chi_{2}, \cdots\right\rangle$ denotes the smallest flat containing $\chi_{1}, \chi_{2}, \cdots$. We set

$$
C_{0}=l_{1} \cup l_{2} \cup \cdots \cup l_{6}, \quad C_{1}=\left(\Delta_{13} \cup \Delta_{14} \cup \Delta_{23} \cup \Delta_{24} \cup \mathcal{H}\right) \backslash C_{0}
$$

and $C_{2}=\operatorname{PG}(3, q) \backslash\left(C_{0} \cup C_{1}\right)$. Then $\lambda_{0}=6 q-2, \lambda_{1}=5 q^{2}-10 q+5, \lambda_{2}=q^{3}-4 q^{2}+5 q-2$, where $\lambda_{i}=\left|C_{i}\right|$, and the multiset $C_{1}+2 C_{2}$ gives a Griesmer $\left[2 q^{3}-3 q^{2}+1,4,2 q^{3}-5 q^{2}+3 q\right]_{q}$ code, say \mathcal{C}. This construction is due to [16].

Next, take a line l contained in \mathcal{H} such that l is skew to l_{3} and l_{4}. Let $l \cap l_{1}=Q_{1}, l \cap l_{2}=Q_{2}$ and let $\delta_{1}, \ldots, \delta_{q-1}$ be the planes through l other than $\left\langle l, l_{1}\right\rangle,\left\langle l, l_{2}\right\rangle$. Then each δ_{i} meets l_{1} and l_{2} in the points Q_{1} and Q_{2}, respectively, and meets l_{3}, \ldots, l_{6} in some points out of l. Hence, we can take a line m_{i} in δ_{i} with $m_{i} \cap C_{0}=\emptyset$ for $1 \leq i \leq q-1$ such that $m_{1} \cap l, \cdots, m_{q-1} \cap l$ are distinct points. Now, take an elliptic quadric \mathcal{E} and let \mathcal{E}^{\prime} be the projection of \mathcal{E} from a point $R \in \mathcal{E} \backslash \Delta_{13}$ on to Δ_{13}. Since $m_{\mathcal{C}}\left(\Delta_{13}\right)=q^{2}-2 q+1$, it follows from Lemma 2.5 that the multiset $\mathcal{M}^{\prime}=\mathcal{M}_{\mathcal{C}}+\mathcal{E}^{\prime}$ gives a $\left[2 q^{3}-2 q^{2}+1,4,2 q^{3}-4 q^{2}+2 q\right]_{q}$ code, say \mathcal{C}^{\prime}. Applying Lemma 2.4 by deleting t of the lines m_{1}, \ldots, m_{q-1}, we get an $\left[n=2 q^{3}-2 q^{2}+1-t \theta_{1}, 4, d=2 q^{3}-4 q^{2}+2 q-t q\right]_{q}$ code.

The code constructed by Lemma 3.1 is Griesmer for $t=0,1$ and the length satisfies $n=g_{q}(4, d)+1$ for $2 \leq t \leq q-1$. Hence, Theorem 1.3 follows from the existence of Griesmer codes with $d=2 q^{3}-4 q^{2}+$ $2 q, 2 q^{3}-4 q^{2}+3 q$ by puncturing. We also have that $n_{q}(4, d) \leq g_{q}(4, d)+1$ for $2 q^{3}-5 q^{2}+2 q+1 \leq d \leq$ $2 q^{3}-4 q^{2}-2 q$. Since Theorem $1.4(2)$ is already known for $q \geq 9$ [19], it suffices to show the nonexistence of Griesmer codes for $d=2 q^{3}-4 q^{2}-3 q+1$ for $q=7,8$, which is given in Section 4, see Lemma 4.1.

Next, we give a method to construct good codes by some orbits of a given projectivity in $\mathrm{PG}(k-1, q)$. For a non-zero element $\alpha \in \mathbb{F}_{q}$, let $R=\mathbb{F}_{q}[x] /\left(x^{N}-\alpha\right)$ be the ring of polynomials over \mathbb{F}_{q} modulo $x^{N}-\alpha$. We associate the vector $\left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in \mathbb{F}_{q}^{N}$ with the polynomial $a(x)=\sum_{i=0}^{N-1} a_{i} x^{i} \in R$. For $\mathbf{g}=\left(g_{1}(x), \ldots, g_{m}(x)\right) \in R^{m}$,

$$
C_{\mathbf{g}}=\left\{\left(r(x) g_{1}(x), \ldots, r(x) g_{m}(x)\right) \mid r(x) \in R\right\}
$$

is called the 1-generator quasi-twisted (QT) code with generator \mathbf{g}. $C_{\mathbf{g}}$ is usually called quasi-cyclic (QC) when $\alpha=1$. When $m=1, C_{\mathbf{g}}$ is called α-cyclic or pseudo-cyclic or constacyclic. All of these codes are generalizations of cyclic codes $(\alpha=1, m=1)$. Take a monic polynomial $g(x)=x^{k}-\sum_{i=0}^{k-1} a_{i} x^{i}$ in $\mathbb{F}_{q}[x]$ dividing $x^{N}-\alpha$ with non-zero $\alpha \in \mathbb{F}_{q}$, and let T be the companion matrix of $g(x)$. Let τ be the projectivity of $\operatorname{PG}(k-1, q)$ defined by T. We denote by $\left[g^{n}\right]$ or by $\left[a_{0} a_{1} \cdots a_{k-1}^{n}\right.$] the $k \times n$ matrix $\left[P, T P, T^{2} P, \ldots, T^{n-1} P\right]$, where P is the column vector $(1,0,0, \ldots, 0)^{\mathrm{T}}\left(h^{\mathrm{T}}\right.$ stands for the transpose of a row vector h). Then $\left[g^{N}\right]$ generates an α^{-1}-cyclic code. Hence one can construct a cyclic or pseudo-cyclic code from an orbit of τ. For non-zero vectors $P_{2}^{\mathrm{T}}, \ldots, P_{m}^{\mathrm{T}} \in \mathbb{F}_{q}^{k}$, we denote the matrix

$$
\left[P, T P, T^{2} P, \ldots, T^{n_{1}-1} P ; P_{2}, T P_{2}, \ldots, T^{n_{2}-1} P_{2} ; \cdots ; P_{m}, T P_{m}, \ldots, T^{n_{m}-1} P_{m}\right]
$$

by $\left[g^{n_{1}}\right]+P_{2}^{n_{2}}+\cdots+P_{m}^{n_{m}}$. Then, the matrix $\left[g^{N}\right]+P_{2}^{N}+\cdots+P_{m}^{N}$ defined from m orbits of τ of length N generates a QC or QT code, see [28]. It is shown in [28] that many good codes can be constructed from orbits of projectivities.

Example 3.2. Take $g(x)=1+x+x^{2}+x^{4} \in \mathbb{F}_{2}[x]$ and a point $Q(1,0,0,1) \in \mathrm{PG}(3,2)$. Then, the matrix $\left[g^{7}\right]$ generates a cyclic Hamming $[7,4,3]_{2}$ code and the matrix

$$
\left[g^{7}\right]+Q^{7}=\left(\begin{array}{cccccccccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

generates a $Q C[14,4,7]_{2}$ code with weight distribution $0^{1} 7^{8} 8^{7}$.
Let $\mathbb{F}_{8}=\left\{0,1, \alpha, \alpha^{2}, \ldots, \alpha^{6}\right\}$, with $\alpha^{3}=\alpha+1$. For simplicity, we denote $\alpha, \ldots, \alpha^{6}$ by $2,3, \ldots, 7$ so that $\mathbb{F}_{8}=\{0,1,2, \ldots, 7\}$. It sometimes happens that QC or QT codes are divisible or can be extended to divisible codes.

Lemma 3.3. There exists a $[440,4,384]_{8}$ code.

Proof. Let \mathcal{C} be the QC $[40,4,32]_{8}$ code with generator matrix $\left[1111^{5}\right]+0121^{5}+0124^{5}+0141^{5}+$ $0165^{5}+0171^{5}+1035^{5}+1053^{5}$. Then \mathcal{C} is a 4 -divisible code with weight distribution $0^{1} 32^{1155} 36^{2800} 40^{140}$. Applying Lemma 2.2, as the projective dual of \mathcal{C}, one can get a 16 -divisible $[440,4,384]_{8}$ code \mathcal{C}^{*} with weight distribution $0^{1} 384^{3815} 400^{280}$.

Lemma 3.4. There exist codes with parameters $[156,4,134]_{8},[169,4,145]_{8},[208,4,179]_{8},[225,4,194]_{8}$ and $[286,4,248]_{8}$.

Proof. The QC codes with generator matrices

$$
\begin{aligned}
& {\left[1464^{13}\right]+1004^{13}+1504^{13}+1524^{13}+1625^{13}+1145^{13}+1272^{13}+1643^{13}+1126^{13}} \\
& +1064^{13}+1144^{13}+1017^{13} \\
& {\left[1464^{13}\right]+1004^{13}+1504^{13}+1524^{13}+1523^{13}+1427^{13}+1471^{13}+1445^{13}+1643^{13}} \\
& +1126^{13}+1062^{13}+1510^{13}+1017^{13}, \\
& {\left[1464^{13}\right]+1004^{13}+1504^{13}+1524^{13}+1523^{13}+1625^{13}+1471^{13}+1445^{13}+1232^{13}} \\
& +1126^{13}+1062^{13}+1401^{13}+1752^{13}+1731^{13}+1510^{13}+1017^{13}, \\
& {\left[1001^{15}\right]+1004^{15}+1504^{15}+1523^{15}+1423^{15}+1133^{15}+1757^{15}+1277^{15}+1232^{15}} \\
& +12773^{15}+1036^{15}+1307^{15}+1707^{15}+1265^{15}+1144^{15}, \\
& {\left[1464^{13}\right]+1004^{13}+1504^{13}+1524^{13}+1523^{13}+1423^{13}+1625^{13}+1427^{13}+1465^{13}} \\
& +1133^{13}+1232^{13}+1160^{13}+1231^{13}+1330^{13}+1062^{13}+1265^{13}+1144^{13}+1740^{13} \\
& +1050^{13}+1274^{13}+1731^{13}+1017^{13}
\end{aligned}
$$

give the desired codes with the following weight distributions

$$
\begin{aligned}
& 0^{1} 134^{1820} 136^{1183} 138^{364} 140^{364} 144^{182} 148^{182}, \\
& 0^{1} 145^{1365} 146^{637} 147^{546} 148^{364} 149^{182} 150^{273} 152^{273} 154^{182} 156^{91} 157^{91} 160^{91}, \\
& 0^{1} 179^{1092} 180^{637} 181^{728} 182^{546} 184^{728} 193^{364}, \\
& 0^{1} 194^{1785} 196^{1050} 198^{420} 200^{210} 202^{105} 204^{210} 206^{210} 208^{105}, \\
& 0^{1} 248^{3003} 256^{1001} 264^{91},
\end{aligned}
$$

respectively.
Since it is known that $g_{8}(4, d)+1 \leq n_{8}(4, d) \leq g_{8}(4, d)+2$ for $381 \leq d \leq 384$, Theorem 1.5 (a) for $381 \leq d \leq 384$, Theorem 1.5 (b) and (c) for $d=178,179,247,248$ follow from Lemmas 3.3 and 3.4.

4. Nonexistence of some Griesmer codes

Note that one can get an $[n-1, k, d-1]_{q}$ code from a given $[n, k, d]_{q}$ code by puncturing and that the nonexistence of an $[n-1, k, d-1]_{q}$ code implies the nonexistence of an $[n, k, d]_{q}$ code. Hence, to prove (a) and (b) of Theorem 1.4, it suffices to show the following.

Lemma 4.1. There exists no $\left[g_{q}(4, d), 4, d\right]_{q}$ code for $d=2 q^{3}-s q^{2}-3 q+1$ with $s=3,4$ for $q \geq 7$.
Lemma 4.1 was proved for $q \geq 9$ in [19]. It follows from Theorem 1.5(a) that Lemma 4.1 is valid for $q=8$, see Lemmas 4.14 and 4.17 in this section. We can also prove Lemma 4.1 for $q=7$, but we omit the proof here because it is quite similar to the proof for $q=8$, see [6] for the detail. The existence of a $\left[g_{q}(4, d)+1,4, d\right]_{q}$ code for $d=2 q^{3}-3 q^{2}-2 q$ is obtained from the result in [15]. It is also known that $n_{q}(4, d)=g_{q}(4, d)+1$ for $2 q^{3}-5 q^{2}-q+1 \leq d \leq 2 q^{3}-5 q^{2}$ with $q \geq 7$ except fpr $q=8$ [18]. Hence, Theorem 1.4(c) follows from Theorem 1.5(a), see Lemma 4.12 below.

In this section, we prove that there exists no $\left[g_{8}(4, d), 4, d\right]_{8}$ code for $d=173,574,633,690,697,745$, 809, giving Theorem 1.5. $n_{8}(3, d)$ is already known for all d as follows, see [1, 7, 26].

Table 1. The spectra of some $[n, 3, d]_{8}$ codes.

parameters	possible spectra	reference
$[6,3,4]_{8}$	$\left(a_{0}, a_{1}, a_{2}\right)=(34,24,15)$	[14]
$[7,3,5]_{8}$	$\left(a_{0}, a_{1}, a_{2}\right)=(31,21,21)$	[14]
$[8,3,6]_{8}$	$\left(a_{0}, a_{1}, a_{2}\right)=(29,16,28)$	[14]
$[9,3,7]_{8}$	$\left(a_{0}, a_{1}, a_{2}\right)=(28,9,36)$	[14]
[10, 3, 8] ${ }_{8}$	$\left(a_{0}, a_{2}\right)=(28,45)$	[14]
[26, 3, 22] ${ }_{8}$	$\left(a_{0}, a_{2}, a_{3}, a_{4}\right)=(10,1,16,46)$	Lemma 4.3
[33, 3, 28] ${ }_{8}$	$\begin{aligned} & \left(a_{0}, a_{3}, a_{5}\right)=(9,16,48) \\ & \left(a_{0}, a_{1}, a_{4}, a_{5}\right)=(4,5,28,36) \\ & \left(a_{0}, a_{3}, a_{4}, a_{5}\right)=(6,10,18,39) \end{aligned}$	[16]
$[42,3,36]_{8}$	$\begin{aligned} & \left(a_{0}, a_{4}, a_{5}, a_{6}\right)=(4,6,24,39) \\ & \left(a_{0}, a_{3}, a_{5}, a_{6}\right)=(3,7,21,42) \\ & \left(a_{0}, a_{4}, a_{6}\right)=(3,21,49) \\ & \left(a_{0}, a_{2}, a_{4}, a_{6}\right)=(2,3,18,50) \end{aligned}$	[2]
[60, 3, 52] ${ }_{8}$	$\begin{aligned} & \left(a_{4}, a_{6}, a_{8}\right)=(3,16,54) \\ & \left(a_{0}, a_{4}, a_{7}, a_{8}\right)=(1,1,32,39) \\ & \left(a_{0}, a_{5}, a_{6}, a_{7}, a_{8}\right)=(1,1,3,27,41) \\ & \left(a_{0}, a_{6}, a_{7}, a_{8}\right)=(1,1,6,24,42) \end{aligned}$	[16]
$[61,3,53]_{8}$	$\begin{aligned} & \left(a_{0}, a_{5}, a_{7}, a_{8}\right)=(1,1,24,47) \\ & \left(a_{0}, a_{6}, a_{7}, a_{8}\right)=(1,3,21,48) \end{aligned}$	[16]
$[62,3,54]_{8}$	$\left(a_{0}, a_{6}, a_{7}, a_{8}\right)=(1,1,16,55)$	[16]
[63, 3, 55] ${ }_{8}$	$\left(a_{0}, a_{7}, a_{8}\right)=(1,9,63)$	[9]
$[64,3,56]_{8}$	$\left(a_{0}, a_{8}\right)=(1,72)$	[9]
[69, 3, 60] ${ }_{8}$	$\begin{aligned} & \left(a_{5}, a_{8}, a_{9}\right)=(1,32,40) \\ & \left(a_{6}, a_{7}, a_{8}, a_{9}\right)=(1,3,27,42) \\ & \left(a_{7}, a_{8}, a_{9}\right)=(6,24,43) \end{aligned}$	[9]
[70, 3, 61] ${ }_{8}$	$\begin{aligned} & \left(a_{6}, a_{8}, a_{9}\right)=(1,24,48) \\ & \left(a_{7}, a_{8}, a_{9}\right)=(3,21,49) \end{aligned}$	[9]
[71, 3, 62] ${ }_{8}$	$\left(a_{7}, a_{8}, a_{9}\right)=(1,16,46)$	[9]
[72, 3, 63] ${ }_{8}$	$\left(a_{8}, a_{9}\right)=(9,64)$	[9]
[73, 3, 64] ${ }_{8}$	$a_{9}=73$	[9]
[92, 3, 80] ${ }_{8}$	$\begin{aligned} & \left(a_{0}, a_{8}, a_{12}\right)=(1,9,63) \\ & \left(a_{4}, a_{12}\right)=(6,67) \\ & \left(a_{4}, a_{8}, a_{12}\right)=(1,10,62) \\ & \left(a_{8}, a_{12}\right)=(12,61) \end{aligned}$	[20]
[101, 3, 88] ${ }_{8}$	$\begin{aligned} & \left(a_{5}, a_{13}\right)=(5,68) \\ & \left(a_{9}, a_{13}\right)=(10,63) \end{aligned}$	[20]
[108, 3, 94] ${ }_{8}$	$\begin{aligned} & \left(a_{4}, a_{6}, a_{13}, a_{14}\right)=(1,3,16,53) \\ & \left(a_{5}, a_{6}, a_{12}, a_{13}, a_{14}\right)=(2,2,1,14,54) \\ & \left(a_{5}, a_{6}, a_{12}, a_{13}, a_{14}\right)=(1,3,1,15,53) \\ & \left(a_{6}, a_{12}, a_{13}, a_{14}\right)=(4,1,16,52) \\ & \left(a_{6}, a_{12}, a_{14}\right)=(4,9,60) \end{aligned}$	[16]

Theorem 4.2. $n_{8}(3, d)=g_{8}(3, d)+1$ for $d=13-16,29-32,37-40,43-48$ and $n_{8}(3, d)=g_{8}(3, d)$ for any other d.

Lemma 4.3. Every $[26,3,22]_{8}$ code has spectrum $\left(a_{0}, a_{2}, a_{3}, a_{4}\right)=(10,1,16,46)$.
Proof. Let \mathcal{C} be a $[26,3,22]_{8}$ code. By (1), $\gamma_{0}=1$ and $\gamma_{1}=4$. Since $\left(\gamma_{1}-\gamma_{0}\right) \theta_{1}+\gamma_{0}-2=26$, any t-line though a fixed 1 -point satisfies $t \geq \gamma_{1}-2=2$. Hence, there is no 1-line. From (4)-(6), we obtain $\left(a_{0}, a_{2}, a_{3}, a_{4}\right)=(s, 61-6 s, 8 s-64,76-3 s)$ with $8 \leq s \leq 10$. Let l_{1}, \ldots, l_{8} be 0 -lines. Then, $\mathcal{L}=\left\{l_{1}, \ldots, l_{s}\right\}$ forms an s-arc of lines, for $\left(\theta_{1}-3\right) \gamma_{1}<26$. Suppose $s=8$. Then, one can find a line l so that $\mathcal{L} \cup\{l\}$ forms a 9 -arc of lines since every 8 -arc is contained in a 10 -arc, see [13]. Since l meets l_{1}, \ldots, l_{8} in different points, l must be a 1-line, a contradiction. Similarly, we can rule out the case $s=9$. Hence, our assertion follows.
Lemma 4.4. There exists no $[199,4,173]_{8}$ code.
Proof. Let \mathcal{C} be a putative Griesmer $[199,4,173]_{8}$ code. Then, $\gamma_{0}=1, \gamma_{1}=4, \gamma_{2}=26$ from (1). By Lemma 4.3, the spectrum of a γ_{2}-plane Δ_{1} is $\left(\tau_{0}, \tau_{2}, \tau_{3}, \tau_{4}\right)=(10,1,16,46)$. An i-plane with a t-line satisfies

$$
\begin{equation*}
t \leq \frac{i+9}{8} \tag{10}
\end{equation*}
$$

by Lemma 2.1. We have $a_{1}=0$ from Lemma 2.1(e) since Δ_{1} has no 1 -line. If a 14 -plane δ exists, it follows from (10) that $\mathcal{M}(\delta)$ gives a $[14,3,12]_{8}$ code, which does not exist. In this way, using Theorem 4.2 and Lemma 2.1, one can get $a_{i}=0$ for all $i \notin\{0,7-10,15,23-26\}$. We refer to this procedure as the first sieve in the proofs of the nonexistence results. From (7), we get

$$
\begin{equation*}
\sum_{i \leq 24}\binom{26-i}{2} a_{i}=4259 \tag{11}
\end{equation*}
$$

Lemma 2.1(c) gives $\sum_{j} c_{j}=8$ and

$$
\begin{equation*}
\sum_{j}(26-j) c_{j}=w+9-8 t \tag{12}
\end{equation*}
$$

Suppose $a_{0}>0$. Then, $a_{0}=1$ and $a_{i}>0$ with $i>0$ implies $i \geq 23$. Setting $w=t=0$ in (12), the maximum possible contribution of c_{j} 's to the LHS of (11) is $\left(c_{23}, c_{26}\right)=(3,5)$. Hence we get $4259=$ (LHS of $(11)) \leq 9 \times 73+325=982$, which contradicts (11). Hence $a_{0}=0$.
Now, setting $w=26$ in (12), the maximum possible contribution of c_{j} 's to the LHS of (11) are $\left(c_{7}, c_{10}, c_{26}\right)=(1,1,6)$ for $t=0 ;\left(c_{7}, c_{26}\right)=(1,7)$ for $t=2 ;\left(c_{15}, c_{26}\right)=(1,7)$ for $t=3 ;\left(c_{23}, c_{26}\right)=(1,7)$ for $t=4$. Hence we get

$$
4259=(\text { LHS of }(11)) \leq 291 \times 10+171 \times 1+55 \times 16+3 \times 46=4099
$$

a contradiction. This completes the proof.
The following lemma is needed to prove the nonexistence of a $[657,4,574]_{8}$ code.
Lemma 4.5 ([24]). There exists no $[658,4,575]_{8}$ code.
Lemma 4.6 ([24]). The spectrum of $a[83,3,72]_{8}$ code satisfies $a_{i}=0$ for all i with $i \notin\{3,5,7,9,11\}$.
Lemma 4.7. There exists no $[657,4,574]_{8}$ code.

Proof. Let \mathcal{C} be a putative $[657,4,574]_{8}$ code. Using Theorem 4.2 and Lemmas 2.1 and 4.6, one can get $a_{i}=0$ for all $i \notin\{33,49,65-73,81-83\}$ by the first sieve. From (7), we get

$$
\begin{equation*}
\sum_{i \leq 81}\binom{83-i}{2} a_{i}=64 \lambda_{2}-2583 \tag{13}
\end{equation*}
$$

Lemma 2.1(c) gives $\sum_{j} c_{j}=8$ and

$$
\begin{equation*}
\sum_{j}(83-j) c_{j}=w+7-8 t \tag{14}
\end{equation*}
$$

Suppose $a_{72}>0$. From Table 1, the spectrum of a 72-plane is $\left(\tau_{8}, \tau_{9}\right)=(9,64)$. Setting $i=72$, the maximum possible contributions of c_{j} 's in (14) to the LHS of (13) are $\left(c_{68}, c_{83}\right)=(1,7)$ for $t=8$; $\left(c_{81}, c_{82}, c_{83}\right)=(3,1,4)$ for $t=9$. Hence we get

$$
64 \lambda_{2}-2583=(\text { LHS of }(13)) \leq(105 \times 1+0 \times 7) 9+(1 \times 3+0 \times 1+0 \times 4) 64+55=1192
$$

giving $\lambda_{2} \leq 58$. On the other hand, we have $\lambda_{2}=\lambda_{0}+72=72$ from (2), a contradiction. Hence $a_{72}=0$. Similarly, we can prove $a_{71}=a_{70}=a_{69}=a_{68}=0$. Applying Theorem 2.6, \mathcal{C} is extendable, which contradicts Lemma 4.5. This completes the proof.

As in the above proof, we often obtain a contradiction to rule out the existence of some i-plane by eliminating the value of λ_{2} using (7), (8) and the possible spectra for a fixed w-plane. We refer to this proof technique as " $\left(\lambda_{2}, w\right)$-ruling out method $\left(\left(\lambda_{2}, w\right)\right.$-ROM $)$ " in what follows.

Lemma 4.8. There exists no $[725,4,633]_{8}$ code.
Proof. Let \mathcal{C} be a putative Griesmer $[725,4,633]_{8}$ code. Then, $\gamma_{0}=2, \gamma_{1}=12, \gamma_{2}=92$ by (1). From Table 1 , the spectrum of a γ_{2}-plane Δ_{1} is one of the following:
(A) $\left(\tau_{0}, \tau_{8}, \tau_{12}\right)=(1,9,63)$ with $\lambda_{0}^{\prime}=9$,
(B) $\left(\tau_{4}, \tau_{12}\right)=(6,67)$ with $\lambda_{0}^{\prime}=15$,
(C) $\left(\tau_{4}, \tau_{8}, \tau_{12}\right)=(1,10,62)$ with $\lambda_{0}^{\prime}=5$,
(D) $\left(\tau_{8}, \tau_{12}\right)=(12,61)$ with $\lambda_{0}^{\prime}=3$,
where $\lambda_{0}^{\prime}=\lambda_{0}\left(\Delta_{1}\right)$. Using Theorem 4.2 and Lemma 2.1, one can get $a_{i}=0$ for all $i \notin\{0,21-28,53-64$, $69-73,85-92\}$ by the first sieve. From (7), we get

$$
\begin{equation*}
\sum_{i \leq 90}\binom{92-i}{2} a_{i}=64 \lambda_{2}-5315 \tag{15}
\end{equation*}
$$

Lemma 2.1(c) gives $\sum_{j} c_{j}=8$ and

$$
\begin{equation*}
\sum_{j}(92-j) c_{j}=w+11-8 t \tag{16}
\end{equation*}
$$

We first prove $a_{i}=0$ for $0 \leq i \leq 28$. Assume a t-plane δ_{t} with $0 \leq t \leq 28$ exists. Then, the multiset $\mathcal{M}_{\mathcal{C}}+\delta_{t}$ gives an $[N=798,4, D=697]_{8}$ code \mathcal{C}^{\prime} since $m_{\mathcal{C}^{\prime}}\left(\delta_{t}\right)=t+\theta_{2} \leq 28+73 \leq 101$ and since $N=n+\theta_{2}=725+73=798$ and $N-D=n-d+\theta_{1}=92+9=101$. This contradicts that a $[798,4,697]_{8}$ code does not exist by Lemma 4.12. Hence, $a_{i}=0$ for all $0 \leq i \leq 28$.

Since Δ_{1} has no 9 -line, we have $a_{73}=0$. We can prove $a_{i}=0$ for $i=72,71,70,69,64,63,62,61,60$ by $\left(\lambda_{2}, i\right)$-ROM using the possible spectra of an i-plane in Table 1.

Next, we prove $a_{i}=0$ for $53 \leq i \leq 59$. Suppose $a_{53}>0$ and let δ_{53} be a 53 -plane with spectrum $\left(\tau_{0}, \ldots, \tau_{8}\right)$. Then, we have

$$
\begin{equation*}
\sum_{i \leq 7}\binom{8-i}{2} \tau_{i}=83 \tag{17}
\end{equation*}
$$

Setting $w=53$ in (16), the maximum possible contribution of c_{j} 's to the left hand side of (15) are $\left(c_{53}, c_{85}, c_{88}, c_{92}\right)=(1,3,1,3)$ for $t=0 ;\left(c_{53}, c_{85}, c_{87}, c_{91}\right)=(1,1,1,5)$ for $t=1 ;\left(c_{53}, c_{89}, c_{91}\right)=(1,1,6)$ for $t=2 ;\left(c_{59}, c_{91}\right)=(1,7)$ for $t=3 ;\left(c_{85}, c_{88}, c_{92}\right)=(4,1,3)$ for $t=4 ;\left(c_{85}, c_{87}, c_{91}\right)=(2,1,5)$ for $t=5$; $\left(c_{85}, c_{89}, c_{91}\right)=(1,1,6)$ for $t=6 ; c_{91}=8$ for $t=7 ; c_{92}=8$ for $t=8$ since $c_{92}=0$ for $t=1,2,3,5,6,7$. Hence we get

$$
\begin{aligned}
64 \lambda_{2}-5315 & =(\text { LHS of }(15)) \\
& \leq 810 \tau_{0}+772 \tau_{1}+744 \tau_{2}+528 \tau_{3}+90 \tau_{4}+52 \tau_{5}+24 \tau_{6} \\
& <53 \times(17)=4399
\end{aligned}
$$

giving $\lambda_{2} \leq 151$. On the other hand, we have $\lambda_{2}=140+\lambda_{0} \geq 140+73-53 \geq 160$, a contradiction. Hence $a_{53}=0$. We can prove $a_{54}=a_{55}=a_{56}=a_{57}=a_{58}=a_{59}=0$ similarly, see [6] for the detail.

Now, we have $a_{i}=0$ for all $i<85$. Setting $w=92$, (16) has no solution for $t=0,4$. Hence every 92 -plane has spectrum (D). Then, we get a contradiction by ($\lambda_{2}, 92$)-ROM. This completes the proof.
Lemma 4.9. Let \mathcal{C} be a $[101,3,88]_{8}$ code and let $\Sigma=\mathrm{PG}(2,8)$. Then,
(A) \mathcal{C} has spectrum $\left(a_{5}, a_{13}\right)=(5,68)$ with $\lambda_{0}=10$ and $\mathcal{M}_{\mathcal{C}}=2 \Sigma-\left(l_{1}+\cdots+l_{5}\right)$, where $\left\{l_{1}, \ldots, l_{5}\right\}$ is a 5 -arc of lines; or
(B) \mathcal{C} has spectrum $\left(a_{9}, a_{13}\right)=(10,63)$ with $\lambda_{0}=0$ and $\mathcal{M}_{\mathcal{C}}=2 \Sigma-L$, where
L is the union of a 10-arc of lines.
Proof. Let \mathcal{C} be a $[101,3,88]_{8}$ code. Then $\gamma_{0}=2$ from (1) since \mathcal{C} is Griesmer. Hence, our assertion follows from Lemma 2.9 since the multiset $2 \Sigma-\mathcal{M}_{\mathcal{C}}$ is a $(45,5)$-minihyper.

Lemma 4.10. Every $[100,3,87]_{8}$ code \mathcal{C} is extendable and its spectrum is one of the following:
(a) $\left(a_{5}, a_{12}, a_{13}\right)=(5,9,59)$,
(b) $\left(a_{4}, a_{5}, a_{12}, a_{13}\right)=(1,4,8,60)$,
(c) $\left(a_{8}, a_{9}, a_{12}, a_{13}\right)=(2,8,7,56)$,
(d) $\left(a_{9}, a_{12}, a_{13}\right)=(10,9,54)$.

Proof. Let \mathcal{C} be a $[100,3,87]_{8}$ code. By Lemma $1, \gamma_{0}=2$ and $\gamma_{1}=13$. Since $\left(\gamma_{1}-\gamma_{0}\right) \theta_{1}+\gamma_{0}-1=n$, the lines though a fixed 2 -point is one 12 -line and eight 13 -lines, and $a_{10}=a_{11}=0$. Let l be a t-line containing a 1-point P. Considering the lines through P, we get $n \leq\left(\gamma_{1}-1\right) 8+t$, so $4 \leq t$. Hence $a_{1}=a_{2}=a_{3}=0$. Suppose a 0 -line l_{0} exists. Since there is no 9 -line, for a point P on l_{0}, there are four 12 -lines and four 13 -lines through P. Hence, the spectrum is $\left(a_{0}, a_{12}, a_{13}\right)=(1,36,36)$, Then, from (6), we have $\lambda_{2}=648-4950 / 8$, a contradiction. Hence, there is no 0 -line. Next, assume $a_{6}>0$ and let l_{6} be a 6 -line. For a 1-point P on l_{6}, there are exactly two 12 -lines and six 13 -lines through P. Hence $a_{9}=0$. For a 0 -point Q on l_{6}, there are at most two lines whose multiplicities are less than 9 . Hence we have $\sum_{i \equiv n, n-d} a_{i} \leq(9-6) 2+1=7$, and \mathcal{C} is extendable by Theorem 2.7. One can prove this similarly when $a_{7}>0$. Finally, assume $a_{6}=a_{7}=0$. Then, we have $a_{i}=0$ for all $i \notin\{4,5,8,9,12,13\}$, which implies that $A_{i}=0$ for all $i \not \equiv 0,87 \bmod 4$. Hence, \mathcal{C} is extendable by Theorem 2.8. Assume that adding a point P to the multiset $\mathcal{M}_{\mathcal{C}}$ gives a 101 -plane δ corresponding to a $[101,3,88]_{8}$ code. Then, δ satisfies (A) or (B) in the previous lemma. So, one can get the spectra (a)-(d) according to the cases (a) P is a 2-point on δ with case (A); (b) P is a 1-point from a 5 -line on δ with case (A); (c) P is a 1-point from a 9 -line on δ with case (B); (d) P is a 2 -point on δ with case (B), respectively.

Lemma 4.11. There exists no $[790,4,690]_{8}$ code.
Proof. Let \mathcal{C} be a putative Griesmer $[790,4,690]_{8}$ code. Then, we have $\gamma_{0}=2, \gamma_{1}=13, \gamma_{2}=100$ from (1). Since $\left(\gamma_{1}-\gamma_{0}\right) \theta_{2}+\gamma_{0}-15=790$, an i-plane containing a 2 -point satisfies $i \geq\left(\gamma_{1}-\gamma_{0}\right) \theta_{1}+\gamma_{0}-15=86$. From Table 1, the spectrum of a γ_{2}-plane Δ_{1} is one of the following:
(A) $\left(\tau_{5}, \tau_{12}, \tau_{13}\right)=(5,9,59)$,
(B) $\left(\tau_{4}, \tau_{5}, \tau_{12}, \tau_{13}\right)=(1,4,8,60)$,
(C) $\left(\tau_{8}, \tau_{9}, \tau_{12}, \tau_{13}\right)=(2,8,7,56)$,
(D) $\left(\tau_{9}, \tau_{12}, \tau_{13}\right)=(10,9,54)$.

By the first sieve, one can get $a_{i}=0$ for all $i \notin\{22-28,30-33,54-73,86-92,94-100\}$. From (7), we get

$$
\begin{equation*}
\sum_{i \leq 98}\binom{100-i}{2} a_{i}=64 \lambda_{2}-8685 . \tag{18}
\end{equation*}
$$

Lemma 2.1(c) gives $\sum_{j} c_{j}=8$ and

$$
\begin{equation*}
\sum_{j}(100-j) c_{j}=w+10-8 t \tag{19}
\end{equation*}
$$

We first prove $a_{i}=0$ for $22 \leq i \leq 33$. Assume a t-plane δ_{t} with $22 \leq t \leq 33$ exists. Then, the multiset $\mathcal{M}_{\mathcal{C}}+\delta_{t}$ gives an $[N=863,4, D=754]_{8}$ code \mathcal{C}^{\prime} since $m_{\mathcal{C}^{\prime}}\left(\delta_{t}\right)=t+\theta_{2} \leq 33+73 \leq 109$ and since $N=n+\theta_{2}=790+73=863$ and $N-D=n-d+\theta_{1}=790-690+9=109$. This contradicts that a $[863,4,754]_{8}$ code does not exist, see [26]. Hence, $a_{i}=0$ for all $i \leq 33$. We can prove $a_{i}=0$ for $i=73,72,71,70,64,63,62,61,60,69$ in this order by $\left(\lambda_{2}, i\right)$-ROM using the possible spectra of each i-plane from Table 1.

Suppose $a_{68}>0$ and let δ_{68} be a 68 -plane. Since δ_{68} corresponds to a Griesmer [68, 3, 59] $]_{8}$ code, $\mathcal{M}\left(\delta_{68}\right)$ is obtained from δ_{68} by deleting five points, and the spectrum of δ_{68} is one of the following:
(a) $\left(\tau_{4}, \tau_{8}, \tau_{9}\right)=(1,40,32)$,
(b) $\left(\tau_{5}, \tau_{7}, \tau_{8}, \tau_{9}\right)=(1,4,33,35)$,
(c) $\left(\tau_{6}, \tau_{7}, \tau_{8}, \tau_{9}\right)=(1,7,28,37)$,
(d) $\left(\tau_{6}, \tau_{7}, \tau_{8}, \tau_{9}\right)=(2,4,31,36)$,
(e) $\left(\tau_{7}, \tau_{8}, \tau_{9}\right)=(10,25,38)$.

One can get a contradiction by the usual ($\lambda_{2}, 68$)-ROM for the possible spectra (b)-(e). Hence δ_{68} has spectrum (a). From (19), there is at most one i-plane with $i \leq 68$ other than δ_{68}. We may assume that δ_{68} meets Δ_{1} in a 9 -line. Then Δ_{1} has spectrum (C) or (D). Setting $w=100$ in (19), the maximum possible contributions of c_{j} 's to the LHS of (18) are $\left(c_{54}, c_{100}\right)=(1,7)$ for $t=8 ;\left(c_{86}, c_{96}, c_{100}\right)=(3,1,4)$ for $t=8$ when $c_{j}=0$ for $j<86 ;\left(c_{65}, c_{97}, c_{100}\right)=(1,1,6)$ for $t=9 ;\left(c_{86}, c_{90}, c_{100}\right)=(2,1,5)$ for $t=9$ when $c_{j}=0$ for $j<86 ;\left(c_{86}, c_{100}\right)=(1,7)$ for $t=12 ;\left(c_{94}, c_{100}\right)=(1,7)$ for $t=13$. Hence, we get

$$
64 \lambda_{2}-8685=(\text { LHS of }(18)) \leq 1035+279\left(\tau_{8}-1\right)+227 \tau_{9}+91 \tau_{12}+15 \tau_{13}=4607
$$

for the spectrum (C), giving $\lambda_{2} \leq 207$. On the other hand, we have $\lambda_{2}=\lambda_{0}+205 \geq 205+(73-69)=209$, a contradiction. Similarly, we get a contradiction for spectrum (D). Hence $a_{68}=0$. One can also prove $a_{67}=a_{66}=0$ as well.

Suppose $a_{54}>0$. Let δ_{54} be a 54 -plane and l be 8 -line in δ_{54}. Then, the other planes through l other than δ_{54} are 100-planes of spectrum (C), say $\Delta_{1}, \ldots, \Delta_{8}$. Suppose that there is no plane with no 2 -point meeting l in a 1 -point. Then, one can get a contradiction by ($\lambda_{2}, 100$)-ROM using the spectrum (C) of a 100 -plane. So, there is a plane δ with no 2 -point meeting l in a 1 -point P. Since δ meets each of $\Delta_{1}, \ldots, \Delta_{8}$ in a 9 -line, we have $m_{\mathcal{C}}(\delta) \geq(9-1) 8+1=65$, whence δ is a 65 -plane with spectrum $\left(\tau_{1}, \tau_{8}, \tau_{9}\right)=(1,64,8)$. Then, we get a a contradiction by $\left(\lambda_{2}, 65\right)$-ROM. Hence $a_{54}=0$. Similarly, we can prove $a_{55}=a_{56}=a_{57}=a_{58}=a_{59}=0$.

Suppose $a_{65}>0$ and let δ_{65} be a 65 -plane. Let l be a 9 -line on δ_{65} and take a 100 -plane Δ_{1} through l. Since δ_{65} has no 2 -point, there are eight 0 -points in δ_{65}, and there are at most two lines on δ_{65} whose multiplicities are at most 5 . Since any other 65 -plane meets δ_{65} in some t-line with $t \leq 5$ and since the spectrum of Δ_{1} is (C) or (D), we have $a_{65} \leq 3$ from (19) with $w=100$. Setting $w=100$ in (19), the maximum possible contributions of c_{j} 's to the LHS of (18) are $\left(c_{65}, c_{89}, c_{100}\right)=(1,1,6)$ for $t=8$; $\left(c_{86}, c_{96}, c_{100}\right)=(3,1,4)$ for $t=8$ with $c_{65}=0 ;\left(c_{65}, c_{97}, c_{100}\right)=(1,1,6)$ for $t=9 ;\left(c_{86}, c_{90}, c_{100}\right)=(2,1,5)$ for $t=9$ with $c_{65}=0 ;\left(c_{86}, c_{100}\right)=(1,7)$ for $t=12 ;\left(c_{94}, c_{100}\right)=(1,7)$ for $t=13$. It follows from $\lambda_{2}=\lambda_{0}+205 \geq 205+(73-65)=213$ that one can get a contradiction by $\left(\lambda_{2}, 100\right)$-ROM as

$$
64 \lambda_{2}-8685=(\text { LHS of }(18)) \leq 650 \tau_{8}+227 \tau_{9}+91 \tau_{12}+15 \tau_{13}=4593
$$

when Δ_{1} has spectrum (C) and

$$
64 \lambda_{2}-8685=(\text { LHS of }(18)) \leq 598 \times 2+227\left(\tau_{9}-2\right)+91 \tau_{12}+15 \tau_{13}=4641
$$

when Δ_{1} has spectrum (D) since $a_{65} \leq 3$, giving $\lambda_{2} \leq 208$. Hence, $a_{65}=0$.
Now, we have $a_{i}=0$ for all $i<86$. One can get a contradiction by ($\lambda_{2}, 100$)-ROM using the possible spectra (A)-(D) as usual. This completes the proof.

Lemma 4.12. There exists no $[798,4,697]_{8}$ code.
Proof. Let \mathcal{C} be a putative Griesmer $[798,4,697]_{8}$ code. By Lemma 4.9, the spectrum of a γ_{2}-plane Δ_{1} is either $(\mathrm{A})\left(\tau_{5}, \tau_{13}\right)=(5,68)$ or $(\mathrm{B})\left(\tau_{9}, \tau_{13}\right)=(10,63)$. Using Theorem 4.2 and Lemma 2.1, one can get $a_{i}=0$ for all $i \notin\{30-33,62-73,94-101\}$ by the first sieve. It follows from (7) that

$$
\begin{equation*}
\sum_{i \leq 99}\binom{101-i}{2} a_{i}=64 \lambda_{2}-9123 \tag{20}
\end{equation*}
$$

Lemma 2.1(c) gives $\sum_{j} c_{j}=8$ and

$$
\begin{equation*}
\sum_{j}(101-j) c_{j}=w+10-8 t \tag{21}
\end{equation*}
$$

One can deduce that $a_{i}=0$ by $\left(\lambda_{2}, i\right)$-ROM for $70 \leq i \leq 73$ using the possible spectra of the [73 $j, 3,64-j]_{8}$ codes for $0 \leq j \leq 3$, see Table 1 .

Suppose $a_{30}>0$ and let δ_{30} be a 30-plane. It follows from (21) that $a_{30}>0$ implies $a_{30}=1$ and $a_{j}=0$ for other $j<94$. Since $\gamma_{1}\left(\delta_{30}\right)=5$, one can find a 101-plane Δ of spectrum (A) meeting δ_{30} in a 5 -line. Take another 5 -line l_{5} on Δ. Then, every plane through l_{5} has multiplicity at least 94 , which is impossible from (21) with $(w, t)=(101,5)$. Hence $a_{30}=0$. One can get $a_{31}=a_{32}=a_{33}=0$, similarly. Then, using the possible spectra of the $[70-j, 3,61-j]_{8}$ codes, we can also prove that $a_{70-j}=0$ by $\left(\lambda_{2}, 70-j\right)$-ROM for $1 \leq j \leq 3$.

Now, we have $a_{i}=0$ for all $i \notin\{62-66,94-101\}$. Note that a $(62+e)$-plane with $0 \leq e \leq 3$ could have a 2 -point because it corresponds to a $[62+e, 3,53+e]_{8}$ code which is not Griesmer. Suppose a $(62+e)$-plane δ with $0 \leq e \leq 3$ has a 2 -point. Then, one can find a 9 -line l_{9} through the 2 -point on δ and a 101-plane through l_{9} from (21) with $(w, t)=(62+e, 9)$. This contradicts that a 9 -line in a 101-plane with spectrum (B) has no 2-point by Lemma 4.9. Thus, a $(62+e)$-plane with $0 \leq e \leq 4$ has no 2-point since a 66 -plane corresponds to a Griesmer code.

Suppose $a_{62}>0$ and let δ_{62} be a 62 -plane and let l be a 9 -line on δ_{62}. Then, the other planes through l are 101-planes, say $\Delta_{1}, \ldots, \Delta_{8}$. For a fixed 1-point P on l, one can take a 9 -line $l_{j}(\neq l)$ on Δ_{j} for $1 \leq j \leq 8$ from the geometric structure described in Lemma 4.9. Suppose that the plane $\delta=\left\langle l_{1}, l_{2}\right\rangle$ is a $(62+\bar{e})$-plane with $0 \leq e \leq 3$ and let $\delta \cap \delta_{62}$ be an α-line. Since $\gamma_{1}(\delta)=9, \delta$ contains all of l_{1}, \ldots, l_{8}, and we have $m_{\mathcal{C}}(\delta)=64+\alpha$. One can rule out such cases by $\left(\lambda_{2}, 64+\alpha\right)$-ROM. Hence, $a_{62}>0$ implies that $a_{62}=1$ and $a_{j}=0$ for other $j<94$. Setting $w=101$, the maximum possible contributions of c_{j} 's in (21) to the LHS of (20) are $\left(c_{62}, c_{101}\right)=(1,7)$ for $t=9$ with $c_{62}>0 ;\left(c_{94}, c_{97}, c_{101}\right)=(5,1,2)$ for $t=9$ with $c_{62}=0 ;\left(c_{94}, c_{101}\right)=(1,7)$ for $t=13$. Using the spectrum of a 101-plane of spectrum (B), one can get a contradiction by $\left(\lambda_{2}, 101\right)$-ROM. Hence $a_{62}=0$. One can similarly prove $a_{63}=0$.

To rule out a 101-plane of spectrum (A), let Δ_{1} be such a plane. From (21) with $(w, t)=(101,5)$, there exists a $(64+e)$-plane with $0 \leq e \leq 2$ through each of the 5 -lines on Δ_{1}. One can rule out such a 66 -plane by $\left(\lambda_{2}, 66\right)$-ROM using all possible spectra of a 66 -plane with a 5 -line. Hence $a_{66}=0$. Note that $\lambda_{0} \geq 8-4+10=14$ since a 101-plane of spectrum (A) has ten 0 -points. Setting $w=101$, the maximum possible contributions of c_{j} 's in (21) to the LHS of (20) are $\left(c_{64}, c_{94}, c_{95}, c_{101}\right)=(1,4,1,2)$ for $t=5 ;\left(c_{94}, c_{101}\right)=(1,7)$ for $t=13$. Using the spectrum of a 101-plane of spectrum (A), one can get a contradiction by ($\lambda_{2}, 101$)-ROM. Hence every 101-plane has spectrum (B).

Suppose $a_{66}>0$ and let δ_{66} be a 66 -plane with spectrum $\left(\tau_{2}, \ldots, \tau_{9}\right)$. Then, from the three equalities (4)-(6), we obtain $\tau_{2}+\tau_{3}+\tau_{4} \leq 2$ and $\tau_{5}+\tau_{6}+\tau_{7} \leq 21$. Setting $w=66$, the maximum possible contributions of c_{j} 's in (21) to the LHS of (20) are ($\left.c_{64}, c_{94}, c_{95}, c_{99}\right)=(1,1,1,5)$ for $t=2$ since a 100plane has no 2-line by Lemma 4.10; $\left(c_{94}, c_{96}, c_{100}\right)=(4,1,3)$ for $t=5$ since $c_{101}=0 ;\left(c_{96}, c_{100}\right)=(1,7)$
for $t=8 ;\left(c_{97}, c_{101}\right)=(1,7)$ for $t=9$. Using $\left(\tau_{2}, \tau_{5}, \tau_{8}, \tau_{9}\right)=(2,21,49,1)$ instead of all possible spectra of a 66 -plane, one can get a contradiction by ($\lambda_{2}, 66$)-ROM. Hence $a_{66}=0$. we can prove $a_{65}=a_{64}=0$ similarly.

Hence, we have ruled out all possible i-planes with $i<94$. Finally, using the spectrum (B) of a 101-plane, one can get a contradiction by $\left(\lambda_{2}, 101\right)$-ROM. This completes the proof.

Lemma 4.13. $A[107,3,93]_{8}$ code \mathcal{C} satisfies $\lambda_{0}>0$.
Proof. Suppose $\lambda_{0}=0$. It follows from Lemma 2.4 that the multiset $\mathcal{M}_{\mathcal{C}}-\mathrm{PG}(2,8)$ gives a $[34,3,29]_{8}$ code, which does not exist by Theorem 4.2, a contradiction.

Lemma 4.14. There exists no $[853,4,745]_{8}$ code.
Proof. Let \mathcal{C} be a putative Griesmer $[853,4,745]_{8}$ code. From Table 1, the spectrum of a γ_{2}-plane Δ_{1} is one of the following:
(A) $\left(\tau_{4}, \tau_{6}, \tau_{13}, \tau_{14}\right)=(1,3,16,53)$,
(B) $\left(\tau_{5}, \tau_{6}, \tau_{12}, \tau_{13}, \tau_{14}\right)=(2,2,1,14,54)$,
(C) $\left(\tau_{5}, \tau_{6}, \tau_{12}, \tau_{13}, \tau_{14}\right)=(1,3,1,15,53)$,
(D) $\left(\tau_{6}, \tau_{12}, \tau_{13}, \tau_{14}\right)=(4,1,16,52)$,
(E) $\left(\tau_{6}, \tau_{12}, \tau_{14}\right)=(4,9,60)$.

One can get $a_{i}=0$ for all $i \notin\{21-33,37-42,61-64,69-73,85-108\}$ by the first sieve. From (7), we get

$$
\begin{equation*}
\sum_{i \leq 106}\binom{108-i}{2} a_{i}=64 \lambda_{2}-12251 \tag{22}
\end{equation*}
$$

Lemma 2.1(c) gives $\sum_{j} c_{j}=8$ and

$$
\begin{equation*}
\sum_{j}(108-j) c_{j}=w+9-8 t \tag{23}
\end{equation*}
$$

We first prove $a_{i}=0$ for $21 \leq i \leq 42$. Assume a t-plane δ_{t} with $21 \leq t \leq 42$ exists. Then, the multiset $\mathcal{M}_{\mathcal{C}}+\delta_{t}$ gives an $[N=926,4, D=809]_{8}$ code \mathcal{C}^{\prime} since $m_{\mathcal{C}^{\prime}}\left(\delta_{t}\right)=\bar{t}+\overline{\theta_{2}} \leq 42+73 \leq 115$ and since $N=n+\theta_{2}=853+73=926$ and $N-D=n-d+\theta_{1}=853-745+9=117$. This contradicts that a $[926,4,809]_{8}$ code does not exist by Lemma 4.17. Hence, $a_{i}=0$ for all $i \leq 60$.

If $a_{73}>0$, then any line on a 73 -plane is a 9 -line from Table 1 , which contradicts that Δ_{1} has no 9-line. Hence $a_{73}=0$. Similarly, $a_{64}=a_{63}=a_{71}=a_{72}=0$.

Suppose $a_{62}>0$. The spectrum of a 62 -plane is $\left(\tau_{0}, \tau_{6}, \tau_{7}, \tau_{8}\right)=(1,1,16,55)$ and a 62 -plane meets Δ_{1} in a 6 -line since the possible multiplicities of lines in Δ_{1} are $4,5,6,12,13,14$. Setting $w=62$ in (23), the maximum possible contributions of c_{j} 's to the LHS of (22) are $\left(c_{106}, c_{107}\right)=(1,7)$ for $t=8$; $\left(c_{98}, c_{107}\right)=(1,7)$ for $t=7 ;\left(c_{85}, c_{106}, c_{108}\right)=(1,1,6)$ for $t=6 ;\left(c_{42}, c_{107}\right)=(1,7)$ for $t=0$. Using the spectrum of a 62 -plane, one can get a contradiction by ($\lambda_{2}, 62$)-ROM since $\lambda_{2}=\lambda_{0}+268 \geq 268$. Hence $a_{62}=0$. Similarly, we can prove $a_{61}=a_{69}=a_{70}=0$ using the spectra from Table 1.

Now, we have $a_{i}=0$ for all $i<85$. Using the possible spectra (A)-(E) of a 108-plane, one can get a contradiction as follows.

Take a 14 -line L on a 108 -plane so that L has no 0 -point. $\operatorname{Setting}(w, t)=(108,14)$ in (23), the solutions of c_{j} 's are $\left(c_{101}, c_{108}\right)=(1,7),\left(c_{102}, c_{107}, c_{108}\right)=(1,1,6),\left(c_{107}, c_{108}\right)=(7,1)$ and so on. Counting the number of 0 -points on the planes through L, we have $\lambda_{0} \geq 6+6+7=19$ since a 108 -plane has at least six 0 -points and since a 107 -plane has at least one 0 -point by Lemma 4.13. Hence

$$
\begin{equation*}
\lambda_{2}=\lambda_{0}+268 \geq 287 \tag{24}
\end{equation*}
$$

Using the spectra (A)-(D) of a 108-plane, we get a contradiction by ($\lambda_{2}, 108$)-ROM. Hence every 108-plane has spectrum (E). Then, we have $64 \lambda_{2}-12251 \leq 6577$, giving

$$
\begin{equation*}
\lambda_{2} \leq 294 \tag{25}
\end{equation*}
$$

Next, we rule out a possible 85 -plane. Assume a 85 -plane δ exists. Then, δ has a 12 -line ℓ and the other planes through ℓ are 108 -planes. Let s be the number of 0 -points on ℓ. Since $s \leq 3$ and since a 108-plane of spectrum (E) has seven 0-point, we obtain $\lambda_{2}=\lambda_{0}+268 \geq 268+(7-s) 8+s \geq 304$, which contradicts (25). Hence, $a_{85}=0$.

Counting the number of 0 -points on the planes through a fixed 14 -line, the lower bound (24) can be improved to $\lambda_{2} \geq 289$ since a 108 -plane of spectrum (E) has seven 0 -point.

On the other hand, since the maximum possible contributions of c_{j} 's in (23) with $w=108$ to the LHS of (22) are $\left(c_{86}, c_{103}, c_{108}\right)=(3,1,4)$ for $t=6$ and $\left(c_{86}, c_{108}\right)=(1,1,6)$ for $t=12$, the upper bound (25) can be also improved to $\lambda_{2} \leq 287$, a contradiction. This completes the proof.

We recall that the multiset for a $\left[2 q^{2}-q-1,3,2 q^{2}-3 q\right]_{q}$ code with $q \geq 5$ consists of two copies of $\mathrm{PG}(2, q)$ with three non-concurrent lines deleted [16]. The following code is obtained from this code by deleting two (not necessarily distinct) points.

Lemma 4.15 ([16]). $A\left[2 q^{2}-q-3,3,2 q^{2}-3 q-2\right]_{q}$ code \mathcal{C}^{\prime} with $q \geq 7$ is extendable to $a\left[2 q^{2}-q-\right.$ $\left.1,3,2 q^{2}-3 q\right]_{q}$ code \mathcal{C} and its spectrum is one of the following:
(a) $\left(a_{q-3}, a_{q-1}, a_{2 q-2}, a_{2 q-1}\right)=\left(1,2,2 q, q^{2}-q-2\right)$,
(b) $\left(a_{q-2}, a_{q-1}, a_{2 q-3}, a_{2 q-2}, a_{2 q-1}\right)=\left(2,1,1,2 q-2, q^{2}-q-1\right)$,
(c) $\left(a_{q-2}, a_{q-1}, a_{2 q-3}, a_{2 q-2}, a_{2 q-1}\right)=\left(1,2,1,2 q-1, q^{2}-q-2\right)$,
(d) $\left(a_{q-1}, a_{2 q-3}, a_{2 q-2}, a_{2 q-1}\right)=\left(3,1,2 q, q^{2}-q-3\right)$,
(e) $\left(a_{q-1}, a_{2 q-3}, a_{2 q-1}\right)=\left(3, q+1, q^{2}-3\right)$,
according to the cases (a) P and Q are 1-points on the same $(q-1)$-line on δ; (b) P and Q are 1-points from different $(q-1)$-lines on δ; (c) P is a 1-point and Q is a 2-point on δ; (d) P and Q are distinct 2-points in on δ; (e) P and Q are the same 2-points in on δ, respectively, where P and Q are the points corresponding to the coordinates of \mathcal{C} to be removed from the $\left(2 q^{2}-q-1\right)$-plane δ stated in the previous lemma.

One can get the following similarly to Lemma 4.13.
Lemma 4.16. $A[116,3,101]_{8}$ code \mathcal{C} satisfies $\lambda_{0}>0$.
Lemma 4.17. There exists no $[926,4,809]_{8}$ code.
Proof. Let \mathcal{C} be a putative $[926,4,809]_{8}$ code. From Lemma 4.15 , the spectrum of a γ_{2}-plane Δ is one of the following:
(A) $\left(\tau_{5}, \tau_{7}, \tau_{14}, \tau_{15}\right)=(1,2,16,54)$,
(B) $\left(\tau_{6}, \tau_{7}, \tau_{13}, \tau_{14}, \tau_{15}\right)=(2,1,1,14,55)$,
(C) $\left(\tau_{6}, \tau_{7}, \tau_{13}, \tau_{14}, \tau_{15}\right)=(1,2,1,15,54)$,
(D) $\left(\tau_{7}, \tau_{13}, \tau_{14}, \tau_{15}\right)=(3,1,16,53)$,
(E) $\left(\tau_{7}, \tau_{13}, \tau_{15}\right)=(3,9,61)$.

Using Theorem 4.2 and Lemma 2.1, we obtain $a_{i}=0$ for all $i \notin\{30-33,38-42,46-49,62-64,70-73,94-117\}$ by the first sieve. From (7), we get

$$
\begin{equation*}
\sum_{i \leq 115}\binom{117-i}{2} a_{i}=64 \lambda_{2}-17083 \tag{26}
\end{equation*}
$$

Lemma 2.1(c) gives $\sum_{j} c_{j}=8$ and

$$
\begin{equation*}
\sum_{j}(117-j) c_{j}=w+10-q t . \tag{27}
\end{equation*}
$$

First, we prove $a_{i}=0$ for $30 \leq i \leq 33$. Suppose $a_{30}>0$ and let δ_{30} be a 30 -plane. Then, it follows from (27) that $a_{30}=1$ and any i-plane with $i>30$ satisfies $i \geq 94$. From Lemma 2.1, δ_{30} meets Δ in a 5 -line, say l, and Δ has the spectrum (A). Recall from Lemma 4.15 that there are two 7 -lines in the 117-plane of spectrum (A) meeting the 5 -line in 0 -points. Since the other planes $\left(\neq \delta_{30}, \Delta\right)$ through l are 117-planes of spectrum (A), say $\Delta_{1}, \ldots, \Delta_{7}$, and since there are four 0 -points on l, one can take a 0 -point Q on l which
is on at least four 7 -lines, say $l_{1}, l_{2}, l_{3}, l_{4}$. Without loss of generality, we may assume that l_{j} is on Δ_{j} for $1 \leq j \leq 4$. For the plane $\delta=\left\langle l_{1}, l_{2}\right\rangle$, we have $m_{\mathcal{C}}(\delta) \leq 7+7+5+15 \times 6=109$ since $m_{\mathcal{C}}\left(\delta_{30} \cap \delta\right) \leq 5$. Since a 109-plane has no 15 -line, we have $m_{\mathcal{C}}\left(\delta \cap \Delta_{j}\right)=7$ for $1 \leq j \leq 4$, and $m_{\mathcal{C}}(\delta) \leq 7 \times 4+5+14 \times 4=89$, a contradiction. Hence $a_{30}=0$. One can similarly prove $a_{31}=a_{32}=a_{33}=0$.

If $a_{73}>0$, then any line on a 73 -plane is a 9 -line from Table 1 , which contradicts that Δ has no 9 -line. Hence $a_{73}=0$. Similarly, $a_{64}=a_{72}=0$. Using the spectrum of a w-plane from Table 1, one can get a contradiction by $\left(\lambda_{2}, w\right)$-ROM for $w=62,63,70,71$. Hence, $a_{62}=a_{63}=a_{70}=a_{71}=0$.

Suppose $a_{38}>0$. Then, $a_{38}=1$ and $a_{j}>0$ with $j \neq 38$ implies $j \geq 94$. Let δ_{0} be the 38 -plane. Then, δ_{0} contains a 6 -line, say L, and the other planes through L other than δ_{0} are 117-planes of spectrum (B) or (C), say $\Delta_{1}, \ldots, \Delta_{8}$. Recall from Lemma 4.15 that there are two 7 -lines (resp. one 6 -line and one 7-line) in the 117 -plane of spectrum (C) (resp. (B)) meeting the 6 -line L in 0 -points. Let l_{j} and m_{j} be the 6 - or 7 -lines in Δ_{j} other than L. Since there are three 0 -points on L, one can take a 0 -point Q on l which is on at least six 6 - or 7 -lines. Without loss of generality, we may assume that l_{2} and l_{3} meet L in $Q=l_{1} \cap L$ and that two of other l_{j}, m_{j} with $j \geq 2$ meet L in $Q^{\prime}=m_{1} \cap L$. Note that there is no s-line with $7<s<14$ in Δ_{1} through Q or Q^{\prime} by Lemma 4.15. Let δ be a t-plane through l_{1} other than Δ_{1}. If $t<102$, then δ meets Δ_{2} and Δ_{3} in l_{2} and l_{3}, respectively, since a t-plane contains no 14- nor 15 -line, whence $m_{\mathcal{C}}(\delta) \leq 7+7+7+\left|\delta \cap \delta_{0}\right|+5 \times 14 \leq 97$. Then, from Lemma $2.1, \delta$ contains no 14 -plane, and we have $m_{\mathcal{C}}(\delta) \leq 7+7+7+6+5 \times 13=92$, a contradiction. Hence any t-plane through l_{1} or m_{1} satisfies $t \geq 102$. Take Δ_{1} as Π in Lemma 2.1, the maximum possible contribution of c_{j} 's in (27) with $w=117$ to the LHS of (26) are $\left(c_{38}, c_{117}\right)=(1,7)$ for $t=6$ with $c_{38}>0 ;\left(c_{102}, c_{113}, c_{117}\right)=(5,1,2)$ for $t=6$ with $c_{38}=0 ;\left(c_{102}, c_{106}, c_{117}\right)=(4,1,3)$ for $t=7 ;\left(c_{94}, c_{117}\right)=(1,7)$ for $t=13 ;\left(c_{102}, c_{117}\right)=(1,7)$ for $t=14 ;\left(c_{110}, c_{117}\right)=(1,7)$ for $t=15$. Note that $\lambda_{2}=\lambda_{0}+341 \geq 341+(73-38)+8=384$ since each of $\Delta_{1}, \ldots, \Delta_{8}$ contains a 0 -point out of L. Using the spectrum of a 117 -plane of spectrum (B) or (C), one can get a contradiction by $\left(\lambda_{2}, 117\right)$-ROM. Hence $a_{38}=0$. One can prove $a_{39}=a_{40}=a_{41}=a_{42}=0$ similarly. (When δ_{0} is a 42 -plane, there are four 117 -planes of spectrum (B) or (C), say $\Delta_{1}, \ldots, \Delta_{4}$, through a fixed 6 -line L in δ_{0}, which contain 6 - or 7 -lines l_{i}, m_{j} as above. It could happen that l_{2}, l_{3}, l_{4} meet L in $Q=l_{1} \cap L, m_{2}$ meets L in $Q^{\prime}=m_{1} \cap L$ and that m_{3} and m_{4} meet L in the remaining 0 -point of L other than Q, Q^{\prime}. In this case, any t-plane $\left(\neq\left\langle m_{1}, m_{2}\right\rangle\right)$ through m_{1} satisfies $t \geq 102$. Considering this situation, one can get a contradiction by ($\lambda_{2}, 117$)-ROM as above.) The above investigation for the case $a_{38}>0$ is also valid to rule out possible i-planes for $46 \leq i \leq 49$, see [6] for the detail.

Now, we have $a_{i}=0$ for all i without $94 \leq i \leq 117$. Using the spectrum (A)-(E) of a 117 plane, one can get a contradiction as follows. Take a 15 -line with no 0 -point on a 117 -plane. Since the possible contributions of c_{j} 's with $w=117$ in (27) to the LHS of (26) are $\left(c_{110}, c_{117}\right)=(1,7)$, $\left(c_{116}, c_{117}\right)=(7,1)$ and so on for $t=15$ and since a 116-plane has at least one 0 -point by Lemma 4.16, we have $\lambda_{2}=\lambda_{0}+341 \geq 341+3+3 \times 1+1 \times 7 \geq 354$. Hence, we can get a contradiction by $\left(\lambda_{2}, 117\right)$ ROM when the spectrum of the w-plane is one of (A)-(D). Now, we may assume that any 117-plane has spectrum (E). We first rule out a possible 94-plane. Assume a 94 -plane δ exists. Then, δ has a 13 -line ℓ and the other planes through ℓ are 117 -planes. Since ℓ has at most two 0 -points and since ℓ is on a 117 -plane of spectrum (E) which has four 0-points, we get $\lambda_{2}=\lambda_{0}+341 \geq 341+(4-2) 8+2 \geq 359$. On the other hand, we obtain $\lambda_{2} \leq 358$ by ($\lambda_{2}, 117$)-ROM using the spectrum (E), a contradiction. Hence there is no 94 -plane. Take a 15 -line with no 0 -point on a 117-plane. Counting the number of 0 -points on the planes through the 15 -line, we get a lower bound on λ_{2} as $\lambda_{2}=\lambda_{0}+341 \geq 341+4+4 \times 1+1 \times 7 \geq 356$ since a 117 -plane of spectrum (E) has four 0 -points. Then, we get a contradiction by ($\lambda_{2}, 117$)-ROM. This completes the proof.

Now, Theorem 1.5 follows from Lemmas 4.4-4.17.

Acknowledgment: The authors wish to express their thanks to the anonymous reviewers for their careful reading and valuable comments that improved the presentation and the content of the paper.

References

[1] S. Ball, Table of bounds on three dimensional linear codes or (n, r)-arcs in $\mathrm{PG}(2, q)$, available at https://web.mat.upc.edu/people/simeon.michael.ball/codebounds.html.
[2] A. Betten, E. J. Cheon, S. J. Kim, T. Maruta, The classification of $(42,6)_{8}$ arcs, Adv. Math. Commun. 5 (2011) 209-223.
[3] I. Bouyukliev, Y. Kageyama, T. Maruta, On the minimum length of linear codes over \mathbb{F}_{5}, Discrete Math. 338 (2015) 938-953.
[4] A. E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr. 11 (1997) 261-266.
[5] M. van Eupen, R. Hill, An optimal ternary [69, 5, 45] 3 codes and related codes, Des. Codes Cryptogr. 4 (1994) 271-282.
[6] M. Fujii, Nonexistence of some Griesmer codes of dimension 4, Master Thesis, Osaka Prefecture University (2019).
[7] M. Grassl, "Bounds on the minimum distance of linear codes and quantum codes." Online available at http://www.codetables.de.
[8] J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop. 4 (1960) 532-542.
[9] N. Hamada, A characterization of some $[n, k, d ; q]$-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math., 116 (1993) 229-268.
[10] R. Hill, Optimal linear codes, In: C. Mitchell(Ed.), Cryptography and Coding II, Oxford Univ. Press, Oxford (1992) 75-104.
[11] R. Hill, E. Kolev, A survey of recent results on optimal linear codes, In: Combinatorial Designs and their Applications, F.C. Holroyd et al. Ed., Chapman and Hall/CRC Press Research Notes in Mathematics, CRC Press. Boca Raton (1999) 127-152.
[12] J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Clarendon Press, Oxford (1985).
[13] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Clarendon Press, Oxford, second edition (1998).
[14] C. Jones, A. Matney, H. Ward, Optimal four-dimensional codes over GF(8), Electron. J. Combin. 13 (2006) \#R43, .
[15] Y. Kageyama, T. Maruta, On the geometric constructions of optimal linear codes, Des. Codes Cryptogr., 81 (2016) 469-480.
[16] R. Kanazawa, T. Maruta, On optimal linear codes over \mathbb{F}_{8}, Electronic J. Combin., 18(1) (2011) \#P34
[17] K. Kumegawa, T. Okazaki, T. Maruta, On the minimum length of linear codes over the field of 9 elements, Electron. J. Combin. 24(1) (2017) \#P1.50.
[18] K. Kumegawa, T. Maruta, Nonexistence of some Griesmer codes over \mathbb{F}_{q}, Discrete Math. 339 (2016) 515-521.
[19] K. Kumegawa, T. Maruta, Non-existence of some 4-dimensional Griesmer codes over finite fields, J. Algebra Comb. Discrete Struct. Appl. 5 (2018) 101-116.
[20] I. Landjev, L. Storme, A study of $(x(q+1), x ; 2, q)$-minihypers, Des. Codes Cryptogr. 54 (2010) 135-147.
[21] T. Maruta, On the minimum length of q-ary linear codes of dimension four, Discrete Math., 208/209 (1999) 427-435.
[22] T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr. 22 (2001) 165-177.
[23] T. Maruta, A new extension theorem for linear codes, Finite Fields Appl. 10 (2004) 674-685.
[24] T. Maruta, Optimal 4-dimensional linear codes over \mathbb{F}_{8}, Proceedings of 13th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT 2012), Pomorie, Bulgaria (2012) 257-262.
[25] T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing 7 (2013) 73-80.
[26] T. Maruta, Griesmer bound for linear codes over finite fields, available at http://mars39.lomo.jp/opu/griesmer.htm.
[27] T. Maruta, Y. Oya, On optimal ternary linear codes of dimension 6, Adv. Math. Commun. 5 (2011) 505-520.
[28] T. Maruta, M. Shinohara, M. Takenaka, Constructing linear codes from some orbits of projectivities,

Discrete Math. 308 (2008) 832-841.
[29] T. Maruta, T. Tanaka, H. Kanda, Some generalizations of extension theorems for linear codes over finite fields, Australas. J. Combin. 60 (2014) 150-157.
[30] T. Maruta, Y. Yoshida, A generalized extension theorem for linear codes, Des. Codes Cryptogr. 62 (2012) 121-130.
[31] M. Takenaka, K. Okamoto, T. Maruta, On optimal non-projective ternary linear codes, Discrete Math. 308 (2008) 842-854.
[32] Y. Yoshida, T. Maruta, An extension theorem for $[n, k, d]_{q}$ codes with $\operatorname{gcd}(d, q)=2$, Australas. J. Combin. 48 (2010) 117-131.

[^0]: * This research was partially supported by JSPS KAKENHI Grant Number $20 K 03722$.

 Nanami Bono, Maya Fujii, Tatsuya Maruta (Corresponding Author); Department of Mathematical Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan (email: bononanami@gmail.com, ddddy.maya0802@gmail.com, maruta@mi.s.osakafu-u.ac.jp).

